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Overview

“More Is Different” is the title of a famous 1972 essay by Philip Anderson, which
established the concept of emergent phenomena — the idea that large, complex phys-
ical systems generally can’t be understood by extrapolating the properties of small,
simple systems. For example, consider the ∼1022 H2O molecules in a cubic centime-
tre of water. While we can use Newton’s laws (or the laws of quantum mechanics) to
analyse a few of these molecules, this does not allow us to predict processes such as
phase transitions of this water into steam or ice.

Instead, we have to apply the stochastic (i.e., probabilistic) techniques of statis-
tical mechanics — one of the central pillars of modern physics, along with quantum
mechanics and relativity. While statistical mechanics was originally developed in the
context of thermodynamics in the nineteenth century, it is more generally applicable to
any large-scale (macroscopic) behaviour that emerges from the microscopic dynamics
of many underlying objects. It is intimately connected to quantum field theory, and
has been applied to topics from nuclear physics and cosmology to climate science and
biophysics, often with outstanding success (recently recognized by the 2021 and 2024
Nobel Prizes in Physics, to name just two).

The module outline on the previous page is organized around the concept of sta-
tistical ensembles introduced in the early 1900s. In essence, a statistical ensemble is
a mathematical framework for concisely describing the properties of idealized physical
systems subject to certain constraints. After studying the probability foundations un-
derlying these frameworks, we meet the micro-canonical ensemble in unit 2 and the
canonical ensemble in unit 3. The following two units 4–5 apply the canonical ensem-
ble to investigate non-interacting (“ideal”) gases and thermodynamic cycles. Unit 6
introduces a third statistical ensemble, the grand-canonical ensemble, which units 7–8
apply to several types of non-interacting quantum gases. (No prior exposure to quan-
tum mechanics is required — see below for more information.) Finally, in unit 9 we
begin to explore the effects of interactions, which open up a much broader landscape
of applications that we will survey for the remainder of the term.
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Schedule

Most weeks we will have the following schedule:

• Lecture at 10:00–11:00 on Tuesdays in Elec. Eng. Lecture Room E5 (205)
• Tutorial at 10:00–11:00 on Wednesdays in Room 106
• Lecture at 11:00–13:00 on Thursdays in Room 106

The tutorials in weeks 2, 3 and 4 (on 4, 11 and 18 February) will be computer lab
sessions in Hub 502 PC Teaching Centre B, to provide opportunities for you to work on
the computer assignment summarized below.

I will use Panopto to record lectures (and lecturey bits of tutorials and computer
labs). These recordings will appear along with all other resources on our Canvas site,

canvas.liverpool.ac.uk/courses/84431
While these recordings will allow you to catch up if you must miss a lecture, you will
gain the most benefit from attending in person so that you can ask questions and check
your understanding.

Office hours will take place at 11:00–12:00 on Tuesdays and Wednesdays, fol-
lowing the corresponding class meeting. They will be hybrid, taking place in Room 123
of the Theoretical Physics Wing, with the option of joining via Zoom at this link (meeting
ID 819 4732 3591, passcode Math327!).

If these times do not work with your schedule, you can also make an appointment
through calendly.com/daschaich, use the Canvas discussion board (where anonymous
posting is enabled), or reach me by email at david.schaich@liverpool.ac.uk. I will aim
to respond to emails and discussion board queries within 48 hours.

Assessment and academic integrity

There will be three in-term assignments. Each accounts for 15% of the module
mark, with the remaining 55% coming from the final exam. The deadlines listed below
have been centrally coordinated within the Department to minimize pile-up across dif-
ferent modules.

15% A computer assignment due Wednesday, 18 February

30% Two equally weighted homework assignments, the first due Friday, 6 March and
the second due Friday, 24 April

55% A two-hour in-person final examination to be centrally scheduled within the May
exam period

According to the University’s Code of Practice on Assessment (CoPA), Submis-
sions more than 120 hours late will be awarded zero marks, though I will still endeavour
to provide feedback on them. I will aim to return feedback and share model solutions
within two or three weeks of the deadline for the homeworks or computer assignment,
respectively.
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For your other modules you already should have read and understood the Depart-
ment’s current academic integrity guidance as well as the Academic Integrity Policy de-
tailed in CoPA Appendix L. If you have any questions about what is or is not acceptable,
please ask me or our Academic Integrity Officer Alena Haddley. In all cases, the spirit
of the Academic Integrity Policy should take precedence over legalistic convolutions of
the text.

In particular, I encourage you to discuss the in-term assignments with each other,
since discussing and debating your work is a very effective way to learn. Note that I
say your work — your submissions for all assignments must be your own work repre-
senting your own understanding, and the examination must be done on your own. It is
unacceptable to copy solutions in part or in whole from other students (current or prior)
or from other sources (commercial or otherwise). Should you make use of resources
beyond the module materials — including generative AI tools such as ChatGPT —
these must be explicitly referenced in your submissions. Clear and neat presentations
of your workings and the logic behind them will contribute to your mark.

Main resources and materials

The main materials we will use are the lecture notes you are currently reading.
As you read further, you will encounter gaps in the notes, which provide bite-sized
exercises to help you check your understanding. While we will fill most gaps during
lectures, I encourage you to use them as opportunities to practice.

The ten units into which the content is organized won’t neatly match up with the
twelve weeks of the term. Some units will require more time than others. Regular
Canvas announcements will summarize what we cover each week.

We will use ‘natural units’ in which the Boltzmann constant k = 1, and logarithms
have base e unless otherwise specified (i.e., log x = lnx). There is no need to mem-
orize any equations. Many equations are numbered so that they can be referenced
later on, not necessarily because they are important. Key results, definitions and con-
cepts are highlighted by coloured boxes, and you should aim to be confident in your
understanding of these.

These lecture notes were first written ‘live’ during the 2021 and 2022 editions of
this module. While they are now much more stable, they continue to be improved,
refined and sometimes corrected. The “Last modified” date at the bottom of each page
will flag any changes that occur during the term.

Expected background

No prior exposure to quantum mechanics or computer programming is required
— all necessary information on these topics will be provided. I do anticipate that you
have previously seen the standard deviation, the binomial coefficient(

N

k

)
=

N !

k! (N − k)!
=

(
N

N − k

)
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that counts the number of possible ways to choose k objects out of a set of N ≥ k total
objects, and gaussian integrals,∫ ∞

−∞
e−a(x+b)2 dx =

√
π

a
a > 0.

Programming

You are welcome to complete the computer assignment using the programming
language of your choice. I recommend Python, which is free, user-friendly, and very
widely used around the world. During the first two weeks of the term we will review this
demo that explains all the Python programming tools you’ll need. Python is available on
University computers and should work on personal computers. You can also write and
run Python code using many cloud services, of which I have had the best experiences
with Google’s Colab and CoCalc.1 You may need to create a free account, and you
should make sure to save a local copy to reduce the risk of losing your work. Alternative
languages could include C, Fortran, R, or even MATLAB (through the University’s site
license). I advise against using Maple, which may struggle to handle parts of the
assignment.

How to get the most out of this module

At this point in your studies, this advice should be familiar, but it’s worth repeating.

Come to class. This will ensure regular contact with the material, and help you
check that you understand it. If the module is moving slower than you’d prefer, coming
to class will give you opportunities to ask about more interesting extensions, applica-
tions or complications.

Before class, take a quick look at the upcoming pages in the lecture notes, and
think about how any gaps could be filled. Look for the big ideas rather than digging
in to every detail, and see if you have any questions (or objections) to raise in class.
After class, take a closer look at the details, and make sure the gaps have been filled to
your satisfaction. Even though the lecture notes reflect my plans for the module, they
may not exactly match what happens in class, especially when questions arise. We
may gloss over some topics that are explained clearly in the notes, and we may delve
deeper into other topics that merit further consideration.

Work on the tutorial exercises and homework problems (including the computer
assignment). The best way to learn mathematics is by doing mathematics. These
exercises and assignments are designed to make you think and help develop your
mathematical muscles. In particular, the tutorial exercises and homework problems
will be harder than exam questions, since you’ll have much more time to think about
them — so take a look through them as soon as you have them, and don’t leave them
until the last minute. Afterwards, review the model solutions and feedback, to make
sure any confusing points are resolved.

