
MATH327: StatMech and Thermo, Spring 2025

Tutorial exercises — Einstein solid

These exercises will be introduced in our 20 March tutorial, and you’ll have the
week until our next tutorial on 27 March to work on them. They explore another example
in which a system with quantized energies is analysed in a classical way (employing
the micro-canonical and canonical ensembles).

Our goal is to model the experimental heat capacity data points for several solids
in the figure below (from Schroeder’s Introduction to Thermal Physics).1 The heat ca-
pacities for all three solids have the same qualitative features — approaching zero as
T → 0 (one way of expressing the third law of thermodynamics) and increasing towards
a roughly constant value at higher temperatures.

Recalling cv = ∂E
∂T

, you should have no trouble convincing yourself that the clas-
sical non-relativistic ideal gas provides a poor model. A potentially more promising
system could be the N distinguishable spins in a solid we analysed in late Febru-
ary (Section 3.4 of the lecture notes). We found that this system has internal energy
E = −NH tanh(βH) for inverse temperature β = 1/T and magnetic field strength H.
What is the corresponding heat capacity? How does it compare to the figure above?

You should find poor agreement — especially upon turning off the external field
by taking H → 0! Physicists in the 1800s also struggled to explain the temperature
dependence of experimentally measured heat capacities. To address this problem, in
1907 Einstein developed a simple model of solids based on quantized energies, taking
some inspiration from his famous 1905 proposal that quantized energies explain the
photoelectric effect.

The ‘Einstein solid’ consists of many atoms whose positions are fixed to (distin-
guishable) locations in a regular lattice. Interactions between neighbouring atoms are
credited with pinning each atom to its fixed location. This is modeled by picturing neigh-
bouring atoms connected by ‘oscillators’, analogous to springs, which possess energy

1Experimentally it is easier to measure the heat capacity at constant pressure, cp, rather than at
constant volume, but the difference between cp and cv is negligible for our purposes here.
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https://en.wikipedia.org/wiki/Third_law_of_thermodynamics#Specific_heat
https://en.wikipedia.org/wiki/Photoelectric_effect


as a consequence of these interactions. We define the Einstein solid by hypothesiz-
ing that the energy of each oscillator is quantized, εi = 0, ℏω, 2ℏω, · · · , with the same
characteristic angular frequency ω for all oscillators. Although the oscillators model in-
teractions between nearest-neighbour atoms, in this approach they are non-interacting
degrees of freedom that we can analyse using tools we have already developed.

As illustrated by the figure below, also from Schroeder’s Introduction to Thermal
Physics, the number of oscillators depends both on the number of atoms and their
layout. In this two-dimensional square lattice, N oscillators would correspond to N/2
atoms in the solid. In a three-dimensional simple cubic lattice, N oscillators would cor-
respond to N/3 atoms.

The task is to compute the heat capacity for an Einstein solid. Let’s begin by
working in terms of the micro-canonical ensemble, fixing the total energy

E =
∑
i

εi =
∑
i

kiℏω ≡ Kℏω

where K ≡
∑

i ki is the integer number of energy ‘units’ available to be distributed
among the N oscillators. Each different way of distributing these K units of energy
among the N (distinguishable) oscillators defines a unique micro-state.

• What is the total number of micro-states in terms of N and K? Check your result
for a minimal three-oscillator system when it has K = 0, 1, 2 or 3 units of energy.

• Now consider K ≫ 1 and N ≫ 1, so that we can apply Stirling’s formula while
also approximating N − 1 ≈ N and K − 1 ≈ K. What is the resulting entropy?

• What is the temperature T (E) of the Einstein solid? Is it a ‘natural’ system with
non-negative temperature?

Now let’s change perspective to work in terms of the canonical ensemble, by
inverting T (E) to find the internal energy expectation value in terms of the temperature.
Differentiating this ⟨E⟩(T ) provides the heat capacity cv for the Einstein solid. What is
cv in terms of x ≡ ℏω/T? How does it compare to the figure above? In particular, what
are the leading corrections to the high- and low-temperature limits of cv?

While the Einstein solid describes the experimental data much better than the
non-interacting spins we first considered, there is still room for improvement. . .
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