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Overview

“More Is Different” is the title of a famous 1972 essay by Philip Anderson, which
established the concept of emergent phenomena — the idea that large, complex phys-
ical systems generally can’t be understood by extrapolating the properties of small,
simple systems. For example, consider the ∼1022 H2O molecules in a cubic centime-
tre of water. While we can use Newton’s laws (or the laws of quantum mechanics) to
analyse a few of these molecules, this does not allow us to predict processes such as
phase transitions of this water into steam or ice.

Instead, we have to apply the stochastic (i.e., probabilistic) techniques of statis-
tical mechanics — one of the central pillars of modern physics, along with quantum
mechanics and relativity. While statistical mechanics was originally developed in the
context of thermodynamics in the nineteenth century, it is more generally applicable to
any large-scale (macroscopic) behaviour that emerges from the microscopic dynamics
of many underlying objects. It is intimately connected to quantum field theory, and
has been applied to topics from nuclear physics and cosmology to climate science and
biophysics, often with outstanding success (recently recognized by the 2021 and 2024
Nobel Prizes in Physics, to name just two).

The module outline on the previous page is organized around the concept of sta-
tistical ensembles introduced in the early 1900s. In essence, a statistical ensemble is
a mathematical framework for concisely describing the properties of idealized physical
systems subject to certain constraints. After studying the probability foundations un-
derlying these frameworks, we meet the micro-canonical ensemble in unit 2 and the
canonical ensemble in unit 3. The following two units 4–5 apply the canonical ensem-
ble to investigate non-interacting (“ideal”) gases and thermodynamic cycles. Unit 6
introduces a third statistical ensemble, the grand-canonical ensemble, which units 7–8
apply to several types of non-interacting quantum gases. (No prior exposure to quan-
tum mechanics is required — see below for more information.) Finally, in unit 9 we
begin to explore the effects of interactions, which open up a much broader landscape
of applications that we will survey for the remainder of the term.

Schedule

Most weeks we will have lectures at 13:00–14:00 on Monday and 11:00–13:00 on
Wednesday, with tutorials at 10:00–11:00 on Thursday, all in Room 210. The tutorials
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in weeks 2, 3 and 4 (on 6, 13 and 20 February) will be computer lab sessions in Hub
502 PC Teaching Centre B, to provide opportunities for you to work on the computer
assignment summarized below.

I will use Panopto to record lectures (and lecturey bits of tutorials and computer
labs). Although Panopto can produce a live webcast as it records, it does not do this
very well. Therefore I will use Zoom to provide a way for anyone off campus or out
of town to connect remotely through this link (meeting ID 992 7015 4627, passcode
Math327!). Since Panopto and Zoom sometimes fight over the microphone and cam-
era, I encourage you to attend in person if you are able. The Panopto recordings will
appear along with all other resources on our Canvas site,

canvas.liverpool.ac.uk/courses/76365

Office hours will take place at 14:00 on Mondays and 11:00 on Thursdays, after
the corresponding lecture and tutorial. They will be held in Room 123 of the Theo-
retical Physics Wing, and will also connect to the Zoom link above. If these times
do not work with your schedule, you can also make an appointment through cal-
endly.com/daschaich, use the Canvas discussion board (where anonymous posting is
enabled), or reach me by email at david.schaich@liverpool.ac.uk. I will aim to respond
to emails and discussion board queries within 48 hours.

Assessment and academic integrity

There will be three in-term assignments. Each accounts for 15% of the module
mark, with the remaining 55% coming from the final exam. Although the deadlines
listed below are not ideal, they have been centrally coordinated within the Department
to minimize pile-up across different modules. The Department also sets each deadline
to be at 17:00.

15% A computer assignment due Friday, 21 February

30% Two equally weighted homework assignments, the first due Friday, 7 March and
the second due Friday, 4 April

55% A two-hour in-person final examination to be centrally scheduled within the May
exam period

According to the University’s Code of Practice on Assessment (COPA), late sub-
missions completed within 120 hours after the submission deadline will have 5% of
the total marks deducted each 24-hour period after the deadline. Submissions more
than 120 hours late will be awarded zero marks, though I will still endeavour to provide
feedback on them. I will aim to return feedback and share model solutions within two or
three weeks of the deadline for the homeworks or computer assignment, respectively.

For your other modules you already should have read and understood the De-
partment’s current academic integrity guidance as well as the Academic Integrity Pol-
icy detailed in COPA Appendix L. If you have any questions about what is or is not
acceptable, please ask me or our Academic Integrity Officer Alena Haddley. In all
cases, the spirit of the Academic Integrity Policy should take precedence over legalistic
convolutions of the text.
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In particular, I encourage you to discuss the in-term assignments with each other,
since discussing and debating your work is a very effective way to learn. Note that I
say your work — your submissions for all assignments must be your own work repre-
senting your own understanding, and the examination must be done on your own. It is
unacceptable to copy solutions in part or in whole from other students (current or prior)
or from other sources (commercial or otherwise). Should you make use of resources
beyond the module materials — including generative AI tools such as ChatGPT —
these must be explicitly referenced in your submissions. Clear and neat presentations
of your workings and the logic behind them will contribute to your mark.

Main resources and materials

The main materials we will use are the lecture notes you are currently reading.
As you read further, you will encounter gaps in the notes, which provide bite-sized
exercises to help you check your understanding. While we will fill most gaps during
lectures, I encourage you to use them as opportunities to practice.

The ten units into which the content is organized won’t neatly match up with the
twelve weeks of the term. Some units will require more time than others. Regular
Canvas announcements will summarize what we cover each week.

We will use ‘natural units’ in which the Boltzmann constant k = 1, and logarithms
have base e unless otherwise specified (i.e., log x = lnx). There is no need to mem-
orize any equations. Many equations are numbered so that they can be referenced
later on, not necessarily because they are important. Key results, definitions and con-
cepts are highlighted by coloured boxes, and you should aim to be confident in your
understanding of these.

These lecture notes were first written ‘live’ during the 2021 and 2022 editions of
this module. While they are now much more stable, they continue to be improved,
refined and sometimes corrected. The “Last modified” date at the bottom of each page
will flag any changes that occur during the term. You can track the changes themselves
through the version control repository at github.com/daschaich/MATH327_2025. The
Software Carpentry project provides an introduction to Version Control with Git.

Expected background

No prior exposure to quantum mechanics or computer programming is required
— all necessary information on these topics will be provided. I do anticipate that you
have previously seen the standard deviation, the binomial coefficient(
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k
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=

N !

k! (N − k)!
=
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N − k
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that counts the number of possible ways to choose k objects out of a set of N ≥ k total
objects, and gaussian integrals,∫ ∞
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π

a
a > 0.
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Programming

You are welcome to complete the computer assignment using the programming
language of your choice. I recommend Python, which is free, user-friendly, and very
widely used around the world. During the first two weeks of the term we will review this
demo that explains all the Python programming tools you’ll need. Python is available on
University computers and should work on personal computers. You can also write and
run Python code using many cloud services, of which I have had the best experiences
with Google’s Colab and CoCalc.1 You may need to create a free account, and you
should make sure to save a local copy to reduce the risk of losing your work. Alternative
languages could include C, Fortran, R, or even MATLAB (through the University’s site
license). I advise against using Maple, which may struggle to handle parts of the
assignment.

How to get the most out of this module

At this point in your studies, this advice should be familiar, but it’s worth repeating.

Come to class — ideally in person, if necessary by Zoom. This will ensure regular
contact with the material, and help you check that you understand it. If the module is
moving slower than you’d prefer, coming to class will give you opportunities to ask
about more interesting extensions, applications or complications.

Before class, take a quick look at the upcoming pages in the lecture notes, and
think about how any gaps could be filled. Look for the big ideas rather than digging
in to every detail, and see if you have any questions (or objections) to raise in class.
After class, take a closer look at the details, and make sure the gaps have been filled to
your satisfaction. Even though the lecture notes reflect my plans for the module, they
may not exactly match what happens in class, especially when questions arise. We
may gloss over some topics that are explained clearly in the notes, and we may delve
deeper into other topics that merit further consideration.

Work on the homework problems, computer assignment and tutorial exercises.
The best way to learn mathematics is by doing mathematics, and these assignments
and activities are designed to make you think and help develop your mathematical
muscles. In particular, the homework problems will be harder than exam questions,
since you’ll have much more time to work on them — so make sure you start thinking
about them well in advance of the deadline. Afterwards, review the model solutions
and feedback, to make sure any confusing points are resolved.

Ask questions. Ask questions you think you’re supposed to know the answer
to. Ask questions you think everyone else knows the answer to. (They don’t.) Ask
questions about the big ideas, the specific details, and the connections between them.
The opportunity to ask questions is the main benefit of taking a module. You can ask
me; you can ask your classmates; you can ask the additional resources below.

1I have had worse experiences with replit.com, onlinegdb.com, mybinder.org and trinket.io — use
these at your own risk.
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Additional resources

The optional additional resources listed below may be helpful. You can use the
module Reading List on Canvas to reach our library’s records for the books.

Resources at roughly the level of this module:

1. David Tong, Lectures on Statistical Physics (2012),
www.damtp.cam.ac.uk/user/tong/statphys.html

2. MIT OpenCourseWare for undergraduate Statistical Physics I (2013) and Statis-
tical Physics II (2005),
ocw.mit.edu/courses/8-044-statistical-physics-i-spring-2013/
ocw.mit.edu/courses/8-08-statistical-physics-ii-spring-2005/

3. Daniel V. Schroeder, An Introduction to Thermal Physics (2021)

4. J. Allday and S. Hands, Introduction to Entropy: The Way of the World (2024)

5. C. Kittel and H. Kroemer, Thermal Physics (1980)

6. F. Reif, Fundamentals of Statistical and Thermal Physics (1965)

More advanced and more specialized resources, which may be useful to consult
concerning specific questions or topics:

7. MIT OpenCourseWare for postgraduate Statistical Mechanics I (2013) and Sta-
tistical Mechanics II (2014),
ocw.mit.edu/courses/8-333-statistical-mechanics-i-statistical-mechanics-of-
particles-fall-2013/
ocw.mit.edu/courses/8-334-statistical-mechanics-ii-statistical-physics-of-
fields-spring-2014/

8. R. K. Pathria and P. D. Beale, Statistical Mechanics (2021)

9. Sidney Redner, A Guide to First-Passage Processes (2001)

10. Pavel L. Krapivsky, Sidney Redner and Eli Ben-Naim, A Kinetic View of Statistical
Physics (2010)

11. Kerson Huang, Statistical Mechanics (1987)

12. Andreas Wipf, Statistical Approach to Quantum Field Theory (2013)

13. Weinan E, Tiejun Li and Eric Vanden-Eijnden, Applied Stochastic Analysis (2019)

14. Michael Plischke & Birger Bergersen, Equilibrium Statistical Physics (2006)

15. Sacha Friedli and Yvan Velenik, Statistical Mechanics of Lattice Systems (2018)

16. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (1969)
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A general book about learning, emphasizing (among other things) the value of re-
trieval practice compared to re-reading lecture notes or re-watching videos:

17. Peter C. Brown, Henry L. Roediger III and Mark A. McDaniel, Make it Stick: The
Science of Successful Learning (2014)
A short summary video is also available

Programming resources:

18. MATH327 Python programming demo (2025)

19. Beginner’s Guide to Python (2024)

20. W3Schools Python Tutorial (2024)

21. Software Carpentry tutorials:
hack Version Control with Git (2024)
hack Programming with Python (2024)
hack Plotting and Programming in Python (2024)

22. Stormy Attaway, MATLAB: A Practical Introduction to Programming and Problem
Solving (2013)

23. B. Barnes and G. R. Fulford, Mathematical Modelling with Case Studies: Using
Maple and MATLAB (2014)

In addition, there is a vast constellation of other online resources such as Stack
Exchange and Wikipedia. These can be great places to start learning about a topic,
but are often terrible places to stop.
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Unit 1: Central limit theorem and diffusion

Introductory remarks: More Is Different

What is most exciting about our work is that it illuminates the chain of con-
nections between, on the one hand, the simple underlying laws that gov-
ern the behavior of all matter in the universe and, on the other hand, the
complex fabric that we see around us, exhibiting diversity, individuality, and
evolution. The interplay between simplicity and complexity is the heart of
our subject. —Murray Gell-Mann (1969 Nobel laureate), 1996

Mathematical sciences such as physics aim to determine the laws of nature and
understand how these govern experimental observations — both in everyday circum-
stances and under extreme conditions. This mathematical understanding is typically
guided by reproducing a set of observations, with the resulting framework then used to
make predictions for other “observables”.

Over the past few centuries this process has been tremendously successful, with
theoretical physics accurately predicting experimental and observational results from
sub-atomic through to cosmological scales. Modern physics labs can create a vacuum
better than in outer space and the coldest temperatures in the known universe, as well
as going to the other extreme to reach temperatures of millions of degrees and pres-
sures millions of times atmospheric pressure at sea level. Amazingly, many aspects of
these realms of physics can be described by mathematics developed centuries ago.2

A crucial aspect of this success is the emergence of complicated physical phe-
nomena from simple underlying mathematical laws. This module’s name borrows from
a famous 1972 essay by Philip Anderson (1977 Nobel laureate), “More Is Different”,
which helped to establish modern perspectives on emergent phenomena. We will fo-
cus on one particular domain in which simple mathematical principles enable amazing
predictive capabilities: statistical mechanics (sometimes called probabilistic mechan-
ics, statistical physics or statistical thermodynamics). Initially developed in the context
of thermodynamics in the nineteenth century, statistical mechanics remains a central
pillar of modern physics, and will retain this position in years to come. The foundations
of statistical mechanics lie in the use of probability theory to mathematically describe
experimental observations and corresponding laws of nature that involve stochastic
randomness rather than being perfectly predictable.

The lack of perfect predictability in statistical mechanics is a matter of practicality
rather than one of principle. It arises due to working with a large number of degrees
of freedom — that is, a large number of independent objects such as atoms. For illus-
tration, Avogadro’s number NA ≈ 6.022 × 1023 is the large number of molecules in ev-
eryday amounts of familiar substances — about 18 grams of water or about 22 litres of
air at sea-level atmospheric pressure. Specifying the positions and velocities of ∼1023

2A famous 1960 essay by Eugene Wigner (1963 Nobel laureate), “The Unreasonable Effectiveness
of Mathematics in the Natural Sciences”, and subsequent work in the philosophy of physics, elaborates
on why this may be considered ‘amazing’. While this module will not comment extensively on philosophy,
Paolo Beltrame will lead a short course on this subject during February and March.
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objects would require far more information than could be stored by even the biggest
existing supercomputers. Statistical mechanics instead produces simple mathemati-
cal descriptions of large-scale properties such as temperature, pressure and diffusion,
which are generally of such outstanding quality that the underlying ‘randomness’ is
effectively invisible.

Historically, the difficulty of detecting the stochastic processes underlying such
thermodynamic properties made it challenging to convince skeptics that atoms and
molecules really exist. Ludwig Boltzmann, a prominent early developer of statistical
mechanics, endured a constant struggle to defend his ideas, which likely contributed
to his deteriorating mental health and eventual suicide in 1906. A significant step to
convincingly establish the existence of atoms was Albert Einstein’s use of statistical
mechanics to explain the observed “Brownian motion” of particles suspended in fluids
— this work was part of Einstein’s “miracle year” in 1905, along with special relativity
and early contributions to quantum physics. Jean Perrin soon verified Einstein’s predic-
tions and used them to determine Avogadro’s number; he was awarded the 1926 Nobel
Prize in Physics for helping to demonstrate “the discontinuous structure of matter”.

Applications of statistical mechanics continue to advance “our understanding of
complex physical systems” — quoting the 2021 Nobel Prize shared between Syukuro
Manabe, Klaus Hasselmann and Giorgio Parisi. Even more recently, the 2024 Nobel
Prize was awarded to John Hopfield and Geoffrey Hinton for “using ideas from statisti-
cal physics” to lay the foundations for machine learning and artificial neural networks.
Other modern topics we will encounter in this module include explaining why stars don’t
collapse under the ‘weight’ of their own gravity, and identifying effects of dark matter
in temperature fluctuations observable in the cosmic microwave background lingering
from the early years of the universe.

In this unit we focus on some of the foundational mathematics that will underlie
our later development and application of statistical mechanics. Looking back to Boltz-
mann’s times, we can consider the following question some of his critics might have
asked: If the pressure of a gas in a container results from molecules stochastically
colliding with the walls of that container, then how can the pressure be so stable, rather
than itself fluctuating stochastically? The mathematical answer lies in the law of large
numbers and the central limit theorem, which we will review and apply to the physics
of diffusion in one dimension.

1.1 Probability foundations

We begin by building a more formal mathematical framework around the concept
of probability, through a sequence of definitions. First, a random experiment E involves
setting up, manipulating and/or observing some (physical or hypothetical) system that
involves some element of randomness. Flipping a coin is a simple random experiment.
For the statistical ensembles we will focus on in later units, a typical experiment will be
to allow a collection of particles to evolve in time, subject to certain constraints.

Each time an experiment is performed, the world is observed to be in some state
ω. The specification of the experiment and the state must include all objects of interest,
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and may include more besides. When flipping a coin, for example, the full state could
contain information not only about the final orientation of the coin, but also about its
position — where exactly did it land?