1I have had worse experiences with replit.com, onlinegdb.com, mybinder.org and trinket.io — use
these at your own risk.
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Ask questions. Ask questions you think you’re supposed to know the answer
to. Ask questions you think everyone else knows the answer to. (They don’t.) Ask
questions about the big ideas, the specific details, and the connections between them.
The opportunity to ask questions is the main benefit of taking a module. You can ask
me; you can ask your classmates; you can ask the additional resources below.

Additional resources

The optional additional resources listed below may be helpful. You can use the
module Reading List on Canvas to reach our library’s records for the books.

Resources at roughly the level of this module:

1. David Tong, Lectures on Statistical Physics (2012),
www.damtp.cam.ac.uk/user/tong/statphys.html

2. MIT OpenCourseWare for undergraduate Statistical Physics I (2013) and Statis-
tical Physics II (2005),
ocw.mit.edu/courses/8-044-statistical-physics-i-spring-2013/
ocw.mit.edu/courses/8-08-statistical-physics-ii-spring-2005/

3. Daniel V. Schroeder, An Introduction to Thermal Physics (2021)

4. Harvey Gould and Jan Tobochnik, Statistical and Thermal Physics with Computer
Applications (2021)

5. J. Allday and S. Hands, Introduction to Entropy: The Way of the World (2024)

6. C. Kittel and H. Kroemer, Thermal Physics (1980)

7. F. Reif, Fundamentals of Statistical and Thermal Physics (1965)

More advanced and more specialized resources, which may be useful to consult
concerning specific questions or topics:

7. MIT OpenCourseWare for postgraduate Statistical Mechanics I (2013) and Sta-
tistical Mechanics II (2014),
ocw.mit.edu/courses/8-333-statistical-mechanics-i-statistical-mechanics-of-
particles-fall-2013/
ocw.mit.edu/courses/8-334-statistical-mechanics-ii-statistical-physics-of-
fields-spring-2014/

8. R. K. Pathria and P. D. Beale, Statistical Mechanics (2021)

9. Sidney Redner, A Guide to First-Passage Processes (2001)

10. Pavel L. Krapivsky, Sidney Redner and Eli Ben-Naim, A Kinetic View of Statistical
Physics (2010)

11. Kerson Huang, Statistical Mechanics (1987)

12. Andreas Wipf, Statistical Approach to Quantum Field Theory (2013)
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13. Weinan E, Tiejun Li and Eric Vanden-Eijnden, Applied Stochastic Analysis (2019)

14. Michael Plischke & Birger Bergersen, Equilibrium Statistical Physics (2006)

15. Sacha Friedli and Yvan Velenik, Statistical Mechanics of Lattice Systems (2018)

16. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (1969)

A general book about learning, emphasizing (among other things) the value of re-
trieval practice compared to re-reading lecture notes or re-watching videos:

17. Peter C. Brown, Henry L. Roediger III and Mark A. McDaniel, Make it Stick: The
Science of Successful Learning (2014)
A short summary video is also available

Programming resources:

18. MATH327 Python programming demo (2026)

19. Beginner’s Guide to Python (2024)

20. W3Schools Python Tutorial (2024)

21. Software Carpentry tutorials:
hack Programming with Python (2024)
hack Plotting and Programming in Python (2024)

22. Stormy Attaway, MATLAB: A Practical Introduction to Programming and Problem
Solving (2013)

23. B. Barnes and G. R. Fulford, Mathematical Modelling with Case Studies: Using
Maple and MATLAB (2014)

In addition, there is a vast constellation of other online resources such as Stack
Exchange and Wikipedia. These can be great places to start learning about a topic,
but are often terrible places to stop.
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Unit 1: Central limit theorem and diffusion

Introductory remarks: More Is Different

What is most exciting about our work is that it illuminates the chain of con-
nections between, on the one hand, the simple underlying laws that gov-
ern the behavior of all matter in the universe and, on the other hand, the
complex fabric that we see around us, exhibiting diversity, individuality, and
evolution. The interplay between simplicity and complexity is the heart of
our subject. —Murray Gell-Mann (1969 Nobel laureate), 1996

Mathematical sciences such as physics aim to determine the laws of nature and
understand how these govern experimental observations — both in everyday circum-
stances and under extreme conditions. This mathematical understanding is typically
guided by reproducing a set of observations, with the resulting framework then used to
make predictions for other “observables”.

Over the past few centuries this process has been tremendously successful, with
theoretical physics accurately predicting experimental and observational results from
sub-atomic through to cosmological scales. Modern physics labs can create a vacuum
better than in outer space and the coldest temperatures in the known universe, as well
as going to the other extreme to reach temperatures of millions of degrees and pres-
sures millions of times atmospheric pressure at sea level. Amazingly, many aspects of
these realms of physics can be described by mathematics developed centuries ago.2

A crucial aspect of this success is the emergence of complicated physical phe-
nomena from simple underlying mathematical laws. This module’s name borrows from
a famous 1972 essay by Philip Anderson (1977 Nobel laureate), “More Is Different”,
which helped to establish modern perspectives on emergent phenomena. We will fo-
cus on one particular domain in which simple mathematical principles enable amazing
predictive capabilities: statistical mechanics (sometimes called probabilistic mechan-
ics, statistical physics or statistical thermodynamics). Initially developed in the context
of thermodynamics in the nineteenth century, statistical mechanics remains a central
pillar of modern physics, and will retain this position in years to come. The foundations
of statistical mechanics lie in the use of probability theory to mathematically describe
experimental observations and corresponding laws of nature that involve stochastic
randomness rather than being perfectly predictable.

The lack of perfect predictability in statistical mechanics is a matter of practicality
rather than one of principle. It arises due to working with a large number of degrees
of freedom — that is, a large number of independent objects such as atoms. For illus-
tration, Avogadro’s number NA ≈ 6.022 × 1023 is the large number of molecules in ev-
eryday amounts of familiar substances — about 18 grams of water or about 22 litres of
air at sea-level atmospheric pressure. Specifying the positions and velocities of ∼1023
objects would require far more information than could be stored by even the biggest

2A famous 1960 essay by Eugene Wigner (1963 Nobel laureate), “The Unreasonable Effectiveness
of Mathematics in the Natural Sciences”, and subsequent work in the philosophy of physics, elaborates
on why this may be considered ‘amazing’. This module will not comment extensively on philosophy.
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existing supercomputers. Statistical mechanics instead produces simple mathemati-
cal descriptions of large-scale properties such as temperature, pressure and diffusion,
which are generally of such outstanding quality that the underlying ‘randomness’ is
effectively invisible.

Historically, the difficulty of detecting the stochastic processes underlying such
thermodynamic properties made it challenging to convince skeptics that atoms and
molecules really exist. Ludwig Boltzmann, a prominent early developer of statistical
mechanics, endured a constant struggle to defend his ideas, which likely contributed
to his deteriorating mental health and eventual suicide in 1906. A significant step to
convincingly establish the existence of atoms was Albert Einstein’s use of statistical
mechanics to explain the observed “Brownian motion” of particles suspended in fluids
— this work was part of Einstein’s “miracle year” in 1905, along with special relativity
and early contributions to quantum physics. Jean Perrin soon verified Einstein’s predic-
tions and used them to determine Avogadro’s number; he was awarded the 1926 Nobel
Prize in Physics for helping to demonstrate “the discontinuous structure of matter”.

Applications of statistical mechanics continue to advance “our understanding of
complex physical systems” — quoting the 2021 Nobel Prize shared between Syukuro
Manabe, Klaus Hasselmann and Giorgio Parisi. Even more recently, the 2024 Nobel
Prize was awarded to John Hopfield and Geoffrey Hinton for “using ideas from statisti-
cal physics” to lay the foundations for machine learning and artificial neural networks.
Other modern topics we will encounter in this module include explaining why stars don’t
collapse under the ‘weight’ of their own gravity, and identifying effects of dark matter
in temperature fluctuations observable in the cosmic microwave background lingering
from the early years of the universe.

