MATH327: StatMech and Thermo, Spring 2026
Computer Assignment

Overview and instructions

In this computer assignment you will numerically analyse two types of diffusive be-
haviour in one-dimensional random walks. After warm-up problems on pseudo-random
numbers and inverse transform sampling, analysing ordinary diffusion will allow you to
verify your numerical results by comparing them with exact analytic predictions based
on the law of large numbers and central limit theorem. You will then adapt these verified
numerical methods to consider anomalous diffusion, where exact analytic predictions
are not available.

There are five problems below, four of which provide relevant background infor-
mation in addition to the tasks for you to complete. While the problems mention some
syntax specific to Python, you may use a different programming language if you prefer.
This demo illustrates all the Python programming tools needed for the assignment. For
any reasonable programming language, the numerical computations for each problem
should complete in a few minutes or less.

This assignment is due by 17:00 on Wednesday, 18 February 2026. Submit
your work by file upload on Canvas. Both your answers to the questions below (in-
cluding plots) and the code that produces your results must be submitted. You are
free to upload multiple files in various formats, a combined tar/zip archive, or a single
document including everything, as you prefer. For example:

* A common approach in past years was to answer the non-computational ques-
tions using pen and paper, and then photograph / scan this using either an app
like CamScanner or an actual scanner (available in our Library). If you have trou-
ble saving the plots as pdf or png files, you can submit screenshots of them.

* Alternatively, the answers can be typed up into a pdf (which can also include the
plots), for instance using MS Word, LibreOffice Writer, or ETEX.

* It’s also possible to put everything (code, plots, and non-computational work) into
a single Jupyter (ipynb) notebook. You may have noticed that the demo takes this
approach, using ITEX to format mathematical expressions.

Similarly, the code can all be in a single file, or you can use a different file for each task.
For whichever method you choose, make sure to include enough intermediate steps for
me to be able to follow your logic. The correctness of the submitted code contributes
to the marks listed below. While no marks will be deducted for stylistic reasons, it is in
your interests to make your code as readable as possible, to simplify my marking and
your debugging.

Marking typically takes longer for this assignment compared to traditional home-
work, due to the need to check both the code and the non-computational work. You can
help to speed up this process by submitting code in its native format (for example, a . py
file for Python code). Use of resources beyond the module materials (for example, ask-
ing ChatGPT or Gemini to help debug your code) must be explicitly referenced in your

MATH327 Comp. Assign. 1 Last modified 1 Feb. 2026

https://tinyurl.com/math327demo
https://canvas.liverpool.ac.uk/courses/84431/assignments/333266
https://libanswers.liverpool.ac.uk/faq/49444

submissions. Clear and neat presentations of your workings and the logic behind them
will contribute to your mark. Anonymous marking is turned on, model solutions will be
posted on Wednesday, 4 March 2026, and | will aim to return marks and feedback by
Monday, 9 March 2026.

You should already be familiar with the Department’s academic integrity guidance
for 2025—2026, which states that by submitting solutions to this assessment you affirm
that you have read and understood the Academic Integrity Policy detailed in Appendix
L of the Code of Practice on Assessment, and that you have successfully passed the
Academic Integrity Tutorial and Quiz in the course of your studies. You also affirm that
the work you are submitting is your own and you have not copied material from another
source nor committed plagiarism nor commissioned all or part of the work (including
unacceptable proof-reading) nor fabricated, falsified or embellished data when com-
pleting your work. You also affirm that you have not colluded with any other student in
the preparation and production of your work. You also affirm that any use of generative
artificial intelligence (Al) software in relation to the assessment is in accordance with
these instructions and the University Guidance. You also affirm that you have acted
honestly, ethically and professionally in the preparation and production of your work.
Marks achieved on this assessment remain provisional until they are ratified by the
Board of Examiners in June 2026.

Problem 1: Pseudo-random numbers

Background

We have discussed how statistical mechanics is based on incorporating an ele-
ment of randomness into analyses of complex systems. Because computer programs
are deterministic, they do not produce true randomness. Instead, computer algorithms
generate pseudo-random numbers, which are entirely sufficient for our purposes.

A sequence of pseudo-random numbers appears random in the sense that know-
ing the first N — 1 elements in the sequence does not suffice to predict the Nth element
with a high probability of correctness. Equivalently, it takes a very large number of ele-
ments for the sequence to start repeating itself. Such repetition will eventually happen,
because computers encode numbers in a finite set of bits, which can represent only a
finite set of numbers. For example, 32 bits can represent all integers from 0 through
232 — 1 ~ 10°, while 64 bits increase the upper bound to 264 — 1 ~ 10%. Python uses the
Mersenne Twister algorithm as its default pseudo-random number generator (PRNG).
This algorithm can provide 21997 — 1 ~ 10! humbers before its sequence repeats.