The set of all states Ω collects all possible states ω that the given experiment E
can produce, and is therefore intricately tied to E itself.

We are generally not interested in all aspects of the full state ω. For example,
we won’t care where a flipped coin lands. Instead we’re typically only interested in
whether it lands heads up or tails up — and we may want to set aside any state that
doesn’t cleanly reflect those options. The measurement X(ω) extracts and quanti-
fies this information, acting as a function that maps the state ω to a number that we
can mathematically manipulate. If we repeat the given experiment E many times and
carry out the measurement X on each resulting state ωi, we will obtain a sequence of
numbers X(ωi) that behave as a random variable.

Acting with the measurement X on all of the possible states in the set Ω defines
the set of all outcomes (or outcome space) A:

X : Ω→ A.

That is, A collects all possible measurement results that the given experiment E and
measurement X can produce. A can be finite, countably infinite, or uncountably infinite
(i.e., continuous).

Let’s consider some examples to clarify these definitions. With an experiment of
rolling a six-sided die and measuring the number (1–6) that comes out on top, what is
the set of all outcomes A? What additional information could be included in a corre-
sponding state ω?

What is the outcome space A if we toss a coin four times and measure whether it lands
heads up (H) or tails up (T ) each time?
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What information could characterize a state ω for a gas of 1023 argon atoms in a con-
tainer? What might be interesting to measure?

For convenience, we can introduce a unique number as a label to characterize
each state ω in the set Ω. Generalizing the concept of measurement, this provides a
label function L(ω) that also behaves as a random variable. Our condition of unique-
ness makes L(ω) isomorphic, so that the label can be used interchangeably with the
full state, ω ←→ L(ω).

While the measurements X(ω) we consider generally will not produce a unique
number for each ω, we will design them precisely to remove irrelevant information that
doesn’t interest us. Ignoring that irrelevant information leaves us free to interchange
the set of outcomes A for the set of states Ω. (Some textbooks may never distinguish
between A vs Ω in the first place, though this can be a source of confusion.)

Only a couple of definitions remain. The next is to define an event to be any
subset of the set of all outcomes A. For example, events resulting from rolling a die
could include (i) rolling a 6, (ii) rolling anything but a 6, (iii) rolling any even number,
and many more. Collecting all events of interest defines the set of events (or event
space) F .

We are now prepared for the final foundational definition in this section — the
probability P of an event in the set F . Mathematically, P is a measure function,

P : F → [0, 1],

which must satisfy the following two requirements:

1. The probability of a countable union of mutually exclusive events must equal the
sum of the probabilities of each of these events.

2. The probability of the outcome space (F = A) must equal 1, even if A is un-
countable. This simply means that the experiment E must produce a measurable
outcome. We discard any experiment that doesn’t produce such an outcome.

Combining the outcome space, event space and probability measure gives us a prob-
ability space (A,F , P ).

For example, consider an experiment that can only produce N possible states, so
that

Ω = {ω1, ω2, · · · , ωN} .
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As described above, the subscript is a label, and it is possible for two different states
ωi ̸= ωj to produce the same measurement outcome X(ωi) = X(ωj). This means that
the size n of the outcome space A may be smaller than the size of Ω, n ≤ N . We can
write

A = {X1, X2, · · · , Xn} ,

where each Xα is distinct and its label does not necessarily match the one on ωi. We
can take the individual Xα themselves to be the events we’re interested in, choosing
the event space

F = {X1, X2, · · · , Xn} = A. (1)

These events are all mutually exclusive, so if we assign them probabilities

P (Xα) ≡ pα for α = 1, · · · , n,

then the above requirements on probabilities demand that for any α ̸= β we have

P (Xα or Xβ) = pα + pβ

P (A) = P (X1 or X2 or · · · or Xn) =
n∑

α=1

pα = 1.

Similarly choosing F = A for the six-sided die considered in an earlier gap, what
are the probabilities p1 through p6 that result from assuming the die is fair?

Again taking F = A for the case of tossing a coin four times, what are the probabilities
pα that result from assuming the coin is fair? If we instead consider the event space

F = {equal number of H and T, different numbers of H and T} ,

what are the probabilities pequal and pdiff for the two events in this F?
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The standard European roulette wheel
shown to the left (source) has 37 pockets
labelled “0” through “36”. 18 of these pock-
ets are coloured red, 18 are coloured black
and 1 (pocket “0”) is coloured green. Let an
experiment be a spin of the roulette wheel,
measuring the label of the pocket where the
ball comes to rest (which also provides the
pocket’s colour).

What is the outcome space A for a spin of the roulette wheel? With F = A, what are
the probabilities pα for a fair wheel? With

F = {ball in a red pocket, ball in a black pocket, ball in the green pocket} ,

what are the corresponding probabilities pred, pblack and pgreen?

The process of assigning probabilities to events is called modelling. The gaps
above demonstrate that symmetries are a powerful way to constrain probabilities. The
symmetry between the six sides of a fair die, the two sides of a fair coin, and the 37
pockets of a fair roulette wheel each sufficed to completely determine the correspond-
ing probabilities pα.

Modelling can also be guided by empirical data obtained by repeating an experi-
ment many times. For example, if we don’t know whether a set of dice are fair, we will
be able to infer their probabilities pα (with a certain confidence level) by rolling them
enough times. The need to repeat the experiment many times comes from the law of
large numbers, to which we now turn.

1.2 Law of large numbers

Let’s return to the setup leading to Eq. 1 above, with

F = A = {X1, X2, · · · , Xn}

for finite n, and probabilities pα = P (Xα) that obey

pα ∈ [0, 1]
n∑

α=1

pα = 1.
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We can generalize this notation by writing instead∑
X∈A

P (X) = 1,

and introducing similar expressions for the mean µ and variance σ2 of the probability
space,

µ = ⟨X⟩ =
∑
X∈A

X P (X) (2)

σ2 =
〈
(X − µ)2

〉
=
∑
X∈A

(X − µ)2 P (X). (3)

The angle bracket notation indicates the expected (or expectation) value with general
definition

⟨f(X)⟩ =
∑
X∈A

f(X)P (X), (4)

which is a linear operation,

⟨c · f(X) + g(X)⟩ = c ⟨f(X)⟩+ ⟨g(X)⟩ .

The square root of the variance,
√
σ2 = σ, is the standard deviation. What is σ

expressed in terms of ⟨X2⟩ and ⟨X⟩2?

We now define a new experiment that consists of repeating the original exper-
iment R times, with each repetition independent of all the others. Using the same
measurement as before for each repetition, we obtain a new outcome space that we
can call B. For R = 4, what are some representative outcomes in the set B? What is
the total size of B?
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Each outcome in B contains R different X(r) ∈ A, one for each repetition r =
1, · · · , R, and each with mean

〈
X(r)

〉
= µ and variance

〈
(X(r) − µ)2

〉
= σ2. Considering

the case R = 4 for simplicity, any element of B can be written as X
(1)
i X

(2)
j X

(3)
k X

(4)
l ∈ B

with corresponding probability

PB

(
X

(1)
i X

(2)
j X

(3)
k X

(4)
l

)
= PA

(
X

(1)
i

)
PA

(
X

(2)
j

)
PA

(
X

(3)
k

)
PA

(
X

(4)
l

)
,

using subscripts to distinguish between the probability spaces for the single experiment
(A) and repeated experiment (B).

Averaging over all R repetitions defines the arithmetic mean

XR =
1

R

R∑
r=1

X(r). (5)

Unlike the true mean µ, the arithmetic mean XR is a random variable — a number that
may be different for each element of B. That said, XR and µ are certainly related, and
so long as the standard deviation exists — that is, so long as σ2 is finite — this relation
can be proved rigorously in the limit R→∞.3

Here we will not be fully rigorous, and take it as given that

〈(
X(i) − µ

) (
X(j) − µ

)〉
= σ2δij =

{
σ2 for i = j
0 for i ̸= j

,

where the Kronecker delta δij = 1 for i = j and vanishes for i ̸= j. This is a conse-
quence of our requirement that each repetition is independent of all the others. Using
this result and the relation

(∑
i ai
)(∑

j bj
)
=
∑

i,j (aibj), express the following quantity
in terms of σ and R:〈(

1

R

R∑
r=1

X(r) − µ

)2〉
=

3In the computer project we will numerically investigate a situation where σ2 diverges.

MATH327 Unit 1 15 Last modified 23 Jan. 2025



You should find that your result vanishes in the limit R → ∞, so long as σ2 is finite.
Since the square makes this expectation value a sum of non-negative terms, it can
vanish only if every one of those terms is individually zero.

This establishes the law of large numbers:

lim
R→∞

1

R

R∑
r=1

X(r) = µ, (6)

where we have assumed finite
〈
X(r)

〉
= µ and

〈
(X(r) − µ)2

〉
= σ2.

1.3 Probability distributions

It is not necessary to make the assumption (Eq. 1) that our outcome space con-
tains only a countable number of possible outcomes. The considerations above con-
tinue to hold even if the random variable X is a continuous real number. In this case,
however, the identification of probabilities with outcomes is slightly more complicated,
which will be relevant when we consider the central limit theorem in the next section.

When the outcome can be any number on the real line, the fundamental object
is a probability distribution (or density function) p(x) defined for all x ∈ R. Starting
from this density, a probability is determined by integrating over a given interval. Calling
this interval [a, b], the integration produces the probability that the outcome X lies within
the interval,

P (a ≤ X ≤ b) =

∫ b

a

p(x) dx .

We similarly generalize the definition of an expectation value (Eq. 4) to an integral
over the entire domain of the probability distribution,

⟨f(x)⟩ =
∫

f(x) p(x) dx .

We will omit the limits on integrals over the entire domain, so for x ∈ R we implicitly
have

∫
dx =

∫∞
−∞ dx, with

∫
p(x) dx = 1. An important set of expectation values is

〈
xℓ
〉
=

∫
xℓ p(x) dx, (7)

which provides the mean and variance of the probability distribution p(x), through gen-
eralizations of Eqs. 2–3:

µ = ⟨x⟩ =
∫

x p(x) dx σ2 =
〈
x2
〉
− ⟨x⟩2 . (8)

The expression for the variance should be familiar from your determination of the stan-
dard deviation in an earlier gap. Unless stated otherwise, we will assume the mean
and variance are both finite for the probability distributions we consider.
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1.4 Central limit theorem

The central limit theorem is a central result of probability theory (hence its name).
Over the years it has been expressed in several equivalent ways, and there are also
many distinct variants of the theorem accommodating different conditions and assump-
tions. Here we are interested in applying rather than proving the central limit theorem;
you can find proofs in many textbooks.

The version of the theorem we use in this module assumes we have N indepen-
dent random variables x1, · · · , xN , each of which has the same (finite) mean µ and
variance σ2. Such random variables are said to be identically distributed, and a com-
mon way to obtain them is to repeat an experiment N times, as we considered in
Section 1.2. Just as in Eq. 5, the sum

s =
N∑
i=1

xi (9)

is itself a random variable.

The central limit theorem states that for large N ≫ 1 the probability distribution
for s is

p(s) ≈ 1√
2πNσ2

exp

[
−(s−Nµ)2

2Nσ2

]
, (10)

with the approximation becoming exact in the N →∞ limit.

In addition to asserting that the collective behaviour of many independent and
identically distributed random variables xi is governed by a normal (or gaussian) dis-
tribution, the central limit theorem further specifies the precise form of this distribution
in terms of the mean and variance of each individual xi.

In practice, N often doesn’t
need to be very large in order
for the central limit theorem
to provide a reasonable ap-
proximation. This is illustrated
by the figure to the left, from
Wikimedia Commons, which
shows the probabilities for the
sum of n ≤ 5 rolls of a six-
sided die rapidly approaching
a gaussian distribution.
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1.5 Diffusion and the central limit theorem

1.5.1 Random walk on a line

As a more powerful application and illustration of the central limit theorem, let’s
consider the behaviour of a randomly moving object. Such random walks appear fre-
quently in mathematical modelling of stochastic phenomena (including Brownian mo-
tion), and can be applied to movement through either physical space or more abstract
vector spaces. They are examples of Markov processes, in which the state of the sys-
tem (in this case the position of the ‘walker’) at any time probabilistically depends only
on the system’s prior state at the previous point in time — there is no ‘memory’ of any
earlier states. The resulting sequence of system states is known as a Markov chain,
since each state is produced from the one before, like links in a chain.

Let’s consider the simple example of a random walker that moves only in a single
spatial dimension — to the left or to the right on a line — and can only take ‘steps’ of
a fixed length, which we can set to ℓ = 1 without loss of generality. At each point in
time, the walker takes either a step to the right (R) with probability p or a step to the left
(L) with probability q = 1 − p. We will further assume that each step takes a constant
amount of time δt, so a walk of N steps will last for total time

t = Nδt. (11)

As an example, for N = 6 a representative walk can be written as LRLRRR,
which leaves the walker x = 2 steps to the right of its starting point (x = 0). The
opposite walk RLRLLL would leave the walker at x = −2, with negative numbers
indicating positions to the left of the starting point. How many possible walks are there
for N = 6, and what is the probability (in terms of p and q) for the walks LRLRRR and
RLRLLL to occur? How many possible walks are there for general N , and what is the
probability for any particular walk involving r steps to the right to occur?

We are interested in the walker’s final position x at time t after it has taken N
steps. Just as for the sum of n rolls of a die considered in Section 1.4, there are a
range of possible final positions x, each of which has some probability P (x) of being
realized. The key pieces of information we want to determine are the expectation

value ⟨x⟩ and the standard deviation ∆x ≡
√
⟨x2⟩ − ⟨x⟩2 that indicates the scale of

fluctuations we can expect around ⟨x⟩ as the N -step walk is repeated many times from
the same starting point. (We reserve the variables µ and σ2 for the mean and variance
of the single-step process, which will play an important role when we apply the central
limit theorem in Section 1.5.3.)
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Suppose the N total steps involve r steps to the right. What is the final position
x of the walker in terms of N and r? Check your general answer for the cases N = 6
and r = 4, 2 considered above.

This relation makes it equivalent to consider either the probability Pr of taking r steps
to the right, or the probability P (x) of ending up at final position x. This equivalence
will not hold for more general random walks in which the step length is no longer fixed
and ℓi can vary from one step to the next.

Because the order in which steps are taken does not affect the final position x,
to determine the probability P (x) we have to count all possible ways of walking to
x. For N = 6, what are all the possible walks that produce x = 4, and what is the
corresponding probability P (4)?

Your answer should have a factor of 6 that corresponds to the binomial coefficient(
N
r

)
=
(
6
5

)
= 6. In terms of this binomial coefficient, what is the general probability Pr

that an N -step walk will include r steps to the right in any order?
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Given this probability Pr, we can apply Eqs. 2–3 to find the expectation value ⟨x⟩
and the standard deviation ∆x. As a first step, what are ⟨x⟩ and ⟨x2⟩ in terms of the

expectation values ⟨rn⟩ =
N∑
r=0

rn Pr?

⟨x⟩ =

⟨x2⟩ =

Now we need to calculate the necessary ⟨rn⟩. A powerful way to do this is to define the
generating function

G(θ) =
N∑
r=0

erθ Pr. (12)

This approach introduces a parameter θ that we subsequently remove by setting θ = 0.
For example, G(0) =

∑N
r=0 Pr = 1. What do you obtain upon taking derivatives of the

generating function and then setting θ = 0?

d

dθ
G(θ)

∣∣∣∣
θ=0

=

dn

dθn
G(θ)

∣∣∣∣
θ=0

=

For the current case of a fixed-step-length random walk in one dimension, the
probabilities Pr produce a simple closed-form expression for the generating functional:

G(θ) =
N∑
r=0

erθ Pr =
N∑
r=0

erθ
(
N

r

)
prqN−r =

(
eθp+ q

)N
, (13)

making use of the binomial formula (a+ b)N =
∑N

i=0

(
N
i

)
aibN−i.
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It’s straightforward to take the necessary derivatives of Eq. 13, which simplify
pleasantly since

(
eθp+ q

)∣∣
θ=0

= p+ q = 1:

d

dθ

(
eθp+ q

)N ∣∣∣∣
θ=0

=

d2

dθ2
(
eθp+ q

)N ∣∣∣∣
θ=0

=

Insert the resulting ⟨r⟩ and ⟨r2⟩ into the relations derived above:

⟨x⟩ =

(∆x)2 = ⟨x2⟩ − ⟨x⟩2 =

In the end, you should obtain

⟨x⟩ = N(2p− 1) ∆x = 2
√

Npq. (14)

We can check that this ⟨x⟩ produces the expected results in the special cases p = 0,
1/2 and 1, while the standard deviation ∆x also behaves appropriately by vanishing for
both p = 0 and 1.