In this unit we focus on some of the foundational mathematics that will underlie
our later development and application of statistical mechanics. Looking back to Boltz-
mann’s times, we can consider the following question some of his critics might have
asked: If the pressure of a gas in a container results from molecules stochastically
colliding with the walls of that container, then how can the pressure be so stable, rather
than itself fluctuating stochastically? The mathematical answer lies in the law of large
numbers and the central limit theorem, which we will review and apply to the physics
of diffusion in one dimension.

1.1 Probability foundations

We begin by building a more formal mathematical framework around the concept
of probability, through a sequence of definitions. First, a random experiment E involves
setting up, manipulating and/or observing some (physical or hypothetical) system that
involves some element of randomness. Flipping a coin is a simple random experiment.
For the statistical ensembles we will focus on in later units, a typical experiment will be
to allow a collection of particles to evolve in time, subject to certain constraints.

Each time an experiment is performed, the world is observed to be in some state
ω. The specification of the experiment and the state must include all objects of interest,
and may include more besides. When flipping a coin, for example, the full state could
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contain information not only about the final orientation of the coin, but also about its
position — where exactly did it land?

The set of all states Ω collects all possible states ω that the given experiment E
can produce, and is therefore intricately tied to E itself.

We are generally not interested in all aspects of the full state ω. For example,
we won’t care where a flipped coin lands. Instead we’re typically only interested in
whether it lands heads up or tails up — and we may want to set aside any state that
doesn’t cleanly reflect those options. The measurement X(ω) extracts and quanti-
fies this information, acting as a function that maps the state ω to a number that we
can mathematically manipulate. If we repeat the given experiment E many times and
carry out the measurement X on each resulting state ωi, we will obtain a sequence of
numbers X(ωi) that behave as a random variable.

Acting with the measurement X on all of the possible states in the set Ω defines
the set of all outcomes (or outcome space) A:

X : Ω→ A.

That is, A collects all possible measurement results that the given experiment E and
measurement X can produce. A can be finite, countably infinite, or uncountably infinite
(i.e., continuous).

Let’s consider some examples to clarify these definitions. With an experiment of
rolling a six-sided die and measuring the number (1–6) that comes out on top, what is
the set of all outcomes A? What additional information could be included in a corre-
sponding state ω?

What is the outcome space A if we toss a coin four times and measure whether it lands
heads up (H) or tails up (T ) each time?

What information could characterize a state ω for a gas of 1023 argon atoms in a con-
tainer? What might be interesting to measure?
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For convenience, we can introduce a unique number as a label to characterize
each state ω in the set Ω. Generalizing the concept of measurement, this provides a
label function L(ω) that also behaves as a random variable. Our condition of unique-
ness makes L(ω) isomorphic, so that the label can be used interchangeably with the
full state, ω ←→ L(ω).

While the measurements X(ω) we consider generally will not produce a unique
number for each ω, we will design them precisely to remove irrelevant information that
doesn’t interest us. Ignoring that irrelevant information leaves us free to interchange
the set of outcomes A for the set of states Ω. (Some textbooks may never distinguish
between A vs Ω in the first place, though this can be a source of confusion.)

Only a couple of definitions remain. The next is to define an event to be any
subset of the set of all outcomes A. For example, events resulting from rolling a die
could include (i) rolling a 6, (ii) rolling anything but a 6, (iii) rolling any even number,
and many more. Collecting all events of interest defines the set of events (or event
space) F .

We are now prepared for the final foundational definition in this section — the
probability P of an event in the set F . Mathematically, P is a measure function,

P : F → [0, 1],

which must satisfy the following two requirements:

1. The probability of a countable union of mutually exclusive events must equal the
sum of the probabilities of each of these events.

2. The probability of the outcome space (F = A) must equal 1, even if A is un-
countable. This simply means that the experiment E must produce a measurable
outcome. We discard any experiment that doesn’t produce such an outcome.

Combining the outcome space, event space and probability measure gives us a prob-
ability space (A,F , P ).

For example, consider an experiment that can only produce N possible states, so
that

Ω = {ω1, ω2, · · · , ωN} .

As described above, the subscript is a label, and it is possible for two different states
ωi ̸= ωj to produce the same measurement outcome X(ωi) = X(ωj). This means that
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the size n of the outcome space A may be smaller than the size of Ω, n ≤ N . We can
write

A = {X1, X2, · · · , Xn} ,

where each Xα is distinct and its label does not necessarily match the one on ωi. We
can take the individual Xα themselves to be the events we’re interested in, choosing
the event space

F = {X1, X2, · · · , Xn} = A. (1)

These events are all mutually exclusive, so if we assign them probabilities

P (Xα) ≡ pα for α = 1, · · · , n,

then the above requirements on probabilities demand that for any α ̸= β we have

P (Xα or Xβ) = pα + pβ

P (A) = P (X1 or X2 or · · · or Xn) =
n∑

α=1

pα = 1.

Similarly choosing F = A for the six-sided die considered in an earlier gap, what
are the probabilities p1 through p6 that result from assuming the die is fair?

Again taking F = A for the case of tossing a coin four times, what are the probabilities
pα that result from assuming the coin is fair? If we instead consider the event space

F = {equal number of H and T, different numbers of H and T} ,

what are the probabilities pequal and pdiff for the two events in this F?
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The standard European roulette wheel
shown to the left (source) has 37 pockets
labelled “0” through “36”. 18 of these pock-
ets are coloured red, 18 are coloured black
and 1 (pocket “0”) is coloured green. Let an
experiment be a spin of the roulette wheel,
measuring the label of the pocket where the
ball comes to rest (which also provides the
pocket’s colour).

What is the outcome space A for a spin of the roulette wheel? With F = A, what are
the probabilities pα for a fair wheel? With

F = {ball in a red pocket, ball in a black pocket, ball in the green pocket} ,

what are the corresponding probabilities pred, pblack and pgreen?

The process of assigning probabilities to events is called modelling. The gaps
above demonstrate that symmetries are a powerful way to constrain probabilities. The
symmetry between the six sides of a fair die, the two sides of a fair coin, and the 37
pockets of a fair roulette wheel each sufficed to completely determine the correspond-
ing probabilities pα.

Modelling can also be guided by empirical data obtained by repeating an experi-
ment many times. For example, if we don’t know whether a set of dice are fair, we will
be able to infer their probabilities pα (with a certain confidence level) by rolling them
enough times. The need to repeat the experiment many times comes from the law of
large numbers, to which we now turn.

1.2 Law of large numbers

Let’s return to the setup leading to Eq. 1 above, with

F = A = {X1, X2, · · · , Xn}

for finite n, and probabilities pα = P (Xα) that obey

pα ∈ [0, 1]
n∑

α=1

pα = 1.
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We can generalize this notation by writing instead∑
X∈A

P (X) = 1,

and introducing similar expressions for the mean µ and variance σ2 of the probability
space,

µ = ⟨X⟩ =
∑
X∈A

X P (X) (2)

σ2 =
〈
(X − µ)2

〉
=
∑
X∈A

(X − µ)2 P (X). (3)

The angle bracket notation indicates the expected (or expectation) value with general
definition

⟨f(X)⟩ =
∑
X∈A

f(X)P (X), (4)

which is a linear operation,

⟨c · f(X) + g(X)⟩ = c ⟨f(X)⟩+ ⟨g(X)⟩ .

The square root of the variance,
√
σ2 = σ, is the standard deviation. What is σ

expressed in terms of ⟨X2⟩ and ⟨X⟩2?

We now define a new experiment that consists of repeating the original exper-
iment R times, with each repetition independent of all the others. Using the same
measurement as before for each repetition, we obtain a new outcome space that we
can call B. For R = 4, what are some representative outcomes in the set B? What is
the total size of B?
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Each outcome in B contains R different X(r) ∈ A, one for each repetition r =
1, · · · , R, and each with mean

〈
X(r)

〉
= µ and variance

〈
(X(r) − µ)2

〉
= σ2. Considering

the case R = 4 for simplicity, any element of B can be written as X
(1)
i X

(2)
j X

(3)
k X

(4)
l ∈ B

with corresponding probability

PB

(
X

(1)
i X

(2)
j X

(3)
k X

(4)
l

)
= PA

(
X

(1)
i

)
PA

(
X

(2)
j

)
PA

(
X

(3)
k

)
PA

(
X

(4)
l

)
,

using subscripts to distinguish between the probability spaces for the single experiment
(A) and repeated experiment (B).