We can view the absence of true randomness as an advantage rather than a
limitation. Deterministic pseudo-random numbers allow our computer programs to be
reproducible up to the (very high) precision of the computer. Each problem below starts
by initializing the PRNG with a “seed”. Given the same seed, the PRNG will generate
the same sequence of pseudo-random numbers. In Python, as shown in the demo,
this initialization is done by calling the function random.seed(s), where s is the seed
we specify.

MATH327 Comp. Assign. 2 Last modified 1 Feb. 2026

https://canvas.liverpool.ac.uk/courses/84431/files/13434884
https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf
https://www.liverpool.ac.uk/media/livacuk/centre-for-innovation-in-education/digital-education/generative-ai-teach-learn-assess/guidance-on-the-use-of-gen-ai-learn-teach-assess.pdf
https://en.wikipedia.org/wiki/4,294,967,295
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html

Task

The Python function random.random() generates a pseudo-random number u
with the uniform probability distribution

(1)

(1) = 1 for0<u<1
PI=7% 0 otherwise
Clearly [p(u)du = fol du = 1, as required. What are the exact mean . = (u), expecta-
tion value (u?), and standard deviation o of this probability distribution?

[3 marks]

Initialize the PRNG with seed s = 42. For each of the five R = 50, 500, 5000, 50 000
and 500 000, generate a sequence of R pseudo-random numbers u, distributed accord-
ing to p(u). Don’t re-initialize the PRNG when changing R, or else these sequences
will partially duplicate each other. Use each sequence to compute

R R
1 — 1 —
T — 2 2 = — 2 72
URp = 7 ;:1 Uy, ulp = I TE:1 u; and ORr =\/Uu’Rp — U%. (2)

How do your numerical results compare to your exact analytic predictions above? Four
significant figures should suffice for these comparisons.
[6 marks]

In class (and on page 15 of the lecture notes) we saw ((ux — u)2> x 1/R. Let’s
test this numerically by repeating the five computations of uz another 99 times, ignor-
ing o for simplicity. Together with the results you reported above, this gives a total
of 100 estimates of the random variable (ur — /ua)2 for each R, which we can use to
approximate each expectation value as

1 100
(ir = 1)* = 355 2 (@ — 07 3)

Rather than reporting your results as numerical values, plot R x (ug — u)2 vsS. R
and see whether the five points appear approximately constant. If so, is the size of this
constant roughly what you would expect?

Hints: Include 0 on the y-axis of your plot to maintain a sense of scale. Python’s
Matplotlib plotting library provides (via its pyplot module) the option xscale(‘log’)
that sets a logarithmic scale for the x-axis, to produce even spacing between the five
values of R.

[8 marks]

MATH327 Comp. Assign. 3 Last modified 1 Feb. 2026

Problem 2: Inverse transform sampling

Background

The uniform distribution is a bit boring. Inverse transform sampling is a technique
that allows us to consider more interesting probability distributions, while still generating
pseudo-random numbers using a simple function like random.random(). The idea is
illustrated by the sketch below.

= o

o

. /:{i Fu) plu \
™ R I s
\ J \J
5 b oxn X o U

In words, we take our uniformly distributed «,. and act on them with some invertible
transformation F'(u) to define =, = F'(u,) that follow the distribution of interest, p(x). We
require p(z) dx = p(u) du, which relates p(x) and the inverse transformation 7! (z):

du d
= — = —F! 4
plw) = p(u) 7 = p(u) = (a), (4)
hence the name “inverse transform sampling”. This relation lets us either engineer an
appropriate transformation F(u) to produce a desired distribution p(x), or determine
the distribution that results from a given transformation.

MATH327 Comp. Assign. 4 Last modified 1 Feb. 2026

Task

Given uniformly distributed pseudo-random numbers « (Eqg. 1), define

r=F(u)= ! arcsin (UTH> : (5)

™

What is the probability distribution p(z) of these random numbers =? What are
the minimum and maximum possible values that = can take? What are the resulting
exact mean p and standard deviation o of p(x)?

Hint: You can look up derivatives or integrals, citing any sources you use.
[6 marks]

Reset by initializing the PRNG with seed 42, and generate R = 5000000 pseudo-
random numbers z, via Eq. 5. Use these to numerically estimate the mean and stan-
dard deviation of p(z). How do your numerical results compare to your exact . and o
above? Five significant figures should suffice for these comparisons.