1.5.2 Law of diffusion

It’s possible to interpret the results in Eq. 14 in a more intuitive way by expressing
them in terms of the total time t taken by the random walk (Eq. 11). Inserting N = t/δt
into Eq. 14,

⟨x⟩ = t

δt
(2p− 1) =

2p− 1

δt
t ≡ vdrt,

we see that the expected final position of the walker depends linearly on time, with
drift velocity

vdr =
2p− 1

δt
=

N(2p− 1)

t
=
⟨x⟩
t
. (15)
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The sign of vdr indicates whether the walker is drifting to the right (p > 1
2
) or to the left

(p < 1
2
). The typical scale of fluctuations (or the ‘uncertainty’) around the expected final

position ⟨x⟩ is given by the standard deviation ∆x, and also depends on time:

∆x =

√
⟨x2⟩ − ⟨x⟩2 = 2

√
Npq = 2

√
pq

δt

√
t,

where the constant factor is non-negative. This
√
t dependence is a very general result.

The law of diffusion states that

∆x = D
√
t, (16)

where D > 0 is the diffusion constant. The standard deviation ∆x is sometimes also
called the diffusion length.

The result D = 2
√

pq
δt

that we computed above is specific to the simple example of
a fixed-step-length random walk in one dimension and will not hold for more general
random walks. The behaviour it describes is illustrated by the figure below, which plots
the t-dependent probability distribution p(x) that we’ll soon derive using the central limit
theorem (Eq. 17). What we can see already, even before completing that derivation, is
that the probability distribution steadily spreads out — or diffuses — as time passes:

6 4 2 0 2 4 6
x

0.0

0.1

0.2

0.3

0.4

0.5

p(
x)

Zero drift velocity: p = q = 0.5
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10

Here we are considering the special case p = q = 1
2
, for which the drift velocity vdr = 0

and the expectation value is always ⟨x⟩ = 0 for any walk time t. However, as time goes
on, there is a steady decrease in the probability that the walker will end up around its
starting point x ≈ 0. (As described in Section 1.3, we can determine this probability
by integrating the distribution p(x) over an appropriate interval.) Instead, the interval
−D
√
t ≤ x ≤ D

√
t within which we can expect to find the walker (with a constant

‘one-sigma’ or ∼68% probability) steadily grows with characteristic dependence on the
square root of the time the diffusive process lasts.
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Except in the trivial cases p = 0 or q = 0, diffusion also occurs when the drift
velocity is non-zero. This is shown in the two figures below, considering a low but non-
zero drift velocity vdr = 0.2 on the left, and a high vdr = 0.98 on the right. All three
figures were produced by this Python script.

6 4 2 0 2 4 6 8 10
x

0.0

0.1

0.2
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0.5

p(
x)

Low drift velocity: p = 0.6, q = 0.4
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10
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p(
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High drift velocity: p = 0.99, q = 0.01
t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9
t = 10

In the figure on the left, the large diffusion constant D ≈ 0.980 produces a plot that
looks similar to the vdr = 0 case on the previous page, but now the central peaks (and
expectation values ⟨x⟩) for each t drift steadily to the right. The lower D ≈ 0.199 for the
figure on the right leads to less overlap among the distributions, but they still diffuse to
exhibit lower and broader peaks as time passes.

When p ̸= 1
2

so that ⟨x⟩ ≠ 0, it is interesting to compare the drift in the expectation
value against the growth in fluctuations around ⟨x⟩ due to diffusion. We can do this by
considering the following relative uncertainty:

∆x
⟨x⟩ =

You should find that at large times this ratio vanishes proportionally to 1/
√
t ∝ 1/

√
N .

Although the absolute uncertainty ∆x = D
√
t grows by diffusion, for vdr ̸= 0 the linear

drift in the expectation value becomes increasingly dominant as time goes on.
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1.5.3 Applying the central limit theorem

Based on our work in Section 1.4, we can see how to apply the central limit theo-
rem to analyse this fixed-step-length random walk in one dimension, for large numbers
of steps N or equivalently large times t = Nδt. Each step in the random walk is an
independent and identically distributed random variable xi. The corresponding prob-
ability space involves only two possible outcomes: a step of length ℓ = 1 to the right
or to the left with probability p or q, respectively. From this we can easily compute the
mean and variance of the single-step process:

µ = ⟨xi⟩ =

⟨x2
i ⟩ =

σ2 = ⟨x2
i ⟩ − ⟨xi⟩2 =

The final position x of the walker after N steps is exactly the sum over these xi

given in Eq. 9. Its probability distribution p(x) from the central limit theorem is therefore
obtained directly from these single-step µ and σ2, which we can also express in terms
of the drift velocity and diffusion constant:

p(x) =
1√

2π(4Npq)
exp

[
−(x−N(2p− 1))2

8Npq

]
=

1√
2πD2t

exp

[
−(x− vdrt)

2

2D2t

]
. (17)

This expression was used to produce the three figures above. We could have jumped
straight to the final line by considering Eq. 10 and noting

vdrt = N(2p− 1) = Nµ D2t = 4pq
t

δt
= Nσ2. (18)

While this dependence on p and q is specific to the particular fixed-step-length random
walk we’re currently considering, the generic results vdrt = Nµ and D2t = Nσ2 in Eq. 18
do hold for any random walk with finite µ and σ2 (so that the central limit theorem can
be applied). This is remarkable, because it means that the diffusive process as a whole
is determined entirely by the single-step mean and variance. So long as µ and σ2 are
finite, we end up with Eq. 17 as the large-t probability distribution for any markovian
random walk in a single variable x.

This result is related to the generality of the law of diffusion (Eq. 16), which we
can recognize in the structure of Eq. 17. Since t > 0, the exponential in the gaussian
distribution p(x) peaks at the drifting expectation value x = vdrt = ⟨x⟩. The factor
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(x − vdrt)
2 simply quantifies the distance from this peak. As t increases, so does the

factor 2D2t dividing this (x − vdrt)
2, meaning that a larger distance from the peak is

needed for the overall argument of the exponential to reach a given value — in other
words, the peak becomes broader. This in turn requires a lower peak, reflected in the
1√
t

in the overall coefficient, which is set by requiring
∫
p(x) dx = 1. In other words, the

law of diffusion holds whenever the central limit theorem is applicable. This requires
that the mean and variance of the single-step process are finite, and in the computer
project we will numerically investigate the anomalous diffusion that occurs when this
condition is not satisfied.
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Unit 2: Micro-canonical ensemble

2.1 Statistical ensembles and thermodynamic equilibrium

We begin this unit by establishing the concept of statistical ensembles, which
was formalized by J. Willard Gibbs in 1902. (Gibbs also introduced the term ‘statistical
mechanics’, in 1884.) Building on the probability foundations laid above, we will be
interested in ‘experiments’ that simply allow a collection of degrees of freedom to evolve
in time, subject to certain constraints. At a given time t1, the arrangement of these
degrees of freedom defines the state ω1 of the system.

As a concrete example, consider a system of spins — arrows that can point either
‘up’ or ‘down’ — arranged in a line. Such spin systems will appear several times in the
remainder of this module, since in addition to obeying simple mathematics analogous to
flipping coins, spins also serve as good models of physical systems such as magnetic
molecules. What would be a representative state (or configuration) for a system of
N = 8 spins? How many distinct states are there for this system?

At a different time t2, the system’s state ω2 is generally different from ω1. However,
there are some measurements we can perform that always produce the same outcome
even as the system’s state changes over time. These measurements define conserved
quantities, such as the number of spins considered in the example above.

Another important conserved quantity is the internal energy E of an isolated (or
‘closed’) system,

E(ω1) = E(ω2).

The conservation of energy is presumably a familiar concept, and you may also know
that it can be rigorously proven through Emmy Noether’s first theorem.4 Because
conservation of energy was empirically observed long before Noether’s theorem was
proven, it also has a more grandiose name: the first law of thermodynamics. Another
way of stating the first law is that any change in the internal energy of one particular
system Ω must be matched by an equal and opposite change in the energy of some
other system with which Ω is in contact. This will be important when we consider ther-
modynamic cycles later in the term.

For now, let’s return to the example above, and endow the spin system with an
internal energy by placing it in a ‘magnetic field’ of strength H. That is, if a spin is

4There are complications when considering the dynamical space-time of general relativity, but that’s
beyond the scope of this module.
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parallel to the field, it contributes energy −H to the total energy E of the system. If a
spin is anti-parallel to the field, it instead contributes energy H. For later convenience,
we define a positive magnetic field H > 0 to point upward, and also define n+ to be
the number of spins pointing upward — parallel to the field and therefore contributing
negative energy. Similarly, the remaining n− = N − n+ downward-pointing spins are
anti-parallel to the field and contribute positive energy. What is the total energy E of
the system in terms of n+ and n−? What is E for the representative 8-spin state you
wrote down above? What fraction of the states of the spin system have this energy?

If instead we consider N ∼ 1023 hydrogen (H2) molecules in a container, we can
write a simple expression for the internal energy E by treating each molecule as a
point-like particle, with no size or structure. In this case each molecule contributes only
its kinetic energy, and

E =
m

2

N∑
n=1

v⃗ 2
n =

1

2m

N∑
n=1

p⃗ 2
n ,

where v⃗n is the velocity of the nth molecule, p⃗n = mv⃗n is its momentum, and all
molecules have the same mass m.

As forecast at the start of the module, we treat the time evolution of any given
system as a stochastic process in which the system probabilistically adopts a sequence
of states ωi ∈ Ω:

ω1 −→ ω2 −→ ω3 −→ ω4 −→ · · ·
This approach is a matter of practicality rather than one of principle. In principle, New-
ton’s laws would allow us to predict the exact time evolution of (say) 1023 hydrogen
molecules, but only by specifying 1023 initial conditions and solving 1023 differential
equations. Since we cannot hope to record so much information or carry out so many
computations, we instead apply probability theory in order to analyse these systems.

This leads us to the following core definition: A statistical ensemble is the set of
all states Ω = {ω1, ω2, · · · } that a system can possibly adopt through its time evolution.
Each state ωi has some probability pi of being adopted by the system, so we can
recognize a statistical ensemble as a probability space.

Because these states ωi depend on the ‘microscopic’ degrees of freedom that
compose the overall system, we will refer to them as micro-states from now on. From
the definition of probability in Section 1.1, we have the requirement

∑
i pi = 1, which
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simply means that the system must be in some micro-state at any point in time. The
fact that time evolution cannot change any conserved quantities, as discussed above,
means that such conserved quantities characterize statistical ensembles. Throughout
the next seven units we will consider different statistical ensembles with different sets
of conserved quantities.

First we define the micro-canonical ensemble to be a statistical ensemble char-
acterized by conserved internal energy E and conserved number of degrees of free-
dom N — which we will call particle number for short.

According to the discussion above, this means that a system governed by the
micro-canonical ensemble is isolated in the sense that it cannot exchange energy or
particles with any other system.

Now that the micro-canonical ensemble is defined, we can connect it to our in-
tuition from everyday physical systems. Let’s consider a collection of particles moving
around and bouncing (or ‘scattering’) off each other in a sealed container. To a first
approximation, this should describe the behaviour of air in a room, which our lived ex-
perience indicates is spread quite uniformly throughout the room in a way that is stable
as time passes. We do not expect all the air in a room to be concentrated in any one
corner, nor do we expect strong collective gusts of wind without some clear external
influence.

These qualitative expectations illustrate the idea of thermodynamic equilibrium,
an axiomatic concept in statistical mechanics.5 We can mathematically define ther-
modynamic equilibrium through the probabilities pi that appear in the micro-canonical
ensemble.

A micro-canonical system Ω with M micro-states ωi is in thermodynamic equilib-
rium if and only if all probabilities pi are equal. If M is finite, the requirement

∑
i pi = 1

implies

pi =
1

M
. (19)

The full meaning and significance of this definition are not immediately obvious,
and we will continue exploring them through consideration of derived quantities such
as entropy and temperature. First, it’s important to emphasize that this equilibrium is
dynamic: There is not a single ‘equilibrium micro-state’ that the system sits in. Instead,
the equilibrium system continues probabilistically adopting all possible micro-states as
it evolves in time.

5Our expectation that physical systems generically evolve towards thermodynamic equilibrium as
time passes is more formally expressed as the ergodic hypothesis.
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2.2 Entropy and its properties

2.2.1 Definition of entropy

We can gain further insight into thermodynamic equilibrium by considering a fa-
mous derived quantity.

The entropy of a statistical ensemble Ω with a countable number of micro-states
M is defined to be

S = −
M∑
i=1

pi log pi, (20)

where pi is the probability for micro-state ωi to occur. Unless otherwise specified, “log”
indicates the natural logarithm with base e.

When the system under consideration is in thermodynamic equilibrium, we ex-
pect derived quantities such as the entropy to be stable over time, even as different
micro-states are probabilistically adopted. This implies that such derived quantities are
functions of the conserved quantities that are the same for all micro-states. Therefore,
for the micro-canonical ensemble, the equilibrium entropy S(E,N) is a function of the
conserved energy and particle number.

By inserting Eq. 19 into Eq. 20 you can quickly compute a simple expression for
the entropy of a micro-canonical ensemble in thermodynamic equilibrium:

Your result should depend only on the number of micro-states M , diverging as M →∞.
While the energy E and particle number N are not explicit in this expression, {E,N,M}
are inter-related and can be expressed in terms of each other given the details of any
specific situation under consideration. For example, what is the equilibrium entropy of
the system of N spins considered above, if the magnetic field is turned off, H = 0?
What is the entropy if E = 0 with H > 0 (which requires n+ = n−)?
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2.2.2 Extensivity

The increase in entropy for an increasing number of micro-states M is a reflec-
tion of entropy being an extensive quantity. Extensive quantities are formally defined
by considering how they behave if two isolated subsystems are analysed as a single
system — while still remaining isolated from each other, exchanging neither energy
nor particles. This is clearest to consider through the specific example shown below
of two isolated spin subsystems, Ω1 & Ω2, characterized by the energies E1 & E2 and
particle numbers N1 & N2, respectively. To simplify the subsequent analysis, we can
assume that both subsystems are placed in magnetic fields with the same H, so that
ES = −H

(
n
(S)
+ − n

(S)
−

)
for S ∈ {1, 2}.

We can take system Ω1 to have M1 micro-states with probabilities pi while sys-
tem Ω2 has M2 micro-states with probabilities qk. As discussed above, each MS is
determined by ES and NS. The entropies of the two systems are

S1 = −
M1∑
i=1

pi log pi S2 = −
M2∑
k=1

qk log qk.

Now we keep these two subsystems isolated from each other, but consider them
as a combined system Ω1+2, as illustrated above. In order to compute the entropy S1+2,
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we need to figure out the number of micro-states M1+2 the combined system could
possibly adopt, and then determine the corresponding probability for each micro-state.
Both steps are simplified by the subsystems being isolated from each other, so that
they are statistically independent. Specifically, with subsystem Ω1 in any one of its M1

micro-states ω
(1)
i , subsystem Ω2 could independently adopt any of its M2 micro-states,

implying M1+2 = M1M2.

Similarly, statistical independence means that the combined probability of sub-
system Ω1 adopting micro-state ω

(1)
i while subsystem Ω2 adopts ω

(2)
k is the product of

the individual probabilities, piqk. We can check this is a well-defined probability, with

∑
M1+2

piqk =

M1∑
i=1

M2∑
k=1

piqk =

[
M1∑
i=1

pi

]
·

[
M2∑
k=1

qk

]
= 1 · 1 = 1.

Inserting the probability piqk into Eq. 20, and recalling log(a · b) = log a + log b, what is
the combined entropy S1+2 of these two independent subsystems?

S1+2 =

You should find that the total entropy is the sum of the entropies of the two isolated
subsystems, which is also how the energies and particle numbers behave,

E1+2 = E1 + E2 N1+2 = N1 +N2.

This behaviour identifies the energy, particle number and entropy as extensive
quantities, which are defined to be those that add up across independent subsystems.
This can be contrasted with intensive quantities, which are defined to be independent
of the extent of the system, and hence the same (on average) for subsystems as for the
combined system. Temperature and density are everyday examples of intensive quan-
tities, though we will see below that the micro-canonical approach introduces some
subtleties. It is possible for quantities to be neither extensive nor intensive, for example
the number of micro-states M1+2 = M1M2.

Finally, suppose that each subsystem is independently in thermodynamic equilib-
rium, with finite M1 and M2, implying

pi =
1

M1

qk =
1

M2

S1 = logM1 S2 = logM2.
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As a consequence we can establish that Ω1+2 is also in thermodynamic equilibrium,
since the probabilities

piqk =
1

M1M2

=
1

M1+2

are identical all of its micro-states. In this situation it’s even easier to see S1+2 =
log (M1M2) = logM1 + logM2 = S1 + S2.

2.2.3 Second law of thermodynamics

Let’s continue considering two subsystems, with one significant change: Suppose
the subsystems are now able to exchange energy (but not particles) with each other.
We’ll say they are in thermal contact with each other, rather than being fully isolated.
We’ll also wait long enough after establishing thermal contact for the combined system
Ω to reach equilibrium. This is illustrated below:

The total energy E = E1 + E2 remains conserved, so the overall system Ω is still gov-
erned by the micro-canonical ensemble. However, the individual energies E1 and E2

can now change over time, meaning that each subsystem is no longer micro-canonical.

The overall system Ω is not the same as the combined Ω1+2 considered above.
We need to reconsider the total number of micro-states M that Ω could adopt, which
is much more difficult than before because we can no longer apply statistical indepen-
dence. Our key remaining tool is the conservation of the total energy E.