Averaging over all R repetitions defines the arithmetic mean

XR =
1

R

R∑
r=1

X(r). (5)

Unlike the true mean µ, the arithmetic mean XR is a random variable — a number that
may be different for each element of B. That said, XR and µ are certainly related, and
so long as the standard deviation exists — that is, so long as σ2 is finite — this relation
can be proved rigorously in the limit R→∞.3

Here we will not be fully rigorous, and take it as given that

〈(
X(i) − µ

) (
X(j) − µ

)〉
= σ2δij =

{
σ2 for i = j
0 for i ̸= j

,

where the Kronecker delta δij = 1 for i = j and vanishes for i ̸= j. This is a conse-
quence of our requirement that each repetition is independent of all the others. Using
this result and the relation

(∑
i ai
)(∑

j bj
)
=
∑

i,j (aibj), express the following quantity
in terms of σ and R:〈(

1

R

R∑
r=1

X(r) − µ

)2〉
=

3In the computer project we will numerically investigate a situation where σ2 diverges.
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You should find that your result vanishes in the limit R → ∞, so long as σ2 is finite.
Since the square makes this expectation value a sum of non-negative terms, it can
vanish only if every one of those terms is individually zero.

This establishes the law of large numbers:

lim
R→∞

1

R

R∑
r=1

X(r) = µ, (6)

where we have assumed finite
〈
X(r)

〉
= µ and

〈
(X(r) − µ)2

〉
= σ2.

1.3 Probability distributions

It is not necessary to make the assumption (Eq. 1) that our outcome space con-
tains only a countable number of possible outcomes. The considerations above con-
tinue to hold even if the random variable X is a continuous real number. In this case,
however, the identification of probabilities with outcomes is slightly more complicated,
which will be relevant when we consider the central limit theorem in the next section.

When the outcome can be any number on the real line, the fundamental object
is a probability distribution (or density function) p(x) defined for all x ∈ R. Starting
from this density, a probability is determined by integrating over a given interval. Calling
this interval [a, b], the integration produces the probability that the outcome X lies within
the interval,

P (a ≤ X ≤ b) =

∫ b

a

p(x) dx .

We similarly generalize the definition of an expectation value (Eq. 4) to an integral
over the entire domain of the probability distribution,

⟨f(x)⟩ =
∫

f(x) p(x) dx .

We will omit the limits on integrals over the entire domain, so for x ∈ R we implicitly
have

∫
dx =

∫∞
−∞ dx, with

∫
p(x) dx = 1. An important set of expectation values is

〈
xℓ
〉
=

∫
xℓ p(x) dx, (7)

which provides the mean and variance of the probability distribution p(x), through gen-
eralizations of Eqs. 2–3:

µ = ⟨x⟩ =
∫

x p(x) dx σ2 =
〈
x2
〉
− ⟨x⟩2 . (8)

The expression for the variance should be familiar from your determination of the stan-
dard deviation in an earlier gap. Unless stated otherwise, we will assume the mean
and variance are both finite for the probability distributions we consider.
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1.4 Central limit theorem

The central limit theorem is a central result of probability theory (hence its name).
Over the years it has been expressed in several equivalent ways, and there are also
many distinct variants of the theorem accommodating different conditions and assump-
tions. Here we are interested in applying rather than proving the central limit theorem;
you can find proofs in many textbooks.

The version of the theorem we use in this module assumes we have N indepen-
dent random variables x1, · · · , xN , each of which has the same (finite) mean µ and
variance σ2. Such random variables are said to be identically distributed, and a com-
mon way to obtain them is to repeat an experiment N times, as we considered in
Section 1.2. Just as in Eq. 5, the sum

s =
N∑
i=1

xi (9)

is itself a random variable.

The central limit theorem states that for large N ≫ 1 the probability distribution
for s is

p(s) ≈ 1√
2πNσ2

exp

[
−(s−Nµ)2

2Nσ2

]
, (10)

with the approximation becoming exact in the N →∞ limit.

In addition to asserting that the collective behaviour of many independent and
identically distributed random variables xi is governed by a normal (or gaussian) dis-
tribution, the central limit theorem further specifies the precise form of this distribution
in terms of the mean and variance of each individual xi.

In practice, N often doesn’t
need to be very large in order
for the central limit theorem
to provide a reasonable ap-
proximation. This is illustrated
by the figure to the left, from
Wikimedia Commons, which
shows the probabilities for the
sum of n ≤ 5 rolls of a six-
sided die rapidly approaching
a gaussian distribution.
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1.5 Diffusion and the central limit theorem

1.5.1 Random walk on a line

As a more powerful application and illustration of the central limit theorem, let’s
consider the behaviour of a randomly moving object. Such random walks appear fre-
quently in mathematical modelling of stochastic phenomena (including Brownian mo-
tion), and can be applied to movement through either physical space or more abstract
vector spaces. They are examples of Markov processes, in which the state of the sys-
tem (in this case the position of the ‘walker’) at any time probabilistically depends only
on the system’s prior state at the previous point in time — there is no ‘memory’ of any
earlier states. The resulting sequence of system states is known as a Markov chain,
since each state is produced from the one before, like links in a chain.

Let’s consider the simple example of a random walker that moves only in a single
spatial dimension — to the left or to the right on a line — and can only take ‘steps’ of
a fixed length, which we can set to ℓ = 1 without loss of generality. At each point in
time, the walker takes either a step to the right (R) with probability p or a step to the left
(L) with probability q = 1 − p. We will further assume that each step takes a constant
amount of time δt, so a walk of N steps will last for total time

t = Nδt. (11)

As an example, for N = 6 a representative walk can be written as LRLRRR,
which leaves the walker x = 2 steps to the right of its starting point (x = 0). The
opposite walk RLRLLL would leave the walker at x = −2, with negative numbers
indicating positions to the left of the starting point. How many possible walks are there
for N = 6, and what is the probability (in terms of p and q) for the walks LRLRRR and
RLRLLL to occur? How many possible walks are there for general N , and what is the
probability for any particular walk involving r steps to the right to occur?

We are interested in the walker’s final position x at time t after it has taken N
steps. Just as for the sum of n rolls of a die considered in Section 1.4, there are a
range of possible final positions x, each of which has some probability P (x) of being
realized. The key pieces of information we want to determine are the expectation

value ⟨x⟩ and the standard deviation ∆x ≡
√
⟨x2⟩ − ⟨x⟩2 that indicates the scale of

fluctuations we can expect around ⟨x⟩ as the N -step walk is repeated many times from
the same starting point. (We reserve the variables µ and σ2 for the mean and variance
of the single-step process, which will play an important role when we apply the central
limit theorem in Section 1.5.3.)
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Suppose the N total steps involve r steps to the right. What is the final position
x of the walker in terms of N and r? Check your general answer for the cases N = 6
and r = 4, 2 considered above.

This relation makes it equivalent to consider either the probability Pr of taking r steps
to the right, or the probability P (x) of ending up at final position x. This equivalence
will not hold for more general random walks in which the step length is no longer fixed
and ℓi can vary from one step to the next.

Because the order in which steps are taken does not affect the final position x,
to determine the probability P (x) we have to count all possible ways of walking to
x. For N = 6, what are all the possible walks that produce x = 4, and what is the
corresponding probability P (4)?

Your answer should have a factor of 6 that corresponds to the binomial coefficient(
N
r

)
=
(
6
5

)
= 6. In terms of this binomial coefficient, what is the general probability Pr

that an N -step walk will include r steps to the right in any order?
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Given this probability Pr, we can apply Eqs. 2–3 to find the expectation value ⟨x⟩
and the standard deviation ∆x. As a first step, what are ⟨x⟩ and ⟨x2⟩ in terms of the

expectation values ⟨rn⟩ =
N∑
r=0

rn Pr?