Hint: Numerical Python (NumPYy) provides an arcsin function that may be useful.
[4 marks]

In a single plot, compare the histogram of the 5000000 {z,} to the analytic p(x)
you found above. Do your numerical results match your prediction? Roughly 51 bins in
the histogram should suffice for this comparison.

Hint: The demo shows how Matplotlib can plot a function p(z) on top of a his-
togram produced using its hist routine.
[4 marks]

MATH327 Comp. Assign. 5 Last modified 1 Feb. 2026

Problem 3: Random walks

(a) Central limit theorem

Now consider a random walk that consists of N steps, with the length of each step
being a pseudo-random number x; obtained using Eqg. 5. By independently generating
R different N-step random walks you can analyse the final positions of the walks,

N
X, (N)=> r=1,2,--- R,
i=1

Based on the central limit theorem in the limit R — oo, what are the analytic predictions
for (X (V)) and the diffusion length

6(N) = (IX)P) — (X)),
each as a function of N? [In the lecture notes, /,(NV) is called AX(N); the new termi-
nology will be useful for Problem 5.]

[2 marks]

(b) Fixed number of steps

Reset by initializing the PRNG with seed 42. With fixed N = 100, generate R
100-step random walks for each of R = 50, 500, 5000, 50 000 and 500 000. Use the five
resulting sets { X, } to numerically estimate both

r=1

How do your numerical results compare to your R — oo analytic predictions for

N = 1007 Five significant figures should suffice for the (X) comparison, while four
should suffice for the ¢, comparison.

[8 marks]

(c) Diffusion constant

Reset by initializing the PRNG with seed 42. Then fix R = 50000 and compute
ly(N)y for every N =1,2,---,500. Rather than reporting results as numerical values,
plot /5(N), vs. N. (Hint: You can ignore potential correlations between ¢y (V) for
different values of V.)

[6 marks]

Now fit your numerical results to the function
(2(N), = C + DVN.

Add your fit to your plot of ¢,(N), vs. N. How do your fit results for C' and D compare
to your R — oo analytic predictions from the central limit theorem? (Hint: NumPy’s
polyfit routine can handle fits linear in v/N.)

[4 marks]

MATH327 Comp. Assign. 6 Last modified 1 Feb. 2026

Problem 4: Cauchy-Lorentz distribution

Background

So far we have been able to verify our numerical results by using the central limit
theorem. We now turn to a case in which the central limit theorem will not be applicable,
by considering

po(z) = <%) m r €R, (6)

which is known as the Cauchy—Lorentz (or just Cauchy) distribution. Here b is a con-
stant parameter that controls the width of the peak around x = 0. The figure below
illustrates this by plotting pc(x) for each of b = 1/2, b = 1 and b = 2, comparing them to

the gaussian distribution e~ v/2,
V2T
0.7 ‘
Cauchy, b =0.5 - - -
N Cauchy, b = 1.0
0.6 "\ Cauchy, b =2.0 ------ 1

! Gaussian, 0o = 1 ———

p(x)

The figure shows how the peak of the Cauchy—Lorentz distribution around = = 0
becomes higher and narrower as b decreases. Even when its peak is very narrow,
as |z| increases pc(r) again becomes larger than the gaussian distribution, simply
because the latter decreases exponentially quickly while pc(x) decreases only ~ 1/z2.
These “fat tails” at large || make the Cauchy—Lorentz distribution both interesting and
challenging to analyse.

MATH327 Comp. Assign. 7 Last modified 1 Feb. 2026

Task

Fix b = 2 in the Cauchy—Lorentz distribution, so that Eq. 6 becomes

pol) = (3) ! rER.)

/) 4+ z?

o

Evaluate the integral of this distribution over its full range,/ po(z) d.

[2 marks]

Our usual starting point to analyse a probability distribution p(z) is to find its mean
and standard deviation, by evaluating

(x) = /mp(m) dx (x%) = /:L’2 p(z)dx.

For the Cauchy—Lorentz distribution in Eq. 7, consider instead the functions

f(a):/ xpc(x)dx:%/ 4f$2dx

s = [pewar=2 [-

dx .
a m)_ 4+ 2? v

How do f(a) and g(a) behave in the limit a — co?
[4 marks]

To numerically analyse the Cauchy—Lorentz distribution, the first step is to deter-
mine the transform F'(u) that will map the uniformly distributed pseudo-random num-
bers v (Eg. 1) to x = F(u) € R. What is the transform F' that provides © = F(u)
distributed according to pc(z) in Eq. 77

Hints: Guided by Eq. 4, it will suffice to propose an ansatz for F(u) based on
integrating pc(z), and then follow the steps in Problem 2 to confirm that this ansatz
produces the desired distribution. You can choose the constant of integration so that
r— —occasu—0andx — ocoasu — 1.