Considering a micro-state in which the N1 spins contribute energy e1 to the total,
we know that the N2 spins must contribute the remaining E − e1. Our work above
implies there are Me1 = M

(1)
e1 M

(2)
E−e1

micro-states providing this particular distribution of
energies, where M

(1)
e1 is the number of micro-states of the formerly isolated subsystem

Ω1 with energy e1, and M
(2)
E−e1

similarly corresponds to Ω2 with energy E − e1. We also
know that it’s possible to have e1 = E1, since that’s the initial energy of Ω1 before it was
brought into thermal contact with Ω2. When e1 = E1, we have ME1 = M1M2, covering
all the micro-states of the combined Ω1+2 when the two subsystems were isolated. In
addition, we also have to count any other micro-states for which e1 ̸= E1:

M =
∑
e1

M (1)
e1

M
(2)
E−e1

= M1M2 +
∑
e1 ̸=E1

M (1)
e1

M
(2)
E−e1

≥M1M2. (21)
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Equality holds when e1 = E1 is the only possibility — this is an extremely special
case, in which the two subsystems remain individually micro-canonical, with fixed E1

and E2. This is all we can say in full generality, without specifying more details of a
particular example, but it allows us to obtain a famous result for the total entropy S of
Ω in thermodynamic equilibrium:

S = logM ≥ log (M1M2) = S1+2.

This is a form of the second law of thermodynamics,

S ≥ S1+2 = S1 + S2.

In words, whenever initially isolated (sub)systems in thermodynamic equilibrium are
brought into thermal contact with each other and allowed to exchange energy, the total
entropy of the overall system can never decrease. Indeed, it generically increases
except in extremely special cases.

Though we won’t go through a more general derivation here, it turns out that
the total entropy never decreases (and generically increases) as time passes, under
any circumstances. This has many far-reaching consequences, the first of which is a
more general definition of thermodynamic equilibrium that (unlike Eq. 19) will also ap-
ply when we consider statistical ensembles other than the micro-canonical ensemble.
For simplicity we assume that any system under consideration has a finite number of
micro-states, which means that its entropy is bounded from above. To motivate the
definition below, note that the overall system Ω may have undergone an equilibration
process to reach its thermodynamic equilibrium after any independently equilibrated
subsystems were brought into thermal contact — and in this process the entropy was
non-decreasing.

A system is defined to be in thermodynamic equilibrium if its entropy is maximal.

We can derive Eq. 19 from this definition. All we need to do is maximize the
entropy S = −

∑
i pi log pi subject to the three micro-canonical constraints of conserved

energy, conserved particle number, and well-defined probabilities
∑

i pi = 1. It turns out
that only the final constraint needs to be incorporated into the maximization, through
the method of Lagrange multipliers. As a reminder, this method involves maximizing
the modified entropy

S(λ) = S + λ

(
M∑
i=1

pi − 1

)
= −

M∑
i=1

pi log pi + λ

(
M∑
i=1

pi − 1

)
,

and subsequently imposing
∑

i pi = 1. Here λ is a parameter called the ‘multiplier’. In

short, this procedure is valid because
∂S

∂λ
= 0 once we impose

∑
i pi = 1, so that any

extremum of S corresponds to an extremum of S = S(λ = 0).
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Recalling
∂

∂xk

∑
i

f(xi) =
∂f(xk)

∂xk

, what is the probability pk that maximizes the

modified entropy S?

0 =
∂S

∂pk
=

You should find that pk is some constant that depends on λ. We don’t care about λ; so
long as we know pk is constant, then we must have pk =

1
M

in order to satisfy
∑

k pk = 1.
As advertised, we recover Eq. 19 from our new definition of thermodynamic equilibrium
based on the second law.

2.3 Temperature

In the micro-canonical ensemble, the conserved internal energy and particle num-
ber are fundamental, while the temperature (like the entropy) is a derived quantity. As
discussed below Eq. 20, in thermodynamic equilibrium such derived quantities are
functions of the conserved {E,N}. In this section we will state the definition of tem-
perature for the micro-canonical ensemble and apply this to a spin system. In the next
section we will check that this definition reproduces our expectations from everyday
experiences.

In thermodynamic equilibrium, the temperature T (E,N) in the micro-canonical
ensemble is defined by

1

T
=

∂S

∂E

∣∣∣∣
N

. (22)

In words, the (inverse) temperature is set by the dependence of the entropy on the
internal energy for a fixed number of degrees of freedom.

Since this definition is not terribly intuitive, we will again gain insight by con-
sidering N spins in a line, in a magnetic field of strength H. We saw above that
E = −H(n+ − n−) for n+ and n− = N − n+ spins respectively pointing up and down.
With N fixed, each (conserved) value of E defines a different micro-canonical system,
which we can expect to have a different number of micro-states M(E), different entropy
S(E) and different temperature T (E). We will compute the functional forms of each of
these three quantities, starting with M(E).
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Even though the total energy E remains fixed as time passes, individual spins
can ‘flip’ between pointing up or down. Such spin flips simply have to come in pairs so
that the overall n± both remain the same. As illustration, what are representative spin
configurations that produce the minimal energy Emin ≡ E0 and the next-to-minimal E1?
What are E0 and E1 in terms of {N,H}, and how many distinct micro-states are there
for each of E0 and E1?

Your results should generalize to

M(En−) =

(
N

n−

)
=

N !

n−! (N − n−)!
=

(
N

n+

)
. (23)

To take the derivative in Eq. 22, we need to express n− in terms of {E,N}. It will
also be useful to avoid the factorial operation, which is inconvenient to differentiate. For
N ≫ 1, we can accomplish both these goals by treating the spin system as a random
walk in the space of its possible energies E and applying the central limit theorem:6

• Each spin adds to x ≡ E
−H

= 2n+ − N a ‘step’ of fixed ‘length’ ±1. Our task
therefore coincides with the special case we considered in Section 1.5.

• We don’t impose any preference for positive vs. negative energies, meaning p =
q = 1

2
in the terminology of Section 1.5.

• With p = q = 1
2
, every one of the 2N possible configurations of N spins is equally

probable. Therefore the probability Pn+ that our overall ‘walk’ ends up producing
a configuration with n+ = 1

2
(x+N) is simply the fraction of those 2N states with

this n+, in which we can recognize Eq. 23:

Pn+ =
1

2N

(
N

n+

)
=

M(En−)

2N
=⇒ M(En−) = 2NPn+ .

• To estimate Pn+ for N ≫ 1, we apply the central limit theorem just as in Sec-
tion 1.5.3. In particular, we can re-use our computation that µ = 2p − 1 = 0 and
σ2 = 4pq = 1, to find

p(x) ≈ 1√
2πN

exp

[
− x2

2N

]
.

This is the probability distribution from which we want to extract Pn+.

6Applying Stirling’s formula, log(N !) ≈ N logN −N , is another possible approach.
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• From a tutorial problem we know that Pconst(n+) = p(2n+ − N)∆n+ is a good
approximation. With ∆n+ = 1 and 2n+ −N = E

−H
, we therefore find

M(E) ≈ 2Np(2n+ −N) =
2N√
2πN

exp

[
− E2

2NH2

]
. (24)

What is the derivative of the log of Eq. 24 with N fixed?

∂

∂E
logM

∣∣∣∣
N

=

You should find the temperature

T ≈ −NH2

E
N ≫ 1, (25)

which in several ways does not seem to match our expectations from everyday expe-
riences: This T diverges as E → 0 for n+ ≈ n−, and it is negative whenever n+ < n−
to produce E > 0. You can check that this T < 0 corresponds to the number of micro-
states decreasing for larger internal energies, ∂M

∂E
< 0. In natural systems, larger

energies make more micro-states accessible, producing ∂M
∂E

> 0 and a positive tem-
perature. If H = 0, we also have E = 0 and T is ill-defined.

Restricting our attention to H > 0 and n+ > n−, we also see that the result-
ing non-negative temperature cannot vanish. It is minimized by the most-negative
energy you found above, Tmin = H > 0 for Emin = −NH. The non-zero minimum
temperature is specific to spin systems, while some of the other oddities result from
the micro-canonical approach more generally. This will motivate turning to the canoni-
cal ensemble in Unit 3, but first we can check that some aspects of the micro-canonical
temperature defined in Eq. 22 do match our everyday expectations, at least in the ‘nat-
ural’ positive-temperature regime.

2.4 Heat exchange

From Eq. 25 for the temperature of a micro-canonical spin system, we can see
that ‘natural’ positive temperatures correspond to negative energies, and therefore in-
crease as the energy increases by becoming less negative (with a smaller magnitude).
Such a direct relation between energy and temperature is very generic, and we will
study it in more detail when considering thermodynamic cycles in a few weeks. For
now, considering unspecified systems that exhibit this natural behaviour, let’s ask what
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would happen if we take two initially isolated micro-canonical systems — ΩA and ΩB

with temperatures TA and TB in thermodynamic equilibrium — and bring them into
thermal contact.

In micro-canonical terms, the temperatures TA and TB are derived from the cor-
responding energies EA and EB, while thermal contact allows the two systems to ex-
change energy (but not particles) as non-isolated subsystems of a combined micro-
canonical system ΩC . Once the two subsystems have been in thermal contact long
enough for the combined system to have reached thermodynamic equilibrium, it will
have temperature TC . We can then re-isolate the two subsystems, which will remain in
thermodynamic equilibrium with energies {E ′

A, E
′
B} and temperatures {T ′

A, T
′
B}. This

three-step procedure is illustrated below.

From everyday experience, we expect that this energy exchange will result in a
net flow of energy from the hotter system to the colder system, cooling the former by
heating the latter. We will now check that the micro-canonical definition of temperature
in Eq. 22 predicts this expected behaviour. With S ∈ {A,B}, we can write

E ′
S = ES +∆ES

and consider for simplicity the case where the change in energy is relatively small,∣∣∣∣∆ES

ES

∣∣∣∣≪ 1.
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Since we can build up large changes in energy through a series of smaller changes,
this assumption doesn’t lead to any loss of generality. We also know ∆EB = −∆EA

thanks to conservation of energy.

Equation 22 tells us that we need to consider the entropies as functions of ES

and E ′
S in order to connect the temperatures to any flow of energy. Because we don’t

change the number of particles in each system, we only need to consider the energy
dependence of the entropy. We assume S(E) is continuous and infinitely differen-
tiable,7 which allows us to expand each of the final entropies S(E ′

S) in a Taylor series,

S(E ′
S) = S(ES +∆ES) ≈ S(ES) +

∂S

∂E

∣∣∣∣
ES

∆ES,

neglecting all O(∆E2
S) terms because we consider relatively small changes in energy.

What is the expression above in terms of the initial temperatures TS?

From the second law of thermodynamics, we know that the total entropy of these
systems can never decrease as time passes:

S(EA) + S(EB) ≤ S(EA + EB) = S(E ′
A) + S(E ′

B). (26)

The final equality means that re-isolating the two subsystems doesn’t change the en-
tropy. This is because E ′

A is not fixed and could take any value from zero to EA + EB

at the moment when the subsystems are re-isolated. Computing the final entropy
S(E ′

A) + S(E ′
B) therefore requires summing over all possible values of E ′

A, produc-
ing exactly the sum in Eq. 21 for the overall system. We will see something similar
when we consider the ‘Gibbs paradox’ in Unit 4.

What do you find when you insert your linearized Taylor series into Eq. 26?

7This assumption breaks down at a phase transition, where we would need to be more careful. We
will learn about phase transitions towards the end of the term.
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Applying conservation of energy should produce(
1

TA

− 1

TB

)
∆EA ≥ 0.

Recalling from Section 2.2.3 that equality holds only in extremely special cases, we
can identify three possibilities consistent with this result. If TA > TB, then

(
1
TA
− 1

TB

)
is

negative and we will generically have ∆EA < 0, so that energy flows out of the hotter
system ΩA and into the colder one. Our restriction to natural systems means this flow of
energy reduces the higher temperature, and increases the lower temperature, bringing
the temperatures of the two subsystems closer to each other. Similarly, if TA < TB, we
will generically have ∆EA > 0, meaning that energy still flows from the hotter system
ΩB into the colder one, again reducing the difference in their temperatures. We can
finally conclude that TA = TB is the very special case where there is no energy flow,
∆ES = 0, keeping the temperatures the same. All of this is exactly what we would
expect based on our everyday experience of temperature as an intensive quantity.
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Unit 3: Canonical ensemble

3.1 The thermal reservoir

3.1.1 Replicas and occupation numbers

While it is reasonable to forbid particle exchange, for example by sealing gases
inside airtight containers, it is not practical to prevent energy exchange as would be
needed to fully isolate statistical systems. Any thermal insulator is imperfect, and any
observation of the system would require exchanging energy with the external observer.
In practice it is more convenient to work with physical systems that are characterized
by their (intensive) temperatures rather than their (extensive) internal energies.

This leads us to define the canonical ensemble to be a statistical ensemble
characterized by its fixed temperature T and conserved particle number N , with the
temperature held fixed through contact with a thermal reservoir.

The second part of this definition connects the fixed temperature to the funda-
mental fact of energy conservation (the first law of thermodynamics). This is done by
proposing that our system of interest Ω is in thermal contact with a much larger exter-
nal system Ωres — the thermal reservoir, sometimes called a “heat bath”. The overall
combined system Ωtot = Ωres ⊗ Ω is governed by the micro-canonical ensemble, with
conserved total energy Etot = Eres+E ≈ Eres, while the energy E of Ω is allowed to fluc-
tuate. The key qualitative idea is that, in thermodynamic equilibrium, Ω has a negligible
effect on the overall system. In particular, the temperature of that overall system —
and therefore the temperature of Ω, by intensivity — is set by the reservoir and remains
fixed even as E fluctuates. This effectively generalizes the setup we used to analyse
heat exchange in the previous section, where we saw that thermal contact causes a
net flow of energy from hotter systems to colder systems. When these systems are
‘natural’, this cools the hotter one by heating the colder one.

The mathematical implementation of this argument, as developed by Gibbs, pro-
ceeds by considering a well-motivated ansatz for the form of the thermal reservoir Ωres.
The goal, which will be useful to keep in mind as we go through the lengthy analysis,
is to show that the specific form of Ωres is ultimately irrelevant. This will allow us to
work directly with the system of interest, Ω, independent of the details of the thermal
reservoir that fixes its temperature.

Without further ado, we take Ωtot to consist of many (R ≫ 1) identical replicas of
the system Ω that we’re interested in. All of these replicas are in thermal contact with
each other, and in thermodynamic equilibrium.8 Choosing any one of the replicas to
be the system of interest, Ω, the other R− 1 ≈ R replicas collectively form the thermal

8The thermal contact between any two replicas can be indirect, mediated by a sequence of inter-
mediate replicas. This transitivity of thermodynamic equilibrium is sometimes called the zeroth law of
thermodynamics. It declares that if systems ΩA & ΩB are in thermodynamic equilibrium while systems
ΩB & ΩC are in thermodynamic equilibrium, then ΩA & ΩC must also be in thermodynamic equilibrium.
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reservoir Ωres. Assuming we want to study reasonable systems Ω, this ansatz ensures
that Ωres is also reasonable, simply much larger.

An extremely small example of this setup is illustrated by the figures below, where
the system of interest is just N = 2 spins. For now we assume the spins are distinguish-
able, so that ↓↑ and ↑↓ are both distinct micro-states. This means that each individual
replica has the M = 4 micro-states ωi defined below.

To form the overall system Ωtot we now bring together the R = 9 replicas shown below.
We draw boxes around each replica to remind us that they are allowed to exchange
only energy with each other, while the N = 2 spins per replica are fixed in place. We
pick out one of these replicas (in the red box) to serve as the system Ω we will consider.
The other 8 are the thermal reservoir Ωres that fixes the temperature of Ω.
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A convenient way to analyse the overall system of R replicas, Ωtot, is to define the
occupation number ni to be the number of replicas that adopt the micro-state ωi ∈ Ω
in any given micro-state of Ωtot. The index i ∈ {1, 2, · · · ,M} runs over all M micro-
states of Ω. In the example above, three of the replicas have the micro-state ω1 =↓↓,
meaning n1 = 3. What are the occupation numbers {n2, n3, n4} for the other three ωi in
the figures above? Are all replicas are accounted for,

∑
i ni = R?

Normalizing the occupation number by R gives us a well-defined occupation probabil-
ity, pi = ni/R with

∑
i pi = 1. At the moment, this pi is the probability that if we choose

a replica at random it will be in micro-state ωi.

Now let us consider conservation of energy, which continues to apply to the total
energy Etot of the overall system Ωtot. We assume that each replica’s energy Er is
independent of all the other replicas. This is guaranteed for the non-interacting systems
we will focus on until Unit 9, and also holds when interactions are allowed within each
replica but not between different replicas. The thermal contact between replicas allows
Er to fluctuate subject to conservation of Etot, but there are at most M possible values
Ei it can have, corresponding to the M micro-states ωi ∈ Ω. Some distinct micro-states
ωi ̸= ωj may have the same energy Ei = Ej, which doesn’t affect the analysis. This
allows us to rearrange a sum over replicas into a sum over the micro-states of Ω:

Etot =
R∑

r=1

Er =
M∑
i=1

niEi, (27)

with the occupation number ni counting how many times micro-state ωi appears among
the R replicas. We can assume that R and M are both finite, so we don’t need to worry
about rearranging the sums.