⟨x⟩ =

⟨x2⟩ =

Now we need to calculate the necessary ⟨rn⟩. A powerful way to do this is to define the
generating function

G(θ) =
N∑
r=0

erθ Pr. (12)

This approach introduces a parameter θ that we subsequently remove by setting θ = 0.
For example, G(0) =

∑N
r=0 Pr = 1. What do you obtain upon taking derivatives of the

generating function and then setting θ = 0?

d

dθ
G(θ)

∣∣∣∣
θ=0

=

dn

dθn
G(θ)

∣∣∣∣
θ=0

=

For the current case of a fixed-step-length random walk in one dimension, the
probabilities Pr produce a simple closed-form expression for the generating functional:

G(θ) =
N∑
r=0

erθ Pr =
N∑
r=0

erθ
(
N

r

)
prqN−r =

(
eθp+ q

)N
, (13)

making use of the binomial formula (a+ b)N =
∑N

i=0

(
N
i

)
aibN−i.
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It’s straightforward to take the necessary derivatives of Eq. 13, which simplify
pleasantly since

(
eθp+ q

)∣∣
θ=0

= p+ q = 1:

d

dθ

(
eθp+ q

)N ∣∣∣∣
θ=0

=

d2

dθ2
(
eθp+ q

)N ∣∣∣∣
θ=0

=

Insert the resulting ⟨r⟩ and ⟨r2⟩ into the relations derived above:

⟨x⟩ =

(∆x)2 = ⟨x2⟩ − ⟨x⟩2 =

In the end, you should obtain

⟨x⟩ = N(2p− 1) ∆x = 2
√

Npq. (14)

We can check that this ⟨x⟩ produces the expected results in the special cases p = 0,
1/2 and 1, while the standard deviation ∆x also behaves appropriately by vanishing for
both p = 0 and 1.

1.5.2 Law of diffusion

It’s possible to interpret the results in Eq. 14 in a more intuitive way by expressing
them in terms of the total time t taken by the random walk (Eq. 11). Inserting N = t/δt
into Eq. 14,

⟨x⟩ = t

δt
(2p− 1) =

2p− 1

δt
t ≡ vdrt,

we see that the expected final position of the walker depends linearly on time, with
drift velocity

vdr =
2p− 1

δt
=

N(2p− 1)

t
=
⟨x⟩
t
. (15)
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The sign of vdr indicates whether the walker is drifting to the right (p > 1
2
) or to the left

(p < 1
2
). The typical scale of fluctuations (or the ‘uncertainty’) around the expected final

position ⟨x⟩ is given by the standard deviation ∆x, and also depends on time:

∆x =

√
⟨x2⟩ − ⟨x⟩2 = 2

√
Npq = 2

√
pq

δt

√
t,

where the constant factor is non-negative. This
√
t dependence is a very general result.

The law of diffusion states that

∆x = D
√
t, (16)

where D > 0 is the diffusion constant. The standard deviation ∆x is sometimes also
called the diffusion length.

The result D = 2
√

pq
δt

that we computed above is specific to the simple example of
a fixed-step-length random walk in one dimension and will not hold for more general
random walks. The behaviour it describes is illustrated by the figure below, which plots
the t-dependent probability distribution p(x) that we’ll soon derive using the central limit
theorem (Eq. 17). What we can see already, even before completing that derivation, is
that the probability distribution steadily spreads out — or diffuses — as time passes:

6 4 2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

p(
x)

Zero drift velocity: p = q = 0.5
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10

Here we are considering the special case p = q = 1
2
, for which the drift velocity vdr = 0

and the expectation value is always ⟨x⟩ = 0 for any walk time t. However, as time goes
on, there is a steady decrease in the probability that the walker will end up around its
starting point x ≈ 0. (As described in Section 1.3, we can determine this probability
by integrating the distribution p(x) over an appropriate interval.) Instead, the interval
−D
√
t ≤ x ≤ D

√
t within which we can expect to find the walker (with a constant

‘one-sigma’ or ∼68% probability) steadily grows with characteristic dependence on the
square root of the time the diffusive process lasts.
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Except in the trivial cases p = 0 or q = 0, diffusion also occurs when the drift
velocity is non-zero. This is shown in the two figures below, considering a low but non-
zero drift velocity vdr = 0.2 on the left, and a high vdr = 0.98 on the right. All three
figures were produced by this Python script.

6 4 2 0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

0.5

p(
x)

Low drift velocity: p = 0.6, q = 0.4
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10
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x

0.0

0.5

1.0

1.5

2.0
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p(
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High drift velocity: p = 0.99, q = 0.01
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10

In the figure on the left, the large diffusion constant D ≈ 0.980 produces a plot that
looks similar to the vdr = 0 case on the previous page, but now the central peaks (and
expectation values ⟨x⟩) for each t drift steadily to the right. The lower D ≈ 0.199 for the
figure on the right leads to less overlap among the distributions, but they still diffuse to
exhibit lower and broader peaks as time passes.

When p ̸= 1
2

so that ⟨x⟩ ≠ 0, it is interesting to compare the drift in the expectation
value against the growth in fluctuations around ⟨x⟩ due to diffusion. We can do this by
considering the following relative uncertainty:

∆x
⟨x⟩ =

You should find that at large times this ratio vanishes proportionally to 1/
√
t ∝ 1/

√
N .

Although the absolute uncertainty ∆x = D
√
t grows by diffusion, for vdr ̸= 0 the linear

drift in the expectation value becomes increasingly dominant as time goes on.
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1.5.3 Applying the central limit theorem

Based on our work in Section 1.4, we can see how to apply the central limit theo-
rem to analyse this fixed-step-length random walk in one dimension, for large numbers
of steps N or equivalently large times t = Nδt. Each step in the random walk is an
independent and identically distributed random variable xi. The corresponding prob-
ability space involves only two possible outcomes: a step of length ℓ = 1 to the right
or to the left with probability p or q, respectively. From this we can easily compute the
mean and variance of the single-step process:

µ = ⟨xi⟩ =

⟨x2
i ⟩ =

σ2 = ⟨x2
i ⟩ − ⟨xi⟩2 =

The final position x of the walker after N steps is exactly the sum over these xi

given in Eq. 9. Its probability distribution p(x) from the central limit theorem is therefore
obtained directly from these single-step µ and σ2, which we can also express in terms
of the drift velocity and diffusion constant:

p(x) =
1√

2π(4Npq)
exp

[
−(x−N(2p− 1))2

8Npq

]
=

1√
2πD2t

exp

[
−(x− vdrt)

2

2D2t

]
. (17)

This expression was used to produce the three figures above. We could have jumped
straight to the final line by considering Eq. 10 and noting

vdrt = N(2p− 1) = Nµ D2t = 4pq
t

δt
= Nσ2. (18)

While this dependence on p and q is specific to the particular fixed-step-length random
walk we’re currently considering, the generic results vdrt = Nµ and D2t = Nσ2 in Eq. 18
do hold for any random walk with finite µ and σ2 (so that the central limit theorem can
be applied). This is remarkable, because it means that the diffusive process as a whole
is determined entirely by the single-step mean and variance. So long as µ and σ2 are
finite, we end up with Eq. 17 as the large-t probability distribution for any markovian
random walk in a single variable x.

This result is related to the generality of the law of diffusion (Eq. 16), which we
can recognize in the structure of Eq. 17. Since t > 0, the exponential in the gaussian
distribution p(x) peaks at the drifting expectation value x = vdrt = ⟨x⟩. The factor

MATH327 Unit 1 24 Last modified 19 Jan. 2026



(x − vdrt)
2 simply quantifies the distance from this peak. As t increases, so does the

factor 2D2t dividing this (x − vdrt)
2, meaning that a larger distance from the peak is

needed for the overall argument of the exponential to reach a given value — in other
words, the peak becomes broader. This in turn requires a lower peak, reflected in the
1√
t

in the overall coefficient, which is set by requiring
∫
p(x) dx = 1. In other words, the

law of diffusion holds whenever the central limit theorem is applicable. This requires
that the mean and variance of the single-step process are finite, and in the computer
project we will numerically investigate the anomalous diffusion that occurs when this
condition is not satisfied.
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Unit 2: Micro-canonical ensemble

2.1 Statistical ensembles and thermodynamic equilibrium

We begin this unit by establishing the concept of statistical ensembles, which
was formalized by J. Willard Gibbs in 1902. (Gibbs also introduced the term ‘statistical
mechanics’, in 1884.) Building on the probability foundations laid above, we will be
interested in ‘experiments’ that simply allow a collection of degrees of freedom to evolve
in time, subject to certain constraints. At a given time t1, the arrangement of these
degrees of freedom defines the state ω1 of the system.