[6 marks]

Now reset by initializing the PRNG with seed s = 42. Generate R = 5000000
pseudo-random numbers z, = F(u,) using the transform you found. Plot the his-
togram of these five million {z,} and check whether it agrees with the Cauchy—Lorentz
distribution shown above.

Hints: You will need to set an appropriate range for the x-axis of this histogram.
A range —10 < x < 10 with roughly 201 bins should suffice to show all the interesting
features. In Python this can be done by providing
bins = np.arange(-10.0, 10.0, 20.0/201.0)
to the Matplotlib hist function used previously. In this problem it is optional to plot
pe(z) itself on top of this histogram. If you choose to do so, you may need to adjust its
normalization (and you should think about why this is needed).
[8 marks]

MATH327 Comp. Assign. 8 Last modified 1 Feb. 2026

https://en.wikipedia.org/wiki/Constant_of_integration

Problem 5: Anomalous diffusion

Background

The “fat tails” of the Cauchy—Lorentz distribution mean that p-(x) provides larger
probabilities for rare events with large |z| to occur, compared to the gaussian distri-
bution. This is illustrated in the figures below, each of which shows a thousand-step
random walk in two dimensions — randomly selecting both the length of each step and
the direction 0 < ¢ < 27 in which to step. The walk on the left uses step lengths drawn
from a gaussian distribution. Even in two dimensions, random walks of this sort obey
the law of diffusion, with a diffusion length growing proportionally to the square root of
the number of steps, £(N) o« v/N.

20 : 600
15
400 -
10
200 -
5 4
0 0-
—5 41
—200 1 :
—10 A
—400 - :
~15 1
_20 T T T T T _600 T T :
-20 -15 -10 -5 0 5 10 -600 —400 —200 0 200

The walk on the right instead uses step lengths drawn from a Cauchy—Lorentz
distribution. Note that the axes for this figure cover a much larger range! The fat tails
of the Cauchy-Lorentz distribution result in occasional very large jumps, leading to
random walks that do not obey the law of diffusion.

Returning to one-dimensional random walks, some of the results from Problem 4
motivate defining the generalized diffusion length

Lo(N) = (IX (V)Y (8)

which depends on a positive real parameter § > 0. Since 6 is not necessarily an integer,
the absolute value is needed to ensure ¢y € R, rather than becoming complex valued.

MATH327 Comp. Assign. 9 Last modified 1 Feb. 2026

If (X(V)) = 0 and ¢, is well-defined with § = 2, then this generalized diffusion length
could exhibit the ordinary law of diffusion, ¢, o< N'/2.

For the Cauchy—Lorentz distribution, ¢ is ill-defined for any # > 1. This parameter
0 can take only values 0 < ¢ < 1. The resulting ¢, exhibits anomalous diffusion,

eﬁ(N) X NOl’

where the exponent is either o > % (called super-diffusion) or 0 < a < % (called sub-
diffusion). This problem investigates the exponent « for the distribution pc(z) in Eq. 7,
and explores whether or not « depends on 6.

Task a: Fixed number of steps

Reset by initializing the PRNG with seed 42. With fixed N = 100, generate R
100-step random walks using the transform you found in Problem 4, computing

XT(N):ZI’Z 7“:1,2,"',R,
for each of the four R = 500, 5000, 50 000 and 500 000. Use the four resulting sets { X, }
to numerically estimate
| B 1/0
bN)p~ | > |Xv-(N)|6]
r=1

for three values of § = 0.2, 0.5 and 0.8. (Hint: NumPy provides both an abs function to
take the absolute value, and a power function to compute non-integer powers.)
[12 marks]

Task b: Anomalous diffusive exponent

Reset by initializing the PRNG with seed 42. Then fix R = 50000 and estimate
ly(N)p for every N =1,2,---,250, again considering # = 0.2, 0.5 and 0.8. Instead of
reporting your numerical results, plot all three ¢y(N), vs. N in a single figure. (Hint:
You can ignore potential correlations between ¢y(N) , for different values of N.)

[8 marks]

Now fit your numerical results for each 6 = 0.2, 0.5 and 0.8 to the function
ly(N), = DN

Report your results for D and «, and comment on their sensitivity to the value of 6.
(Hint: Optionally testing different values of R, N or # may help to distinguish between
real sensitivity vs. statistical fluctuations, if you are unsure whether or not an observed
effect is significant.)

[10 marks]

MATH327 Comp. Assign. 10 Last modified 1 Feb. 2026