3.1.2 Partition function

Following Gibbs, we’ve taken the thermal reservoir Ωres to consist of R − 1 repli-
cas of the system of interest, Ω. The next step is to further simplify the mathematics
by assuming that the overall R-replica system Ωtot is fully specified by a fixed set of M
occupation numbers {ni}. This is equivalent to assuming that the occupation proba-
bilities {pi} are constant in time, as a reflection of thermodynamic equilibrium. From
Eq. 27, we see that this ensures conservation of the total energy Etot, and we can apply
the micro-canonical tools we developed in the previous unit. Recall our ultimate goal
of showing that such details of the thermal reservoir are irrelevant to the system Ω.

Based on the conservation of Etot, we want to determine the (intensive) tempera-
ture of Ωtot, which fixes the temperature of the system of interest, Ω. According to our
previous work, to do this we first need to compute the overall number of micro-states
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Mtot as a function of Etot, from which we can derive the micro-canonical entropy and
temperature since the system is in thermodynamic equilibrium. From the fixed occupa-
tion numbers ni, we already know how many times each micro-state ωi appears among
the R replicas. To determine Mtot we just need to count how many possible ways there
are of distributing the {ni} micro-states among the R replicas.

If we consider first the micro-state ω1, the number of possible ways of distributing
n1 copies of this micro-states among the R replicas is just the binomial coefficient(

R

n1

)
=

R!

n1! (R− n1)!
.

Moving on to ω2, we need to keep in mind that n1 replicas have already been assigned
micro-state ω1, so there are only R − n1 replicas left to choose from. What is the
resulting number of possible ways of distributing these n2 micro-states?

Repeating this process for all micro-states {ω1, ω2, · · · , ωM}, recalling (R−
∑

i ni)! =
0! = 1, you should obtain a product that ‘telescopes’ to

Mtot =
R!

n1! n2! · · · nM !
. (28)

This confirms that the order in which we assign micro-states to replicas is irrelevant,
since integer multiplication is commutative.

Thanks to thermodynamic equilibrium, the entropy of the micro-canonical Ωtot is

S(Etot) = logMtot = log(R!)−
M∑
i=1

log(ni!),

where the dependence on Etot enters through the occupation numbers via Eq. 27. With
R ≫ 1 and ni ≫ 1 for all i = 1, · · · ,M , we can approximate each of these logarithms
using the first two terms in Stirling’s formula,

log(N !) = N logN −N +O(logN) ≈ N logN −N for N ≫ 1.

In order for every occupation number to be large, ni ≫ 1, the number of replicas must
be much larger than the number of micro-states of Ω. As we have discussed before,
the number of micro-states M is typically a very large number, so with R ≫ M we are
formally considering truly enormous thermal reservoirs! This enormity helps ensure
that the detailed form of the reservoir will be irrelevant.
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Using the approximation above, what do you find for S(Etot) in terms of R and ni?
What is the entropy in terms of the occupation probabilities pi = ni/R?

S(Etot) = log(R!)−
M∑
i=1

log(ni!) ≈

In your result, the dependence on Etot now enters through the occupation prob-
abilities pi. In order to determine the temperature, we have to express the entropy
explicitly in terms of Etot. We do this by applying our knowledge that thermodynamic
equilibrium implies maximal entropy.

Following the same steps as in Section 2.2.3, we maximize the entropy, now with
two Lagrange multipliers to account for two constraints on the occupation probabilities:

M∑
i=1

pi = 1
M∑
i=1

niEi = R
M∑
i=1

piEi = Etot.

Writing everything in terms of occupation probabilities, we therefore need to maximize
the modified entropy

S = −R
M∑
i=1

pi log pi + α

(
M∑
i=1

pi − 1

)
− β

(
R

M∑
i=1

piEi − Etot

)
.

Here we’ve chosen the sign of β for later convenience. What is the occupation proba-
bility pk that maximizes S?

0 =
∂S

∂pk
=
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By defining a new parameter Z in terms of α, you should find

pk =
1

Z
e−βEk . (29)

As before, we need to fix the parameters {Z, β} by demanding that the two constraints
above are satisfied. The first of these constraints is straightforward and produces an
important result:

1 =
M∑
i=1

pi =
1

Z

M∑
i=1

e−βEi =⇒ Z(β) =
M∑
i=1

e−βEi . (30)

Eq. 30 defines the canonical partition function Z(β), a fundamental quantity in
the canonical ensemble, from which many other derived quantities can be obtained.

Z(β) still depends on the other as-yet-unknown parameter β(Etot). By applying
our second constraint, Eq. 27, we can relate β to Etot:

Etot = R
M∑
i=1

piEi =
R

Z(β)

M∑
i=1

Ei e
−βEi = R

∑M
i=1Ei e

−βEi∑M
j=1 e

−βEj

. (31)

This relation is a bit complicated, but will suffice for our goal of expressing the entropy
in terms of Etot. Inserting Eq. 29 for pi into your earlier result for the entropy, what do
you obtain upon applying Eqs. 30 and 31?

S(Etot) = −R
M∑
i=1

pi log pi =

There is a pleasant simplification when we take the derivative to determine the temper-
ature. Defining β′ ≡ ∂

∂Etot
β(Etot), we have

1

T
=

∂

∂Etot
S(Etot) =

∂

∂Etot
[Etotβ +R logZ(β)] = β + Etotβ

′ +R
1

Z

∂Z(β)

∂β
β′.

Using Eq. 31 we can compute

1

Z

∂Z(β)

∂β
=

1

Z

∂

∂β

M∑
i=1

e−βEi = − 1

Z

M∑
i=1

Ei e
−βEi = −

M∑
i=1

piEi = −
Etot

R
,
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so that we don’t need to figure out the explicit form of β′:

1

T
= β + Etotβ

′ − Etotβ
′ = β. (32)

What’s truly remarkable about Eqs. 29, 30 and 32 is that they make no reference
to the R replicas or any extensive quantity of the overall system, such as Etot — all
information about the thermal reservoir has vanished. This is the goal we have been
pursuing since the start of this unit! The large thermal reservoir is still present to fix the
temperature T characterizing the canonical system Ω, but beyond that nothing about
it is relevant (or even knowable) in the canonical approach. Every aspect of Ω can
now be specified in terms of its fixed temperature T and conserved particle number N ,
starting with the parameter β = 1/T .

In particular, the partition function from Eq. 30 is simply

Z(T ) =
M∑
i=1

e−Ei/T . (33)

and together with β specifies the probabilities

pi =
1

Z
e−Ei/T (34)

from Eq. 29. This pi is now the thermodynamic equilibrium probability that Ω adopts
micro-state ωi with (non-conserved) internal energy Ei. This probability distribution is
called either the Boltzmann distribution or the Gibbs distribution, while e−Ei/T itself
is known as a Boltzmann factor. All micro-states with the same energy have the same
probability in thermodynamic equilibrium, which is consistent with the micro-canonical
behaviour we saw in Unit 2.

3.2 Internal energy, heat capacity, and entropy

In addition to fixing the temperature of the system Ω, the thermal reservoir also
allows the internal energy of Ω to fluctuate. The system simply exchanges energy with
the reservoir, satisfying the first law of thermodynamics. Although the internal energy
fluctuates, its expectation value ⟨E⟩ is an important derived quantity in thermodynamic
equilibrium. Applying the general definition from Eq. 4 to the probability space of the
canonical ensemble,

⟨E⟩(T ) =
M∑
i=1

Ei pi =
1

Z

M∑
i=1

Ei e
−βEi .

Here we highlight the dependence of ⟨E⟩ on the temperature, and also freely inter-
change β = 1/T .
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The expression above may look familiar from our work in the previous section:

∂

∂β
logZ =

In this case it is easier to take the derivative with respect to β as opposed to

∂

∂β
=

∂T

∂β

∂

∂T
= − 1

β2

∂

∂T
= −T 2 ∂

∂T
. (35)

In Section 2.3, we saw that ‘natural’ micro-canonical systems exhibit higher (de-
rived) temperatures for larger (conserved) internal energies. Here, in the canonical
approach, the average internal energy ⟨E⟩ is the derived quantity while the tempera-
ture is fixed. From our everyday experience, we expect a similar direct relation between
temperature and energy, which the following result confirms.

The heat capacity is defined to be

cv =
∂

∂T
⟨E⟩ , (36)

and is always non-negative, cv ≥ 0.

The subscript indicates that the volume of the system is kept fixed; we’ll consider
the role of the volume more carefully starting in Unit 4. In a homework assignment you
will confirm cv ≥ 0 by deriving a fluctuation–dissipation (or fluctuation–response)
relation. That relation will be a special case of a more general theorem, and will
connect the fluctuations of the internal energy around its expectation value, (Ei − ⟨E⟩)2,
to the energy’s response to a change in temperature, ∂

∂T
⟨E⟩. Only extremely special

cases will produce cv = 0, meaning that the heat capacity is generically positive, in
agreement with our intuition that higher temperatures produce larger internal energies.
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Finally, we can compute the entropy of Ω with no reference to the thermal reser-
voir, apart from its role fixing the temperature in thermodynamic equilibrium. Since the
general definition of the entropy in Eq. 20 continues to hold for the canonical ensemble,
we just need to insert the probabilities pi from Eq. 34:

S(T ) = −
M∑
i=1

pi log pi =

You should find that the entropy depends on logZ.

3.3 Helmholtz free energy

This dependence of the entropy on logZ is in accordance with our earlier claim
that the partition function is a fundamental quantity in the canonical ensemble. Re-
calling from Eq. 33 that Z is a sum over all micro-states, we can view this result as
the canonical counterpart to the micro-canonical entropy being the logarithm of the
number of micro-states. (Thermodynamic equilibrium is required in both cases.) This
motivates the following definition of a quantity with the dimensions of energy that is
related to logZ, which provides simpler and more elegant expressions for the derived
quantities we considered above.

The Helmholtz free energy of a system in the canonical ensemble is

F (T ) = −T logZ(T ) F (β) = − logZ(β)

β
, (37)

where Z is the partition function of the system. In terms of this free energy, Eqs. 33
and 34 are

Z = e−F/T pi = e(F−Ei)/T .
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The Helmholtz free energy is named after Hermann von Helmholtz and reveals
its usefulness when we take its derivative. The derivative involves ∂

∂T
logZ, which is

worth collecting in advance based on Eq. 35:

− ∂

∂T

(
F (T )

T

)
=

∂

∂T
logZ(T ) =

∂

∂T
F (T ) =

From these results we can read off the more elegant expressions promised above:

S(T ) = − ∂

∂T
F (T ) (38)

⟨E⟩(T ) = −T 2 ∂

∂T

(
F (T )

T

)
=

∂

∂β
[βF (β)] = TS(T ) + F (T ). (39)

3.4 The physics of information

As a first application of the canonical ensemble, we will explore physically observ-
able effects that depend on the information content of a statistical system. A famous
scientific question illustrating the importance of information, which you may have heard
of, is the black hole information paradox. However, that topic is well beyond the scope
of this module since it depends on quantum mechanics and general relativity in addition
to statistical mechanics. Here we will consider simple spin systems as introduced in
Section 2.1, contrasting the behaviour of their average internal energy ⟨E⟩ and entropy
S depending on whether or not the spins can (in principle) be distinguished from each
other. It’s important to appreciate that the “information” discussed here is an intrinsic
property of the system — what is knowable about it in principle. It does not matter
whether or not any observer actually knows this information; so long as it can possibly
be known it will have an effect.

3.4.1 Distinguishable spins in a solid

We begin with the setup from Section 2.1: A system of N spins arranged in a
line, placed in an external magnetic field of strength H, and in thermodynamic equi-
librium. We further specify that the spins are embedded in a solid material that fixes
their positions and prevents them from moving. This allows them to be distinguished
from one another: An observer can target an appropriate position in the solid to mea-
sure the corresponding spin. Each spin measured in this way will be either parallel or
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anti-parallel to the magnetic field. The canonical system therefore has M = 2N distinct
micro-states ωi with energies Ei and probabilities pi =

1
Z
e−Ei/T , each defined by the

orientations of all N spins.

To streamline our notation, we can represent the orientation of the nth spin as
sn ∈ {1,−1}, where sn = 1 indicates alignment parallel to the field and sn = −1
indicates alignment anti-parallel to the field. With this notation, the internal energy of
the system in micro-state ωi specified by the N spins {s} is simply

Ei = −H
N∑

n=1

sn. (40)

To compute the canonical partition function ZD, where the subscript reminds us of
the spins’ distinguishability, we have to sum over all 2N possible spin configurations
{s}. In this process we can save some space by defining the dimensionless variable
x = βH = H

T
:

ZD =
∑

s1=±1

· · ·
∑

sN=±1

e−βEi =
∑

s1=±1

· · ·
∑

sN=±1

exp

[
x

N∑
n=1

sn

]

=
∑

s1=±1

· · ·
∑

sN=±1

exs1 · · · exsN =

( ∑
s1=±1

exs1

)
· · ·

( ∑
sN=±1

exsN

)

=

(∑
s=±1

exs

)N

=
(
ex + e−x

)N
= [2 cosh (βH)]N , (41)

distributing the summations since all the spins are independent of each other.

The corresponding Helmholtz free energy

FD(β) = −
logZ(β)

β
= −N log [2 cosh (βH)]

β
(42)

is all we need to compute the average internal energy:

⟨E⟩D =
∂

∂β
[βFD(β)] =

From this we immediately obtain the entropy

SD = β (⟨E⟩D − FD) = −NβH tanh (βH) +N log [2 cosh (βH)] . (43)

These results for ⟨E⟩D and SD are plotted on the next page as functions of T
H

= 1
βH

,
using this Python code. Since both these quantities are extensive, we normalize them
by showing ⟨E⟩D

NH
and SD

N
.
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Let’s analyse the asymptotic behaviour of these functions, starting with low tem-
peratures. In contrast to the micro-canonical Eq. 25, in the canonical ensemble there is
no issue with taking the independent variable T → 0. This corresponds to βH →∞ and
tanh (βH) → 1, approaching the “ground-state” energy Emin = E0 = −NH you com-
puted in Section 2.3. This energy is only produced by the single micro-state in which
all the spins are aligned with the magnetic field, sn = 1 for all n (or n+ = N and n− = 0
in the notation from Section 2.3). Correspondingly, log [2 cosh (βH)] → log eβH = βH
and the two terms in Eq. 43 cancel out, so that SD → 0. This vanishing entropy is a
generic consequence of temperatures approaching absolute zero.

For low but non-zero temperatures, ⟨E⟩D and SD will be affected by the non-
zero probability for the system to adopt micro-states ωi with higher energies Ei > E0.
These higher-energy configurations are often referred to as “excited states”. Note that
each energy Ei > E0 may correspond to many different micro-states. For example,
in Section 2.3 you also computed the energy E1 = −(N − 2)H of the first excited
state, which is realized by the N distinct micro-states with n− = 1. In the case of spin
systems, we can instead refer to energy levels that are all separated by a constant
energy gap ∆E ≡ En−+1 − En− = 2H.
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We can compute the effects of the higher energy levels at low temperatures βH ≫
1 by expanding ⟨E⟩D in powers of e−βH ≪ 1. What is the first temperature-dependent
term in this expansion?

⟨E⟩D
NH

=

You should find that the excited-state effects are exponentially suppressed by the en-
ergy gap ∆E at low temperatures,

⟨E⟩D
NH

= −1 + 2e−β∆E +O
(
e−2β∆E

)
.

This is a generic feature of canonical systems with a non-zero energy gap, and is due
to the exponentially suppressed probability for the system to adopt any of the micro-
states with the higher energy,

1
Z
e−βEn−+1

1
Z
e−βEn−

= e−β∆E.

The low-temperature expansion of Eq. 43 for the entropy in powers of e−βH ≪ 1
is similar:

SD

N
=

Here the leading term includes a linear factor of β∆E ≫ 1, but this can’t overcome the
now-expected exponential suppression:

SD

N
= β∆Ee−β∆E + e−β∆E +O

(
β∆Ee−2β∆E

)
.
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In the limit of high temperatures we should instead expand in powers of the
small factor βH ≪ 1. This is straightforward for ⟨E⟩D:

⟨E⟩D
NH

= − tanh (βH) = −βH +
(βH)3

3
+O

(
[βH]5

)
,

which vanishes ∼ 1
T

as T → ∞. This matches the micro-canonical behaviour we saw
for this system from Eq. 25, where the derived temperature diverged as the conserved
energy approached zero.

For the entropy, there is a similar connection to micro-canonical behaviour at high
temperatures:

SD

N
=

As T
H
→∞, the result

SD

N
= log 2− (βH)2

2
+O

(
[βH]4

)
approaches the asymptotic value SD → N log 2 = logM for the M = 2N micro-states
(with different energies). Conceptually, in this limit the energy of each spin is negligible
compared to the temperature, and the system approximately behaves as though the
energy were zero for all micro-states (and hence conserved).

3.4.2 Indistinguishable spins in a gas

Next, let’s consider nearly the same setup, with N spins in thermodynamic equi-
librium, in an external magnetic field of strength H. The only difference is that now the
spins are allowed to move, like particles in a one-dimensional gas. We demand that
they move slowly, so that we can ignore their kinetic energy and the total energy of
the system continues to be given by Eq. 40. Since the spins don’t interact with each
other, they can freely move past each other, and even occupy the same space, making
it impossible for them to be distinguished from one another.