As a concrete example, consider a system of spins — arrows that can point either
‘up’ or ‘down’ — arranged in a line. Such spin systems will appear several times in the
remainder of this module, since in addition to obeying simple mathematics analogous to
flipping coins, spins also serve as good models of physical systems such as magnetic
molecules. What would be a representative state (or configuration) for a system of
N = 8 spins? How many distinct states are there for this system?

At a different time t2, the system’s state ω2 is generally different from ω1. However,
there are some measurements we can perform that always produce the same outcome
even as the system’s state changes over time. These measurements define conserved
quantities, such as the number of spins considered in the example above.

Another important conserved quantity is the internal energy E of an isolated (or
‘closed’) system,

E(ω1) = E(ω2).

The conservation of energy is presumably a familiar concept, and you may also know
that it can be rigorously proven through Emmy Noether’s first theorem.4 Because
conservation of energy was empirically observed long before Noether’s theorem was
proven, it also has a more grandiose name: the first law of thermodynamics. Another
way of stating the first law is that any change in the internal energy of one particular
system Ω must be matched by an equal and opposite change in the energy of some
other system with which Ω is in contact. This will be important when we consider ther-
modynamic cycles later in the term.

For now, let’s return to the example above, and endow the spin system with an
internal energy by placing it in a ‘magnetic field’ of strength H. That is, if a spin is

4There are complications when considering the dynamical space-time of general relativity, but that’s
beyond the scope of this module.
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parallel to the field, it contributes energy −H to the total energy E of the system. If a
spin is anti-parallel to the field, it instead contributes energy H. For later convenience,
we define a positive magnetic field H > 0 to point upward, and also define n+ to be
the number of spins pointing upward — parallel to the field and therefore contributing
negative energy. Similarly, the remaining n− = N − n+ downward-pointing spins are
anti-parallel to the field and contribute positive energy. What is the total energy E of
the system in terms of n+ and n−? What is E for the representative 8-spin state you
wrote down above? What fraction of the states of the spin system have this energy?

If instead we consider N ∼ 1023 hydrogen (H2) molecules in a container, we can
write a simple expression for the internal energy E by treating each molecule as a
point-like particle, with no size or structure. In this case each molecule contributes only
its kinetic energy, and

E =
m

2

N∑
n=1

v⃗ 2
n =

1

2m

N∑
n=1

p⃗ 2
n ,

where v⃗n is the velocity of the nth molecule, p⃗n = mv⃗n is its momentum, and all
molecules have the same mass m.

As forecast at the start of the module, we treat the time evolution of any given
system as a stochastic process in which the system probabilistically adopts a sequence
of states ωi ∈ Ω:

ω1 −→ ω2 −→ ω3 −→ ω4 −→ · · ·
This approach is a matter of practicality rather than one of principle. In principle, New-
ton’s laws would allow us to predict the exact time evolution of (say) 1023 hydrogen
molecules, but only by specifying 1023 initial conditions and solving 1023 differential
equations. Since we cannot hope to record so much information or carry out so many
computations, we instead apply probability theory in order to analyse these systems.

This leads us to the following core definition: A statistical ensemble is the set of
all states Ω = {ω1, ω2, · · · } that a system can possibly adopt through its time evolution.
Each state ωi has some probability pi of being adopted by the system, so we can
recognize a statistical ensemble as a probability space.

Because these states ωi depend on the ‘microscopic’ degrees of freedom that
compose the overall system, we will refer to them as micro-states from now on. From
the definition of probability in Section 1.1, we have the requirement

∑
i pi = 1, which
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simply means that the system must be in some micro-state at any point in time. The
fact that time evolution cannot change any conserved quantities, as discussed above,
means that such conserved quantities characterize statistical ensembles. Throughout
the next seven units we will consider different statistical ensembles with different sets
of conserved quantities.

First we define the micro-canonical ensemble to be a statistical ensemble char-
acterized by conserved internal energy E and conserved number of degrees of free-
dom N — which we will call particle number for short.

According to the discussion above, this means that a system governed by the
micro-canonical ensemble is isolated in the sense that it cannot exchange energy or
particles with any other system.

Now that the micro-canonical ensemble is defined, we can connect it to our in-
tuition from everyday physical systems. Let’s consider a collection of particles moving
around and bouncing (or ‘scattering’) off each other in a sealed container. To a first
approximation, this should describe the behaviour of air in a room, which our lived ex-
perience indicates is spread quite uniformly throughout the room in a way that is stable
as time passes. We do not expect all the air in a room to be concentrated in any one
corner, nor do we expect strong collective gusts of wind without some clear external
influence.

These qualitative expectations illustrate the idea of thermodynamic equilibrium,
an axiomatic concept in statistical mechanics.5 We can mathematically define ther-
modynamic equilibrium through the probabilities pi that appear in the micro-canonical
ensemble.

A micro-canonical system Ω with M micro-states ωi is in thermodynamic equilib-
rium if and only if all probabilities pi are equal. If M is finite, the requirement

∑
i pi = 1

implies

pi =
1

M
. (19)

The full meaning and significance of this definition are not immediately obvious,
and we will continue exploring them through consideration of derived quantities such
as entropy and temperature. First, it’s important to emphasize that this equilibrium is
dynamic: There is not a single ‘equilibrium micro-state’ that the system sits in. Instead,
the equilibrium system continues probabilistically adopting all possible micro-states as
it evolves in time.

5Our expectation that physical systems generically evolve towards thermodynamic equilibrium as
time passes is more formally expressed as the ergodic hypothesis.
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2.2 Entropy and its properties

2.2.1 Definition of entropy

We can gain further insight into thermodynamic equilibrium by considering a fa-
mous derived quantity.

The entropy of a statistical ensemble Ω with a countable number of micro-states
M is defined to be

S = −
M∑
i=1

pi log pi, (20)

where pi is the probability for micro-state ωi to occur. Unless otherwise specified, “log”
indicates the natural logarithm with base e.

When the system under consideration is in thermodynamic equilibrium, we ex-
pect derived quantities such as the entropy to be stable over time, even as different
micro-states are probabilistically adopted. This implies that such derived quantities are
functions of the conserved quantities that are the same for all micro-states. Therefore,
for the micro-canonical ensemble, the equilibrium entropy S(E,N) is a function of the
conserved energy and particle number.

By inserting Eq. 19 into Eq. 20 you can quickly compute a simple expression for
the entropy of a micro-canonical ensemble in thermodynamic equilibrium:

Your result should depend only on the number of micro-states M , diverging as M →∞.
While the energy E and particle number N are not explicit in this expression, {E,N,M}
are inter-related and can be expressed in terms of each other given the details of any
specific situation under consideration. For example, what is the equilibrium entropy of
the system of N spins considered above, if the magnetic field is turned off, H = 0?
What is the entropy if E = 0 with H > 0 (which requires n+ = n−)?
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2.2.2 Extensivity

The increase in entropy for an increasing number of micro-states M is a reflec-
tion of entropy being an extensive quantity. Extensive quantities are formally defined
by considering how they behave if two isolated subsystems are analysed as a single
system — while still remaining isolated from each other, exchanging neither energy
nor particles. This is clearest to consider through the specific example shown below
of two isolated spin subsystems, Ω1 & Ω2, characterized by the energies E1 & E2 and
particle numbers N1 & N2, respectively. To simplify the subsequent analysis, we can
assume that both subsystems are placed in magnetic fields with the same H, so that
ES = −H

(
n
(S)
+ − n

(S)
−

)
for S ∈ {1, 2}.

We can take system Ω1 to have M1 micro-states with probabilities pi while sys-
tem Ω2 has M2 micro-states with probabilities qk. As discussed above, each MS is
determined by ES and NS. The entropies of the two systems are

S1 = −
M1∑
i=1

pi log pi S2 = −
M2∑
k=1

qk log qk.

Now we keep these two subsystems isolated from each other, but consider them
as a combined system Ω1+2, as illustrated above. In order to compute the entropy S1+2,
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we need to figure out the number of micro-states M1+2 the combined system could
possibly adopt, and then determine the corresponding probability for each micro-state.
Both steps are simplified by the subsystems being isolated from each other, so that
they are statistically independent. Specifically, with subsystem Ω1 in any one of its M1

micro-states ω
(1)
i , subsystem Ω2 could independently adopt any of its M2 micro-states,

implying M1+2 = M1M2.

Similarly, statistical independence means that the combined probability of sub-
system Ω1 adopting micro-state ω

(1)
i while subsystem Ω2 adopts ω

(2)
k is the product of

the individual probabilities, piqk. We can check this is a well-defined probability, with

∑
M1+2

piqk =

M1∑
i=1

M2∑
k=1

piqk =

[
M1∑
i=1

pi

]
·

[
M2∑
k=1

qk

]
= 1 · 1 = 1.

Inserting the probability piqk into Eq. 20, and recalling log(a · b) = log a + log b, what is
the combined entropy S1+2 of these two independent subsystems?

S1+2 =

You should find that the total entropy is the sum of the entropies of the two isolated
subsystems, which is also how the energies and particle numbers behave,

E1+2 = E1 + E2 N1+2 = N1 +N2.

This behaviour identifies the energy, particle number and entropy as extensive
quantities, which are defined to be those that add up across independent subsystems.
This can be contrasted with intensive quantities, which are defined to be independent
of the extent of the system, and hence the same (on average) for subsystems as for the
combined system. Temperature and density are everyday examples of intensive quan-
tities, though we will see below that the micro-canonical approach introduces some
subtleties. It is possible for quantities to be neither extensive nor intensive, for example
the number of micro-states M1+2 = M1M2.

Finally, suppose that each subsystem is independently in thermodynamic equilib-
rium, with finite M1 and M2, implying

pi =
1

M1

qk =
1

M2

S1 = logM1 S2 = logM2.
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As a consequence we can establish that Ω1+2 is also in thermodynamic equilibrium,
since the probabilities

piqk =
1

M1M2

=
1

M1+2

are identical all of its micro-states. In this situation it’s even easier to see S1+2 =
log (M1M2) = logM1 + logM2 = S1 + S2.

2.2.3 Second law of thermodynamics

Let’s continue considering two subsystems, with one significant change: Suppose
the subsystems are now able to exchange energy (but not particles) with each other.
We’ll say they are in thermal contact with each other, rather than being fully isolated.
We’ll also wait long enough after establishing thermal contact for the combined system
Ω to reach equilibrium. This is illustrated below:

The total energy E = E1 + E2 remains conserved, so the overall system Ω is still gov-
erned by the micro-canonical ensemble. However, the individual energies E1 and E2

can now change over time, meaning that each subsystem is no longer micro-canonical.

The overall system Ω is not the same as the combined Ω1+2 considered above.
We need to reconsider the total number of micro-states M that Ω could adopt, which
is much more difficult than before because we can no longer apply statistical indepen-
dence. Our key remaining tool is the conservation of the total energy E.

Considering a micro-state in which the N1 spins contribute energy e1 to the total,
we know that the N2 spins must contribute the remaining E − e1. Our work above
implies there are Me1 = M

(1)
e1 M

(2)
E−e1

micro-states providing this particular distribution of
energies, where M

(1)
e1 is the number of micro-states of the formerly isolated subsystem

Ω1 with energy e1, and M
(2)
E−e1

similarly corresponds to Ω2 with energy E − e1. We also
know that it’s possible to have e1 = E1, since that’s the initial energy of Ω1 before it was
brought into thermal contact with Ω2. When e1 = E1, we have ME1 = M1M2, covering
all the micro-states of the combined Ω1+2 when the two subsystems were isolated. In
addition, we also have to count any other micro-states for which e1 ̸= E1:

M =
∑
e1

M (1)
e1

M
(2)
E−e1

= M1M2 +
∑
e1 ̸=E1

M (1)
e1

M
(2)
E−e1

≥M1M2. (21)

MATH327 Unit 2 32 Last modified 19 Jan. 2026



Equality holds when e1 = E1 is the only possibility — this is an extremely special
case, in which the two subsystems remain individually micro-canonical, with fixed E1

and E2. This is all we can say in full generality, without specifying more details of a
particular example, but it allows us to obtain a famous result for the total entropy S of
Ω in thermodynamic equilibrium:

S = logM ≥ log (M1M2) = S1+2.

This is a form of the second law of thermodynamics,

S ≥ S1+2 = S1 + S2.

In words, whenever initially isolated (sub)systems in thermodynamic equilibrium are
brought into thermal contact with each other and allowed to exchange energy, the total
entropy of the overall system can never decrease. Indeed, it generically increases
except in extremely special cases.

Though we won’t go through a more general derivation here, it turns out that
the total entropy never decreases (and generically increases) as time passes, under
any circumstances. This has many far-reaching consequences, the first of which is a
more general definition of thermodynamic equilibrium that (unlike Eq. 19) will also ap-
ply when we consider statistical ensembles other than the micro-canonical ensemble.
For simplicity we assume that any system under consideration has a finite number of
micro-states, which means that its entropy is bounded from above. To motivate the
definition below, note that the overall system Ω may have undergone an equilibration
process to reach its thermodynamic equilibrium after any independently equilibrated
subsystems were brought into thermal contact — and in this process the entropy was
non-decreasing.

A system is defined to be in thermodynamic equilibrium if its entropy is maximal.

We can derive Eq. 19 from this definition. All we need to do is maximize the
entropy S = −

∑
i pi log pi subject to the three micro-canonical constraints of conserved

energy, conserved particle number, and well-defined probabilities
∑

i pi = 1. It turns out
that only the final constraint needs to be incorporated into the maximization, through
the method of Lagrange multipliers. As a reminder, this method involves maximizing
the modified entropy

S(λ) = S + λ

(
M∑
i=1

pi − 1

)
= −

M∑
i=1

pi log pi + λ

(
M∑
i=1

pi − 1

)
,

and subsequently imposing
∑

i pi = 1. Here λ is a parameter called the ‘multiplier’. In

short, this procedure is valid because
∂S

∂λ
= 0 once we impose

∑
i pi = 1, so that any

extremum of S corresponds to an extremum of S = S(λ = 0).
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Recalling
∂

∂xk

∑
i

f(xi) =
∂f(xk)

∂xk

, what is the probability pk that maximizes the

modified entropy S?

0 =
∂S

∂pk
=

You should find that pk is some constant that depends on λ. We don’t care about λ; so
long as we know pk is constant, then we must have pk =

1
M

in order to satisfy
∑

k pk = 1.
As advertised, we recover Eq. 19 from our new definition of thermodynamic equilibrium
based on the second law.

2.3 Temperature

In the micro-canonical ensemble, the conserved internal energy and particle num-
ber are fundamental, while the temperature (like the entropy) is a derived quantity. As
discussed below Eq. 20, in thermodynamic equilibrium such derived quantities are
functions of the conserved {E,N}. In this section we will state the definition of tem-
perature for the micro-canonical ensemble and apply this to a spin system. In the next
section we will check that this definition reproduces our expectations from everyday
experiences.

In thermodynamic equilibrium, the temperature T (E,N) in the micro-canonical
ensemble is defined by

1

T
=

∂S

∂E

∣∣∣∣
N

. (22)

In words, the (inverse) temperature is set by the dependence of the entropy on the
internal energy for a fixed number of degrees of freedom.