To compute the fundamental canonical partition function (Eq. 33), we have to sum
over the micro-states of the system. These micro-states are no longer in one-to-one
correspondence with the full configurations {s} of the N spins. Because the spins are
now indistinguishable, certain spin configurations also cannot be distinguished from
each other. The simplest example comes from the two-spin system considered in
Section 3.1.1, where the configurations ↓↑ and ↑↓ now both correspond to a single
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micro-state. In this micro-state, we know only that one spin is si = 1 while the other is
sk = −1; it’s not possible to distinguish which is which.

Generalizing, we can conclude that a single distinct micro-state corresponds to
all possible permutations of spins with fixed {n+, n−}. This means that each micro-
state is now in one-to-one correspondence with the energy E = −H(n+ − n−), which
we can continue to organize as energy levels separated by a constant energy gap
∆E = 2H. As a quick example, enumerate the energy levels when N = 4 and list
the spin configurations associated with the corresponding micro-states. How many
micro-states are there for N spins?

A convenient way to label these micro-states and energy levels is to define

Ek = −NH + 2Hk = −H(N − 2k)

for micro-state ωk with k = n− = 0, · · ·N . To compute the partition function ZI , with the
subscript reminding us about the spins’ indistinguishability, we now have

ZI =
N∑
k=0

e−βEk =
N∑
k=0

eβH(N−2k) = eNβH

N∑
k=0

(
e−2βH

)k
= eNβH 1− e−2(N+1)βH

1− e−2βH
. (44)

The geometric series in the last step can be reconstructed by considering

N∑
k=0

xk =
∞∑
k=0

xk −
∞∑

k=N+1

xk =
1

1− x
− xN+1

∞∑
ℓ=0

xℓ =
1

1− x
− xN+1

1− x
.

The corresponding Helmholtz free energy is

FI(β) = −
logZI(β)

β
= −NH −

log
[
1− e−2(N+1)βH

]
β

+
log
[
1− e−2βH

]
β

. (45)

In contrast to Eq. 42, FI(β) is no longer proportional to N . In a homework assign-
ment you will use FI to determine the average internal energy ⟨E⟩I and entropy SI

shown in the figures on the next page, and also analyse the low- and high-temperature
expansions like we did for the distinguishable case above. Unlike our results for the
distinguishable case, you will find that ⟨E⟩I

NH
and SI

N
depend on N , which requires us to

fix N = 4 in the plots on the next page.
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The solid blue lines in these figures are exactly the distinguishable-spin results
we previously discussed. The red dash-dotted lines are the new results for indistin-
guishable spins. We see that the same T → 0 limits are approached in both cases:
E → −NH and S → 0. At low temperatures, the indistinguishable results approach
these limits more quickly — they still feature exponential suppression of excited-state
effects by the energy gap, ∝e−β∆E, but this now comes with additional factors of N .

At high temperatures there is an even more striking difference. While the average
internal energy ⟨E⟩I continues to vanish ∼ 1

T
as T →∞ (with different N dependence),

the entropy approaches the asymptotic value SI → log (N + 1) = logM for the M =
N + 1 micro-states. This logarithmic dependence on N is very different from the SD →
N log 2 limit we found for distinguishable spins, and reflects the exponentially smaller
number of micro-states that exist for indistinguishable spins, N + 1 vs. 2N .

Finally, away from those low- and high-temperature limits, the left figure above
shows a significant difference in the internal energies of the spin systems, depending
only on whether or not the spins can be distinguished from each other in principle.
This is a physically measurable effect caused by the intrinsic information content of
a statistical system, and a simple illustration of phenomena that remain at the leading
edge of ongoing research. As Rolf Landauer put it in a famous 1991 essay: Information
is physical.
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Unit 4: Ideal gases

4.1 Volume, energy levels, and partition function

We now apply the canonical ensemble to investigate non-relativistic, classical,
ideal gases. Using statistical mechanics we will explore how the large-scale behaviours
of such gases emerge from the properties of the particles that compose them. The key
particle properties are specified by the adjectives used above:

• Classical systems are those for which we can ignore the effects of quantum
mechanics. Among other things, this allows us to simultaneously define both the
position (x, y, z) and the momentum p⃗ = (px, py, pz) of each particle with arbitrary
precision.

• Non-relativistic particles move with speeds small compared to the speed of light,
which allows us to ignore small effects due to special relativity. The particles are
therefore governed by the laws Isaac Newton published all the way back in 1687.
In particular, the energy of each particle of mass m is

En =
1

2m
p2n,

where p2n = p⃗n · p⃗n = (px)
2
n + (py)

2
n + (pz)

2
n is the inner (or ‘dot’) product of the

momentum vector for the nth particle in the micro-state of interest.

• Ideal gases are those whose constituent particles don’t interact with each other.
As a result, the total energy of the gas is simply the sum of the energies of the N
individual particles,

E =
1

2m

N∑
n=1

p2n. (46)

As is now familiar for the canonical ensemble, we consider the gas to be in ther-
modynamic equilibrium, and in thermal contact with a large external thermal reservoir
with which it can exchange energy but not particles. To prevent particle exchange, we
can specify that the gas is enclosed in a cubic box with volume V = L3. The thermal
reservoir fixes the temperature T of the gas.

The starting point for our analysis is to compute the partition function

Z =
∑
i

e−Ei/T .

Unfortunately there is a challenge confronting this sum over all possible micro-states ωi

of the N -particle system. These micro-states depend on the momenta p⃗n for all N par-
ticles, and it’s intuitive to suppose that each component of (px, py, pz)n is a continuously
varying real number that can (in principle) be distinguished with arbitrary precision.
This implies an uncountably infinite set of distinct momenta and hence an uncountably
infinite set of micro-states, making the summation above ill-defined.

To proceed, we regularize the system so that there are a countable number of
micro-states we can sum over to define the partition function. We do this by positing
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that the particles’ momentum components can take only discrete (or ‘quantized’) val-
ues that depend on the volume of the box. Specifically, we declare that the possible
momenta are

p⃗ = (px, py, pz) = ℏ
π

L
(kx, ky, kz) kx,y,z ∈ Z. (47)

The constant factor ℏ (“h-bar”) is known as the (reduced) Planck constant, named
after Max Planck). Like the Boltzmann constant k, the Planck constant is another unit
conversion factor (relating inverse length 1

L
and momentum p), which is just ℏ = 1 in

natural units. Despite this, we will retain explicit factors of ℏ in these lecture notes.

What are the energies that correspond to these discretized momenta?

You should find energies that fall into discrete energy levels, somewhat similar to the
spin system considered in Section 3.4. Unlike the spin system, in this case the energy
gaps between subsequent energy levels are not constant.

Similar discrete energy levels turn out to be realized in nature, thanks to quantum
mechanics — if you have previously studied quantum physics, you may spot a resem-
blance with a particle in a box. For the purposes of this module we can just adopt
Eq. 47 as an ansatz. Even with this perspective, it will be useful to maximize the simi-
larity with quantum physics. We can do this by observing that negating any component
of the momentum has no effect on the energy E ∝ p2 ∝ k2, and hence all non-zero ±ki
pairs make equal contributions to the partition function. Therefore, restricting the dis-
crete momenta to non-negative kx,y,z = 0, 1, 2, · · · only changes Z by a constant factor
C, which cancels out in the expectation value of any observable that depends only on
the inner product p2:

〈
f(p2)

〉
=

∑
kx,y,z∈Z f(p

2)e−Ei/T

Z
−→

C
∑

kx,y,z∈N f(p
2)e−Ei/T

CZ
.

For example, the constant factor does not contribute to ⟨E⟩ = ∂
∂β

logZ.

Although there are still an infinite number of possible momenta and energy levels
for each particle in the gas, these are now countable, making our partition function well-
defined. Let’s start by considering the partition function Z1 for a single particle. The
micro-states for this single-particle system are completely specified by the particle’s p2,

Z1 =
∑
i

exp

[
−Ei

T

]
=
∑
p⃗

exp

[
− p2

2mT

]
=

∞∑
kx,y,z=0

exp

[
− ℏ2π2

2mTL2

(
k2
x + k2

y + k2
z

)]
.
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We can separately sum over each of the independent (kx, ky, kz), and recognize that
all three summations are identical:

Z1 =
∞∑

kx=0

exp

[
− ℏ2π2

2mTL2
k2
x

] ∞∑
ky=0

exp

[
− ℏ2π2

2mTL2
k2
y

] ∞∑
kz=0

exp

[
− ℏ2π2

2mTL2
k2
z

]

=

(
∞∑

ki=0

exp

[
− ℏ2π2

2mTL2
k2
i

])3

.

Now that the sum over micro-states has been turned into a sum over momenta,
our system has been regularized and we are free to switch back from discrete to con-
tinuous momenta.9 We can start by converting from integer ki to continuous real k̂i:

∞∑
ki=0

exp

[
− ℏ2π2k2

i

2mTL2

]
→
∫ ∞

0

exp

[
− ℏ2π2k̂2

i

2mTL2

]
dk̂i =

1

2

∫ ∞

−∞
exp

[
− ℏ2π2k̂2

i

2mTL2

]
dk̂i .

The final equality simply notes that the integrand is an even function of k̂i, as it depends
only on k̂2

i . Next we use Eq. 47 to return to the original momenta pi = ℏ π
L
k̂i,

∞∑
ki=0

exp

[
− ℏ2π2

2mTL2
k2
i

]
→ 1

2

∫
exp

[
− p2i
2mT

](
L

πℏ
dpi

)
.

We end up with the single-particle partition function

Z1 =

(
L

2πℏ

)3 ∫
exp

[
− p2

2mT

]
d3p,

where p2 = p2x + p2y + p2z and d3p = dpx dpy dpz. (Some textbooks may skip the formal
regularization and simply introduce this expression as a definition, using dimensional
analysis to justify the factors of L and ℏ.) We can now account for all N particles
in the ideal gas, which are completely independent and don’t interact with each other.
Assuming we can distinguish these particles from each other, then each of them simply
contributes an independent factor of Z1 to the overall partition function

ZD =

(
L

2πℏ

)3N ∫
exp

[
−

N∑
n=1

p2n
2mT

]
d3Np, (48)

where the subscript reminds us of the particles’ distinguishability. We will consider the
indistinguishable case below.

We can recognize that each of the 3N independent integrations in Eq. 48 is a
gaussian integral,

L

2πℏ

∫
exp

[
− p2i
2mT

]
dpi =

L

2πℏ
√
2πmT =

√
mTL2

2πℏ2
≡ L

λth(T )
.

9If we were truly doing quantum physics, this switch would be an approximation that is valid when
ℏ2π2 ≪ 2mTL2, which holds unless T or L is extremely small. In this regime, the function being summed
above varies very smoothly as the integer ki increases, for any ki small enough to leave the exponential
factor non-negligible. You can find further discussion of this in Section 6.7 of Dan Schroeder’s Introduc-
tion to Thermal Physics.
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In the last step we have made the notation more compact by defining the thermal
de Broglie wavelength (named after Louis de Broglie),

λth(T ) =

√
2πℏ2
mT

. (49)

Performing all 3N gaussian integrals,

ZD =

(
mTL2

2πℏ2

)3N/2

=

(
L

λth

)3N

=

(
V

λ3
th

)N

, (50)

since the volume of the box is V = L3. It is worth emphasizing here that the partition
function depends on the volume of the gas, in addition to the fixed temperature T and
conserved particle number N . This dependence may persist in other quantities derived
from the partition function, which we will consider in the next section.

First, let’s determine what we would have with indistinguishable particles. For a
classical gas, distinguishability means that we can label the particles and use those
labels to tell them apart. In the simple two-particle example illustrated below, these
labels mean we have a different micro-state ω1 when particle A has momentum p⃗1
while particle B has momentum p⃗2, compared to micro-state ω2 in which particle A has
momentum p⃗2 while particle B has momentum p⃗1.

If the particles are indistinguishable, no such labeling is possible, and there is only one
micro-state for these {p⃗1, p⃗2}, rather than two. This factor of 2 is not accidental, as
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you can explore by counting how many micro-states there are for three distinguishable
particles with momenta {p⃗1, p⃗2, p⃗3}, compared to the single micro-state for the indistin-
guishable case:

Generalizing to N particles, we find that ideal gases with distinguishable par-
ticles have N ! times more micro-states compared to otherwise-identical ideal gases
with indistinguishable particles: There are N possible ways to label the particle with
momentum p⃗1, then N − 1 possible labels for p⃗2, and so on.10 The partition function
sums over these micro-states, but depends only on their energies, which are indepen-
dent of any labeling. Therefore this factor of N ! is the only difference between Eq. 50
and the partition function for indistinguishable particles,

ZI =
1

N !

(
mTL2

2πℏ2

)3N/2

=
1

N !

(
L

λth

)3N

=
1

N !

(
V

λ3
th

)N

. (51)

4.2 Internal energy, and entropy

Now that we have the canonical partition function, let’s apply our work from Unit 3
to predict the large-scale behaviour of the ideal gas it describes. Our first targets
are the average internal energy ⟨E⟩ and entropy S for the gas, as functions of its
fixed temperature T , conserved particle number N , and the volume V = L3 of the
box in which it is contained. Let’s begin with the slightly more complicated case of
indistinguishable particles, Eq. 51. Recalling the derivatives in Eqs. 38–39, we should
keep the temperature dependence explicit in our workings, rather than hidden inside
the thermal de Broglie wavelength λth(T ).

By writing down the Helmholtz free energy,

FI = −T logZI = −
3NT

2
log

(
mTL2

2πℏ2

)
+ T log (N !) ,

we can quickly extract the internal energy,

⟨E⟩I = −T
2 ∂

∂T

(
FI

T

)
= −T 2 ∂

∂T

(
−3N

2
log T + T -independent

)
=

3

2
NT.

10This argument assumes the momenta themselves are distinguishable, p⃗i ̸= p⃗k for any i ̸= k. This is
a reliable assumption for classical gases with L

√
mT ≫ ℏ, but will need to be revisited when we consider

quantum statistics.
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This in turn provides the entropy

SI =
⟨E⟩I − FI

T
=

3

2
N +

3N

2
log

(
mTL2

2πℏ2

)
− log (N !) .

We can clean this up by reintroducing the thermal de Broglie wavelength,

3N

2
log

(
mTL2

2πℏ2

)
=

3N

2
log

(
L2

λ2
th

)
= N log

(
V

λ3
th

)
,

and by applying Stirling’s formula to find

SI =
3

2
N +N log

(
V

λ3
th

)
−N logN +N =

5

2
N +N log

(
V

Nλ3
th

)
.

We can interpret Nλ3
th as the volume ‘occupied’ by the N particles.

What are the corresponding results for the case of distinguishable particles, start-
ing from Eq. 50 for the partition function ZD?

FD =

⟨E⟩D =

SD =

You should find that the energy is the same whether or not we can label the particles:

⟨E⟩D = ⟨E⟩I =
3

2
NT. (52)

This agrees with the argument in the previous section that multiplying Z by a constant
factor (here N !) does not change the internal energy expectation value.11

However, the entropy reflects the extra information that distinguishability provides:

SD =
3

2
N +N log

(
V

λ3
th

)
SI =

5

2
N +N log

(
V

Nλ3
th

)
. (53)

11The spin system we considered in Section 3.4 behaved differently because its number of distin-
guishable micro-states per indistinguishable micro-state was the energy-dependent binomial coefficient(
N
n+

)
. The energy dependence caused ZD vs. ZI to differ by more than a simple constant factor.
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The difference SI−SD = N−N logN → − log(N !) < 0, meaning SI < SD, as expected.
We can also note that λth →∞ as the temperature approaches absolute zero, T → 0,
apparently producing negative entropies for fixed V . This is a warning sign that our
classical assumptions are breaking down in this regime, and quantum effects would
need to be taken into account.

4.3 The mixing entropy and the ‘Gibbs paradox’

In Section 2.4 we analysed what would happen if we allowed two micro-canonical
systems to exchange energy, and then re-isolated them. We saw that this procedure
obeys the second law of thermodynamics — the entropy never decreases, though we
have to be careful to account for all of the entropy after re-isolating the two systems.

We can now carry out a similar thought experiment of allowing two canonical
systems to exchange particles, and then re-separating them. We demand that both
canonical ensembles are in thermodynamic equilibrium with each other, for instance
by sharing the same thermal reservoir with temperature T . This procedure is illus-
trated below, where we simplify the setup by taking the two initial systems to have
equal volumes, VA = VB = V , and numbers of particles, NA = NB = N .
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We can represent the process of combining and re-separating these systems as

ΩA + ΩB −→ ΩC −→ Ω′
A + Ω′

B.

What is the entropy for each of these three stages? Since the entropies depend on
whether or not the particles in the gas are distinguishable from each other, let’s first
consider the case of indistinguishable particles.

The initial entropy is the sum of the contributions from the two canonical systems,
SA + SB, both of which are the same thanks to our simplification above:

SA + SB =

To find the entropy SC of the combined system, we just need to consider what happens
when we double the volume and also double the number of particles:

SC =

You should find SC = SA + SB, which is consistent with the second law.