Since this definition is not terribly intuitive, we will again gain insight by con-
sidering N spins in a line, in a magnetic field of strength H. We saw above that
E = −H(n+ − n−) for n+ and n− = N − n+ spins respectively pointing up and down.
With N fixed, each (conserved) value of E defines a different micro-canonical system,
which we can expect to have a different number of micro-states M(E), different entropy
S(E) and different temperature T (E). We will compute the functional forms of each of
these three quantities, starting with M(E).
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Even though the total energy E remains fixed as time passes, individual spins
can ‘flip’ between pointing up or down. Such spin flips simply have to come in pairs so
that the overall n± both remain the same. As illustration, what are representative spin
configurations that produce the minimal energy Emin ≡ E0 and the next-to-minimal E1?
What are E0 and E1 in terms of {N,H}, and how many distinct micro-states are there
for each of E0 and E1?

Your results should generalize to

M(En−) =

(
N

n−

)
=

N !

n−! (N − n−)!
=

(
N

n+

)
. (23)

To take the derivative in Eq. 22, we need to express n− in terms of {E,N}. It will
also be useful to avoid the factorial operation, which is inconvenient to differentiate. For
N ≫ 1, we can accomplish both these goals by treating the spin system as a random
walk in the space of its possible energies E and applying the central limit theorem:6

• Each spin adds to x ≡ E
−H

= 2n+ − N a ‘step’ of fixed ‘length’ ±1. Our task
therefore coincides with the special case we considered in Section 1.5.

• We don’t impose any preference for positive vs. negative energies, meaning p =
q = 1

2
in the terminology of Section 1.5.

• With p = q = 1
2
, every one of the 2N possible configurations of N spins is equally

probable. Therefore the probability Pn+ that our overall ‘walk’ ends up producing
a configuration with n+ = 1

2
(x+N) is simply the fraction of those 2N states with

this n+, in which we can recognize Eq. 23:

Pn+ =
1

2N

(
N

n+

)
=

M(En−)

2N
=⇒ M(En−) = 2NPn+ .

• To estimate Pn+ for N ≫ 1, we apply the central limit theorem just as in Sec-
tion 1.5.3. In particular, we can re-use our computation that µ = 2p − 1 = 0 and
σ2 = 4pq = 1, to find

p(x) ≈ 1√
2πN

exp

[
− x2

2N

]
.

This is the probability distribution from which we want to extract Pn+.

6Applying Stirling’s formula, log(N !) ≈ N logN −N , is another possible approach.
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• From a tutorial problem we know that Pconst(n+) = p(2n+ − N)∆n+ is a good
approximation. With ∆n+ = 1 and 2n+ −N = E

−H
, we therefore find

M(E) ≈ 2Np(2n+ −N) =
2N√
2πN

exp

[
− E2

2NH2

]
. (24)

What is the derivative of the log of Eq. 24 with N fixed?

∂

∂E
logM

∣∣∣∣
N

=

You should find the temperature

T ≈ −NH2

E
N ≫ 1, (25)

which in several ways does not seem to match our expectations from everyday expe-
riences: This T diverges as E → 0 for n+ ≈ n−, and it is negative whenever n+ < n−
to produce E > 0. You can check that this T < 0 corresponds to the number of micro-
states decreasing for larger internal energies, ∂M

∂E
< 0. In natural systems, larger

energies make more micro-states accessible, producing ∂M
∂E

> 0 and a positive tem-
perature. If H = 0, we also have E = 0 and T is ill-defined.

Restricting our attention to H > 0 and n+ > n−, we also see that the result-
ing non-negative temperature cannot vanish. It is minimized by the most-negative
energy you found above, Tmin = H > 0 for Emin = −NH. The non-zero minimum
temperature is specific to spin systems, while some of the other oddities result from
the micro-canonical approach more generally. This will motivate turning to the canoni-
cal ensemble in Unit 3, but first we can check that some aspects of the micro-canonical
temperature defined in Eq. 22 do match our everyday expectations, at least in the ‘nat-
ural’ positive-temperature regime.

2.4 Heat exchange

From Eq. 25 for the temperature of a micro-canonical spin system, we can see
that ‘natural’ positive temperatures correspond to negative energies, and therefore in-
crease as the energy increases by becoming less negative (with a smaller magnitude).
Such a direct relation between energy and temperature is very generic, and we will
study it in more detail when considering thermodynamic cycles in a few weeks. For
now, considering unspecified systems that exhibit this natural behaviour, let’s ask what

MATH327 Unit 2 36 Last modified 19 Jan. 2026



would happen if we take two initially isolated micro-canonical systems — ΩA and ΩB

with temperatures TA and TB in thermodynamic equilibrium — and bring them into
thermal contact.

In micro-canonical terms, the temperatures TA and TB are derived from the cor-
responding energies EA and EB, while thermal contact allows the two systems to ex-
change energy (but not particles) as non-isolated subsystems of a combined micro-
canonical system ΩC . Once the two subsystems have been in thermal contact long
enough for the combined system to have reached thermodynamic equilibrium, it will
have temperature TC . We can then re-isolate the two subsystems, which will remain in
thermodynamic equilibrium with energies {E ′

A, E
′
B} and temperatures {T ′

A, T
′
B}. This

three-step procedure is illustrated below.

From everyday experience, we expect that this energy exchange will result in a
net flow of energy from the hotter system to the colder system, cooling the former by
heating the latter. We will now check that the micro-canonical definition of temperature
in Eq. 22 predicts this expected behaviour. With S ∈ {A,B}, we can write

E ′
S = ES +∆ES

and consider for simplicity the case where the change in energy is relatively small,∣∣∣∣∆ES

ES

∣∣∣∣≪ 1.
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Since we can build up large changes in energy through a series of smaller changes,
this assumption doesn’t lead to any loss of generality. We also know ∆EB = −∆EA

thanks to conservation of energy.

Equation 22 tells us that we need to consider the entropies as functions of ES

and E ′
S in order to connect the temperatures to any flow of energy. Because we don’t

change the number of particles in each system, we only need to consider the energy
dependence of the entropy. We assume S(E) is continuous and infinitely differen-
tiable,7 which allows us to expand each of the final entropies S(E ′

S) in a Taylor series,

S(E ′
S) = S(ES +∆ES) ≈ S(ES) +

∂S

∂E

∣∣∣∣
ES

∆ES,

neglecting all O(∆E2
S) terms because we consider relatively small changes in energy.

What is the expression above in terms of the initial temperatures TS?

From the second law of thermodynamics, we know that the total entropy of these
systems can never decrease as time passes:

S(EA) + S(EB) ≤ S(EA + EB) = S(E ′
A) + S(E ′

B). (26)

The final equality means that re-isolating the two subsystems doesn’t change the en-
tropy. This is because E ′

A is not fixed and could take any value from zero to EA + EB

at the moment when the subsystems are re-isolated. Computing the final entropy
S(E ′

A) + S(E ′
B) therefore requires summing over all possible values of E ′

A, produc-
ing exactly the sum in Eq. 21 for the overall system. We will see something similar
when we consider the ‘Gibbs paradox’ in Unit 4.

What do you find when you insert your linearized Taylor series into Eq. 26?

7This assumption breaks down at a phase transition, where we would need to be more careful. We
will learn about phase transitions towards the end of the term.
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Applying conservation of energy should produce(
1

TA

− 1

TB

)
∆EA ≥ 0.

Recalling from Section 2.2.3 that equality holds only in extremely special cases, we
can identify three possibilities consistent with this result. If TA > TB, then

(
1
TA
− 1

TB

)
is

negative and we will generically have ∆EA < 0, so that energy flows out of the hotter
system ΩA and into the colder one. Our restriction to natural systems means this flow of
energy reduces the higher temperature, and increases the lower temperature, bringing
the temperatures of the two subsystems closer to each other. Similarly, if TA < TB, we
will generically have ∆EA > 0, meaning that energy still flows from the hotter system
ΩB into the colder one, again reducing the difference in their temperatures. We can
finally conclude that TA = TB is the very special case where there is no energy flow,
∆ES = 0, keeping the temperatures the same. All of this is exactly what we would
expect based on our everyday experience of temperature as an intensive quantity.
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