Things are more complicated when we re-separate the systems. Analogously to
our considerations in Section 2.4, we need to sum over all the possible ways of dividing
the 2N indistinguishable particles between the two re-separated boxes. In particular,
we need to perform this sum at the stage of computing the partition function Z ′ for
Ω′

A + Ω′
B, since this is the fundamental quantity from which the entropy is then derived

as S ′ = ∂
∂T

(T logZ ′). In other words, we have to consider a logarithm of a sum rather
than a sum of logarithms.

If ν particles end up in system Ω′
A, then the other system Ω′

B must contain the
remaining 2N − ν particles, giving us

Zν =
1

ν!

(
V

λ3
th

)ν

× 1

(2N − ν)!

(
V

λ3
th

)2N−ν

=
1

ν! (2N − ν)!

(
V

λ3
th

)2N

.

Summing over all possible values of 0 ≤ ν ≤ 2N ,

Z ′ =
2N∑
ν=0

Zν =

(
V

λ3
th

)2N 2N∑
ν=0

1

ν! (2N − ν)!
=

(
V

λ3
th

)2N
1

(2N)!

2N∑
ν=0

(
2N

ν

)

=⇒ S ′
A + S ′

B = 2N
∂

∂T

(
T log

[
V

λ3
th

])
− log[(2N)!] + log

[
2N∑
ν=0

(
2N

ν

)]
.
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This is a complicated expression. In the 1870s, Gibbs introduced the following argu-
ment that helps to simplify it, which we will explore further in tutorials: For large N ≫ 1,
the entropy of the two subsystems is nearly saturated by the case in which the parti-
cles are divided roughly evenly between them, rather than being mostly in one of them.
Equivalently, there are far more micro-states with N ′

A ≈ N ′
B ≈ N , compared to all other

terms in the sum above.

Therefore we can safely set N ′
A = N ′

B = N , which was already incorporated into
the illustration above.12 This means Ω′

A = ΩA and Ω′
B = ΩB, producing a final entropy

of S ′
A + S ′

B = SA + SB that satisfies the second law:

S ′
A + S ′

B = SC = SA + SB.

This is just what we would expect from everyday experience: Opening a door between
two identical rooms doesn’t produce any observable effects, nor does reversing that
process by closing the door.

Something interesting happens when we repeat this analysis for the case of dis-
tinguishable particles, using our result for SD(N, V ) in Eq. 53. If we consider the differ-
ence between the combined entropy SC and the initial entropy SA + SB,

∆Smix = SC − (SA + SB) = SD(2N, 2V )− 2SD(N, V )

= 3N + 2N log

(
2V

λ3
th

)
−
[
3N + 2N log

(
V

λ3
th

)]
= 2N log 2 > 0, (54)

we find the entropy increases upon combining the two initial systems. This ∆Smix > 0
is known as the mixing entropy.

This result SC > SA +SB is to be expected from the second law of thermodynam-
ics. However, repeating the argument above — that we should have N ′

A ≈ N ′
B ≈ N

leading to S ′
A + S ′

B = SA + SB after re-separating the systems — would produce the
prediction S ′

A + S ′
B < SC , indicating a decrease in the entropy by ∆Smix and an appar-

ent violation of the second law. This is known as the ‘Gibbs paradox’, though Gibbs
himself explained how a paradox is avoided.

The explanation is that because the particles are now distinguishable, N ′
A = NA

no longer suffices to establish Ω′
A = ΩA and S ′

A = SA. Recovering ΩA would additionally
require that the N ′

A particles in the re-separated system are the same distinguishable
particles that were initially in ΩA. While we can still expect N ′

A ≈ N ′
B ≈ N , the vast

majority of the resulting micro-states will not correspond to micro-states of ΩA and ΩB.
Summing over these additional possibilities ensures S ′

A + S ′
B > SA + SB, and it turns

out S ′
A + S ′

B ≥ SC as well, obeying the second law of thermodynamics.

These thought experiments provide another example of behaviour that depends
on the intrinsic information content of the system — whether or not the particles in
an ideal gas can be distinguished from each other in principle. Mixing gases of dis-
tinguishable particles introduces a positive mixing entropy, Eq. 54, but for gases of
indistinguishable particles there is no change in entropy when we let two subsystems
mix, or when we reverse that process and re-separate them. Due to the second law,
processes that produce an increase in entropy are irreversible.

12Formally this is only exact in the thermodynamic limit N →∞, a concept we will discuss in Unit 9.
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4.4 Pressure, ideal gas law, and equations of state

Below Eq. 50 we emphasized that the ideal gas partition function depends on the
volume of the gas, V , in addition to the fixed temperature T and conserved particle
number N that always characterize systems governed by the canonical ensemble. Pa-
rameters like V that appear in the partition function are called control parameters, with
the idea that they can (in principle) be controlled in experiments. Control parameters
generally enter the partition function through the definition of the energies Ei for the
micro-states ωi. Another example is the magnetic field strength H for the spin systems
we considered earlier.

Focusing on ideal gases for now, we see that all dependence on V drops out in
our results for the average internal energy, Eq. 52. On the other hand, the entropies
in Eq. 53 do depend on the volume. For both cases of distinguishable and indistin-
guishable particles, the entropy S depends on the same combination of volume and
temperature: V λ−3

th ∝ V T 3/2. If we keep N fixed and consider using our experimen-
tal control to change the volume and the temperature of the system, the entropy will
typically change as a consequence, unless the following relation is satisfied:

V T 3/2 = constant =⇒ S = constant.

Such constant-entropy (or isentropic) processes will be important in our up-
coming analyses of thermodynamic cycles.13 These cycles will involve making changes
to control parameters, which is a topic we have already started to consider through the
micro-canonical temperature (Eq. 22) and the canonical heat capacity (Eq. 36). The
pressure of an ideal gas is similarly connected to a change in its volume, which we can
motivate by thinking about squeezing an inflated balloon into a small box.

The pressure is defined to be

P = − ∂

∂V
⟨E⟩
∣∣∣∣
S

, (55)

with constant entropy S. In words, the pressure is the isentropic response of the sys-
tem’s internal energy to a change in its volume.

In Unit 5 we will look in detail at processes that change some or all of the pres-
sure, volume, temperature, or internal energy of an ideal gas, with N fixed. Although
changing the temperature departs from the assumptions of the canonical ensemble,
we will be able to analyse such a process as a change from one canonical system
(in thermodynamic equilibrium with a thermal reservoir that fixes the initial temperature
T0) to another (in thermodynamic equilibrium with a different thermal reservoir that fixes
the final temperature Tf ).

If we consider an isentropic process with N fixed, then the temperature and vol-
ume are related,

V T 3/2 = c3/2 −→ T = cV −2/3,

13The term isentropic is based on the Greek word ισoς (“isos”), meaning “equal”.
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with c a constant. By inserting this into Eq. 52, we can relate the average internal
energy to the volume,

⟨E⟩ = 3

2
NT =

3c

2
NV −2/3 for constant entropy.

Using this constant-entropy expression, what is the pressure for the ideal gas?

P = − ∂

∂V
⟨E⟩
∣∣∣∣
S

=

You should find the ideal gas law,

PV = NT, (56)

which is an example of an equation of state.

The “state” referred to by this terminology is different from the micro-states that we
have mostly discussed up until now. Whereas each micro-state is defined by detailed
information about the microscopic degrees of freedom that constitute the system, this
macro-state concerns only the large-scale (macroscopic) properties of the system,
such as its pressure, volume, temperature, entropy, or internal energy. (Macro-states
are sometimes called “system states” or “thermodynamic states”.) Equations of state
are relations between these large-scale properties.

Historically, equations of state were observed empirically and studied experimen-
tally well before the mathematical development of statistical mechanics. In the 1660s,
for instance, Robert Boyle experimented with changing the pressure of a gas while
holding its temperature fixed, finding a special case of the ideal gas law,

PV = constant for constant N and T,

which became known as “Boyle’s law”. (I include the quotation marks to emphasize the
limitations of assigning an individual sole credit for advances arising from the work of
broad scientific communities.)

Other equations of state reflecting different aspects of the ideal gas law were un-
covered during the Industrial Revolution:

•
V

T
= constant for constant N and P (1787, “Charles’s law”)
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•
P

T
= constant for constant N and V (1802, “Gay-Lussac’s law”)

•
V

N
= constant for constant P and T (1812, “Avogadro’s law”)

In the 1830s Émile Clapeyron combined these empirical results into the ideal gas law
itself, which August Krönig and Rudolf Clausius independently derived on the basis
of statistical mechanics in the 1850s. These historical considerations are useful to
illustrate how progress in scientific and mathematical understanding went hand-in-hand
with industrial developments, including the design of engines and related machines,
which are connected to our next topic of thermodynamic cycles.
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Unit 5: Thermodynamic cycles

5.1 Work, pressure and force

In the previous section we defined the pressure of an ideal gas in the canoni-
cal ensemble as the thermodynamic response of the internal energy to an isentropic
change in the volume (Eq. 55). We motivated this definition by thinking about ‘squeez-
ing’ the system — exerting a force on it — which suggests a connection between pres-
sure and force. Here we make this connection explicit by considering how the energy
of an object changes when a force acts on it.

Let’s begin by considering a single object at position r⃗ = (x, y, z), which is dis-
placed by a vector dr⃗ due to a force F⃗ (r⃗). The work done by this force is defined to
be the resulting change in the energy of the object. Infinitesimally, W = dE = F⃗ · dr⃗,
which generalizes to the line integral W = ∆E =

∫
F⃗ (r) · dr⃗.

A famous example is an object falling due to the force of the Earth’s gravity. That
force is F⃗ = (0, 0,−mg), where m is the mass of the object, g ≈ 9.8 m/s2 (metres per
second per second) is the strength of gravity near the surface of the Earth, and the
negative sign indicates that the gravitational force is directed downward. Suppose the
object starts from rest, with initial kinetic energy E0 = 0, and falls downward, parallel
to F⃗ , from a height h. Its final energy Ef upon hitting the ground comes from the work
done by the Earth’s gravity:

W =

∫
F⃗ (r) · dr⃗ = −mg

∫ 0

h

dz = mgh > 0

Ef = E0 +∆E = 0 +W = mgh =
p2z
2m

−→ pz = −m
√

2gh,

where Eq. 46 relates the energy to the momentum p⃗ = (px, py, pz).

Generalizing to N ≫ 1 objects in a statistical system governed by the canonical
ensemble, we define the work done by a force to be the resulting change in the sys-
tem’s average internal energy due to that force, W = ∆⟨E⟩force. In practice, the volume
is the control parameter that such a force will change.

This change in ⟨E⟩ due to a change in volume suggests that the work is related
to the pressure defined by Eq. 55. We can formalize this relation by considering the
setup shown below (from Schroeder’s Introduction to Thermal Physics).
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Here we have an ideal gas in a container of volume V , with one wall of that
container being a piston that we can move by applying a force F . Let’s demand that
this process leaves the entropy of the gas constant. The displacement ∆x > 0 shown
in the figure reduces the volume of the gas, by ∆V = −A∆x < 0 where A is the surface
area of the piston. Since the force F is parallel to the piston’s displacement ∆x, it does
positive work W = F∆x > 0. Therefore the internal energy of the gas increases by
∆⟨E⟩ = W , at the same time as its volume decreases isentropically, so from Eq. 55

P = − ∂

∂V
⟨E⟩
∣∣∣∣
S

= − W

∆V
=

F∆x

A∆x
=

F

A
. (57)

This identifies the pressure of an ideal gas in a container as the force per unit area that
the gas exerts on the container wall, in agreement with our everyday experiences.

Rearranging the expressions above, we can obtain an expression for the work
done on the gas by its surroundings — that is, by the external force applied to move the
piston and change the volume. Still assuming a constant-entropy (isentropic) process,
this input work must match the increase in the gas’s average internal energy,

W = ∆⟨E⟩ = −P∆V for constant entropy.

If the entropy is allowed to change, this relation between work and pressure will still
hold. However, as we will see in the next section, the non-constant entropy will intro-
duce an additional change in the average internal energy unrelated to a force, leading
to W ̸= ∆⟨E⟩ and leaving only the relation

W = −P∆V more generally. (58)

Later we will be interested in thermodynamic engines where work is done by the gas
on its surroundings. This removes energy from the gas, corresponding to a negative
W < 0, and we will need to be careful to keep track of the negative signs and their
physical meaning.

Of course, as we change the volume of the gas, the pressure itself may change
as described by the gas’s equation of state — such as the ideal gas law, Eq. 56. In
all these considerations we will keep the particle number N fixed, though in principle
it could change in the same way as discussed below Eq. 55 for the temperature. With
the equation of state providing an expression P (V ) for the pressure as a function of the
volume, Eq. 58 generalizes to

W = −
∫ Vf

V0

P (V ) dV . (59)

5.2 Heat and entropy

Now let’s switch things up by changing the temperature T of an ideal gas while
keeping its volume V and particle number N constant. Since the volume is constant,
Eq. 59 indicates that no work is done, W = 0. Even so, from Eq. 52 we have ⟨E⟩ = 3

2
NT

and can see that the average internal energy still changes,

d⟨E⟩ = 3

2
N dT . (60)
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In order to remain consistent with our discussion in the previous section, we
should expect a change in the entropy to accompany this change in the internal en-
ergy that occurs with no work done. Indeed, both distinguishable and indistinguishable
particles lead to the same the temperature dependence in Eq. 53 for the entropy:

S = N log
(
λ−3
th

)
+ T -independent = N log

(
T 3/2

)
+ T -independent.

What is the change in entropy that results from changing the temperature by dT?

dS =

Looking back to Eq. 60, you should find d⟨E⟩ = T dS, which leads us to another impor-
tant definition.

The heat added to or removed from a statistical system is defined to be

Q = T dS, (61)

and corresponds to the change in the average internal energy of the system when the
volume and particle number are kept constant.

In the same way as our considerations of the work W in the previous section, we
can generalize this infinitesimal definition to

Q =

∫ Sf

S0

T (S) dS, (62)

with Q = ∆⟨E⟩ when the volume is constant. Here we assume it is possible to invert the
usual canonical relation that expresses the entropy as a function of the temperature,
S(T ). Some textbooks may refer to infinitesimal heat and work as “dQ” and “dW ”, but
this notation can easily be misinterpreted as describing a ‘change’ in heat or work.
Instead, heat and work are themselves changes in the internal energy.

Like the work W , the heat Q is positive when energy is added to the system to
increase ⟨E⟩, and negative when energy is removed. Recalling that the canonical en-
semble involves placing the system in thermal contact with a large external thermal
reservoir, we can recognize that this energy is not being created or destroyed, but is
instead flowing back and forth between the system and the reservoir. When consider-
ing heat, we will also demand that no entropy is created or destroyed — a positive dS
will indicate entropy flowing into the system from the reservoir, while a negative value
reflects entropy moving from the system to the reservoir. Because the total entropy
of the system plus its reservoir is constant, these processes are reversible, making it
possible for the system to return to its starting macro-state.14

14In the case of irreversible processes, there must be sources of entropy creation, which change
Eq. 61 to Q < T dS. The Clausius inequality Q ≤ T dS covers both reversible and irreversible cases.
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We have already considered isentropic processes with dS = 0, for example in the
definition of pressure in Eq. 55. With our assumption of reversibility, the definition of
heat provides a new perspective on such processes:

We define an adiabatic process to be a change in the control parameters of a
system that occurs without transferring heat, Q = 0. When this process is reversible,
Eq. 61 guarantees that it also does not change the system’s entropy.

Since the canonical ensemble requires thermal contact between the system and
its surroundings, the practical way to avoid heat exchange is to change the control
parameters quickly. That is, adiabatic processes are fast enough that the system
does not have time to exchange heat (and hence entropy) with its surroundings. The
opposite extreme would be a process slow enough that any and all possible heat ex-
change can be completed while it is underway. Based on our work in Section 2.4,
we can see that such heat exchange will keep the system’s temperature equal to the
temperature of its surroundings. Taking that surrounding temperature to be constant,
we reach the conclusion that constant-temperature (or isothermal) processes are
slow. Real processes generally exist in between these two extremes, usually closer to
the adiabatic limit.

5.3 Thermodynamic cycles

Now we can generalize our considerations in the previous two sections to address
simultaneous changes in the temperature T and the volume V of an ideal gas, still with
fixed particle number N . We are used to working with the internal energy ⟨E⟩(T, V ) and
entropy S(T, V ) as functions of the temperature and volume. Inverting the latter relation
allows us to instead express the temperature T (S, V ) as a function of the entropy and
volume, which carries through to the internal energy ⟨E⟩ = 3

2
NT ,

⟨E⟩(T, V ) → ⟨E⟩(S, V ).

Let’s expand this to first order in a multi-variable Taylor expansion:

⟨E⟩(S, V ) ≈ ⟨E⟩(S0, V0) + (S − S0)
∂ ⟨E⟩
∂S

∣∣∣∣
V

+ (V − V0)
∂ ⟨E⟩
∂V

∣∣∣∣
S

.

This approximation becomes exact in the limit of infinitesimal changes

⟨E⟩(S, V )− ⟨E⟩(S0, V0)→ d⟨E⟩ S − S0 → dS V − V0 → dV .

At the same time, we can recognize the temperature from Eq. 22 and the (negative)
pressure from Eq. 55, to obtain

d⟨E⟩ = T dS−P dV = Q+W. (63)

This is a generalized form of the first law of thermodynamics: Any change in the in-
ternal energy of a canonical system must be matched by (either or both) heat exchange
with its surroundings or work done by or on those surroundings.
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We now have all the concepts and key equations needed to consider a variety
of ways to manipulate a canonical, classical, non-relativistic ideal gas in a container:

• Eq. 52 for the internal energy: ⟨E⟩ = 3
2
NT

• Eq. 53 for the condition of constant entropy: V T 3/2 = constant

• Eq. 56 for the equation of state (ideal gas law): PV = NT

• Eq. 63 for the first law of thermodynamics: d⟨E⟩ = T dS−P dV = Q+W

As examples of manipulations we can carry out by changing the system’s control
parameters, the piston we considered in Section 5.1 allows us to compress or expand
the gas. This change in volume could be fast to keep the entropy constant (adiabatic),
or slow to keep the temperature constant (isothermal). Alternatively, we can clamp the
piston in place to keep the volume constant, and add heat to the gas to increase its
temperature — according to the ideal gas law, this will also increase the pressure of the
gas. Or we can add heat while keeping the pressure constant by applying a constant
force to the piston. The ideal gas law then implies the volume will increase, pushing
out the piston and potentially doing work on the surroundings.

It’s possible to carry out a sequence of such manipulations that cause the sys-
tem to end up in the same thermodynamic (macro-)state in which it started, with the
same pressure, volume, temperature and internal energy. This sequence can then be
repeated over and over again, always returning to the same starting point. Such a
repeatable process is known as a thermodynamic cycle. As we will see in the next
section, these cycles can make use of heat to have the system do work on its sur-
roundings (providing an engine), or make use of work to remove heat from the system
(providing a refrigerator ), among other applications.

With N fixed, the key equations above allow us to specify the full macro-state for
an ideal gas solely in terms of the pressure P and the volume V . The ideal gas law
provides the temperature T = PV

N
, which then determines the internal energy ⟨E⟩ ∝

NT . This makes it convenient to represent the system’s macro-state as a point in a
pressure–volume (or PV) diagram — a graph with the volume on the horizontal axis
and the pressure on the vertical axis. The manipulations discussed above correspond
to lines in PV diagrams. In the case of a thermodynamic cycle, the lines must meet up
to form a closed path for the system to go around as the cycle is repeated.

For example, the left figure on the next page shows the PV diagram for isothermal
expansion of the gas, which is slow enough for heat to enter the system to keep the
temperature fixed despite the expansion.
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The line in a PV diagram for an isothermal process is known as an isotherm. As the
volume expands from V0 to Vf , the temperature (and therefore PV ) is constant. What
is the change in pressure ∆P = Pf −P0 in terms of P0, V0 and Vf? What would it mean
if two isotherms were to cross in a PV diagram?

Similarly, we can consider the PV diagram on the right for adiabatic compression
of the gas, which occurs too quickly for heat to be exchanged. In this case both the
pressure and temperature change, while the entropy (and therefore V T 3/2) is constant.
What are ∆P and the change in the temperature ∆T = Tf − T0 in terms of P0, V0,
Vf and the fixed number of particles N? Can you convince yourself that two distinct
reversible adiabats never cross?

5.4 The Carnot cycle

A famous thermodynamic cycle was proposed by Sadi Carnot in 1824, and laid
the groundwork for subsequent development of engines and refrigerators later in the
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nineteenth century. The key idea is to propose that the ideal gas in its container can
exchange energy with either of two different thermal reservoirs: a hot reservoir with a
higher temperature TH and a cold reservoir with a lower temperature TL. The Carnot
cycle consists of four stages, which are first shown below in the form of a PV dia-
gram, then illustrated in a sketch (adapted from Schroeder’s Introduction to Thermal
Physics) that provides a more concrete picture of the physical processes, and finally
summarized in words.
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The illustration above supposes that the hot reservoir is located to the right of the
system, while the cold reservoir is on its left. In words, the four stages are the following:

• From point A to point B the system undergoes slow isothermal expansion, bring-
ing in heat Qin from the hot reservoir in order to keep its temperature TH fixed.

• From point B to point C the system undergoes fast adiabatic expansion, with no
heat exchange, until its temperature falls from TH down to TL.

• From point C to point D the system undergoes slow isothermal compression,
expelling heat Qout into the cold reservoir to keep its temperature TL fixed.

• From point D to point A the system undergoes fast adiabatic compression, with
no heat exchange, until its temperature rises from TL back up to TH .

We need to make sure that these processes really do produce a self-consistent
closed cycle that our system could repeatedly follow. In a real experiment, we would
have full control over the four input variables {PA, VA, VB, VC} coloured red in the PV di-
agram above. Specifically, we can prepare our N -particle system in initial macro-state
A with our choice of pressure PA and volume VA, which sets the higher temperature
TH = PAVA

N
of the hot reservoir. We can then freely choose the volume VB > VA at which

to switch from isothermal expansion to adiabatic expansion, and similarly choose the
volume VC > VB at which we stop expanding and start compressing. These choices of
VB and VC set the lower temperature TL of the cold reservoir.

At this point, however, we are no longer free to choose an arbitrary volume VD <
VC at which to switch from isothermal compression to adiabatic compression — this
switch needs to happen at precisely the correct point in order for the final stage to
bring the system back to its initial macro-state A. While we can expect that this will be
possible for the Carnot cycle, a priori there is no guarantee that a given sequence of
processes will close to form a self-consistent thermodynamic cycle.

In order to confirm the self-consistency of the Carnot cycle, we need to ex-
press the unknown quantities {PB, PC , TL, PD, VD} in terms of the four inputs described
above, along with the fixed number of particles N . At point B, we know the sys-
tem’s temperature remains TH = PAVA/N . What is the pressure PB in terms of
{PA, VA, VB, VC , N}?
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At point C, we know the system’s entropy is the same as at point B. What are the
temperature TL and pressure PC in terms of {PA, VA, VB, VC , N}?

At point D, we know the system’s temperature remains TL. We have to demand
that its entropy is the same as at point A, in order for the final adiabatic stage to
connect points D and A. What are the resulting pressure PD and volume VD in terms
of {PA, VA, VB, VC , N}?

You should find that all of {PB, PC , TL, PD, VD} can be consistently specified by
the inputs under our control, which confirms that the Carnot cycle is a valid thermody-
namic cycle (as expected). We now also have the ingredients needed to investigate
how much net work (if any) this cycle can do on its surroundings, compared to the
amount of heat it would transfer from the hot reservoir to the cold reservoir. It will sim-
plify this calculation to use the following positive quantities, with subscripts (rather than
negative signs) indicating whether energy is flowing into or out of the gas:

• When work is done on the system by its surroundings, Win = W > 0 from Eq. 59

• When work is done by the system on its surroundings, Wout = −W > 0

• When heat enters the system, Qin = Q > 0 from Eq. 62

• When heat leaves the system, Qout = −Q > 0

We can now define a convenient combination of heat and work to consider.

The efficiency η of a thermodynamic engine is defined to be

η =
Wdone

Qin
=

Wout −Win

Qin
, (64)

where Wdone = Wout − Win is the net amount of work done by each repetition of the
cycle, while Qin is the total amount of heat that enters the system in each repetition.
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By specifying a thermodynamic engine, we assume Wout > Win, so that the overall
cycle does more work on its surroundings than it requires to operate. This corresponds
to η > 0, and we can also put an upper bound on the efficiency, due to the first law
of thermodynamics, Eq. 63. Because the system returns to its initial macro-state after
each repetition of the cycle, we have

∆⟨E⟩ = 0 = Qin −Qout +Win −Wout

=⇒ Wout −Win = Qin −Qout ≤ Qin, (65)

or η ≤ 1, with equality occurring when no ‘waste’ heat is expelled during the cycle, so
that Qout = 0. All together, 0 < η ≤ 1 lets us interpret the efficiency as the fraction of
the incoming heat that the engine is able to use to do work on its surroundings.

We can illustrate these ideas by computing the efficiency of the Carnot cycle. It
is useful to divide this calculation into smaller pieces by considering the contributions
to Wdone and Qin from each of the cycle’s four stages.

First, in the isothermal expansion from point A to point B, the ideal gas law pro-
vides P (V ) to insert into Eq. 59:

WAB = −
∫ VB

VA

P (V ) dV =

You should find WAB < 0, meaning the system does work on its surroundings during
this stage. At the same time, the constant temperature means ∆⟨E⟩ ∝ ∆T = 0 from
Eq. 52, so that QAB = −WAB > 0, in agreement with our earlier observation of heat
flowing into the system during this stage.

Next, in the adiabatic expansion from point B to point C, we know QBC = 0, which
lets us use the first law of thermodynamics to compute the work:

WBC =

You should find that the system continues doing work on its surroundings during this
stage, WBC < 0.
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Finally, the computations for the two compression stages are directly analogous to
those for the two expansion stages considered above. For the isothermal compression
from point C to point D, the ideal gas law again provides P (V ):

WCD = −
∫ VD

VC

P (V ) dV =

Now you should find WCD > 0, meaning this compression requires work to be done
on the system by its surroundings, while QCD = −WCD < 0 means heat flows out of
the system. For the adiabatic compression from point D to point A, we know QDA = 0
while the change in temperature is exactly opposite the ∆T of the B → C adiabatic
expansion. Therefore WDA = −WBC > 0 and more work has to be done on the system
to complete the cycle.

Putting everything together,

Wout = −WAB −WBC

Win = WCD +WDA = WCD −WBC

Qin = QAB = −WAB

η =
−WAB −WBC −WCD +WBC

−WAB

= 1 +
WCD

WAB

= 1− TL

TH

. (66)

We can check that our result η = 1 − TL

TH
for the efficiency of the Carnot cycle makes

sense. Since TL < TH , we have η > 0. If the temperatures of the hot and cold reservoirs
approach each other, TL

TH
→ 1, then the cycle would collapse to a single isotherm with

Wout = Win and vanishing efficiency η → 0. In the opposite limit of a large difference in
the temperatures TL ≪ TH , the efficiency would improve, with η → 1 as TL

TH
→ 0.

It turns out to be generic for heat engines to operate more efficiently as the tem-
perature difference between their hot and cold reservoirs increases, and they always
cease performing net work as TL

TH
→ 1. The Carnot cycle is special because its effi-

ciency η = 1− TL

TH
is the theoretical maximum allowed by the second law of thermody-

namics. We can show this by using Eq. 65 to rewrite

η =
Qin −Qout

Qin
= 1− Qout

Qin
= 1− TL∆Sout

TH∆Sin
,

where the last equality uses Eq. 62 and the fact that the input heat Qin = TH∆Sin enters
the engine from the hot reservoir with temperature TH , while the waste heat Qout =
TL∆Sout is expelled to the cold reservoir with temperature TL. After each repetition
of the cycle, the gas returns to its original macro-state, with its original entropy, after
absorbing entropy ∆Sin from its surroundings and expelling ∆Sout back out again. The
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second law therefore demands ∆Sout ≥ ∆Sin, so that

η = 1− TL

TH

∆Sout

∆Sin
≤ 1− TL

TH

in principle, for any thermodynamic engine.

Finally, if we were to operate the Carnot cycle in reverse, with isothermal expan-
sion at temperature TL and compression at TH , we would do work on the system in
order to bring heat in from the cold reservoir (i.e., Qin = TL∆Sin) and expel it into the
hot reservoir (Qout = TH∆Sout). In other words, we would have a refrigerator rather than
an engine. The ‘efficiency’ of a refrigerator is called its coefficient of performance, and
defined as

COP =
Qin

Win −Wout
=

Qin

Qout −Qin
=

1

Qout/Qin − 1
≤ 1

TH/TL − 1
=

TL

TH − TL

,

which can be greater than one. The reversed Carnot cycle provides the best possible
COP for a refrigerator. Despite its efficiency, the Carnot cycle does not provide a
practical engine or refrigerator, simply because its slow isothermal stages take too
long! Real engines and refrigerators sacrifice efficiency for functionality.
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Unit 6: Grand-canonical ensemble

6.1 The particle reservoir and chemical potential

Now that we have had some fun with applications of the canonical ensemble,
we will complete our more formal development of statistical ensembles by considering
the grand-canonical ensemble. Recall that statistical ensembles are probability spaces
describing the micro-states that a system can adopt as it evolves in time, subject to cer-
tain constraints. Back in Unit 2 we first considered the micro-canonical ensemble, for
which these constraints are conservation of the internal energy E and particle number
N . We then introduced the canonical ensemble in Unit 3 by allowing the system’s inter-
nal energy to fluctuate, while keeping its temperature T fixed through thermal contact
with a large external thermal reservoir.

Building on this pattern, the next step is to allow both the system’s energy and
its particle number to fluctuate. Generalizing our earlier work on the canonical ensem-
ble, these fluctuations occur through contact between the system and a large external
reservoir. This is now a particle reservoir, with which the system can exchange both
energy and particles.

In the same way that energy exchange leads to a fixed temperature, we expect
there to be some quantity that will be fixed due to particle exchange. Recall that we
initially defined the temperature in the context of the micro-canonical ensemble in ther-
modynamic equilibrium (Eq. 22), as the dependence of the entropy on the internal
energy for a fixed number of degrees of freedom:

1

T
=

∂S

∂E

∣∣∣∣
N

.

The quantity we are now interested in comes from interchanging the roles of E and N .

In thermodynamic equilibrium, the chemical potential in the micro-canonical en-
semble is defined by

µ = −T ∂S

∂N

∣∣∣∣
E

. (67)

This definition is not very intuitive, and unlike the temperature the chemical po-
tential is not a familiar concept from everyday experiences. To gain some insight into
the chemical potential, we can first note that µ has dimensions of energy. It is also an
intensive quantity, like the temperature — it is independent of the extent of the system,
and remains the same if we consider only a part of a larger system. Finally, we can
expect the chemical potential to be negative, at least for ‘natural’ systems with T > 0.
This is because the partial derivative ∂S

∂N
is generally positive — systems with more

degrees of freedom typically have more entropy, reflecting the greater amount of infor-
mation they can contain even with the energy fixed. This can be checked explicitly from
Eq. 24 for the micro-canonical spin system we considered in Section 2.3.
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The presence of the negative sign in Eq. 67 is really a choice we have made. The
motivation for this choice comes from considering a net flow of particles between two
systems ΩA and ΩB with the same temperature T > 0 but different

∂SA

∂NA

>
∂SB

∂NB

> 0 =⇒ µA < µB < 0.

Due to the negative sign in Eq. 67, the system with the larger partial derivative has
the smaller (more-negative) chemical potential. Particle exchange between these two
systems, ∆NA = −∆NB, causes the (extensive) entropy to change by

∆S = ∆SA +∆SB =

(
∂SA

∂NA

)
∆NA +

(
∂SB

∂NB

)
∆NB =

[
∂SA

∂NA

− ∂SB

∂NB

]
∆NA.

According to the second law of thermodynamics, ∆S ≥ 0, and since the term in square
brackets is positive we must also have ∆NA ≥ 0. Equivalently, we can note that more
entropy is gained by adding each particle to system ΩA than is lost by removing it from
system ΩB, ensuring that the total entropy of the universe doesn’t decrease.

In other words, the choice of sign in Eq. 67 ensures that particles flow from sys-
tems with larger chemical potentials to systems with smaller chemical potential. This is
similar to heat flowing from hotter systems with larger temperatures to colder systems
with smaller temperatures, allowing us to reuse our intuition based on the tempera-
ture. Had we instead chosen to make µ positive for natural systems, we would have
ended up with counter-intuitive flow of particles from small to large chemical potential.
This connection to particle flow also implies that we should consider only systems of
indistinguishable particles when working with a chemical potential.

We are now able to define the grand-canonical ensemble to be a statistical en-
semble characterized by its fixed temperature T and fixed chemical potential µ, with the
temperature and chemical potential held fixed through contact with a particle reservoir.

6.2 The grand-canonical partition function

Let’s now place the grand-canonical ensemble on a more concrete mathematical
foundation, by following the same procedure we used for the canonical ensemble. That
is, we introduce a well-motivated ansatz for the form of the particle reservoir Ωres, then
show that the form of the reservoir is ultimately irrelevant. This will allow us to work
directly with the system of interest, Ω, independent of the details of the particle reservoir
that fixes its temperature and chemical potential.

As before, our ansatz is to take Ωtot = Ωres⊗Ω to consist of many (R≫ 1) identical
replicas of the system Ω that we’re interested in. All of these replicas are in thermody-
namic equilibrium, and can exchange both energy and particles with each other. The
overall system Ωtot is governed by the micro-canonical ensemble, with conserved total
energy Etot and conserved total particle number Ntot. An extremely small example of
this setup is illustrated by the figure on the next page, where the system of interest is
an ideal gas in a volume V .
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Although we draw a box around each replica (and colour one red to highlight
the system Ω we will consider), these boxes are now merely mental constructions,
and don’t interfere with particles moving from one replica to another. For example,
we could take our system to be a cubic centimetre of air in a room, with the rest of
the room forming its reservoir. As in Section 3.1.1, we assume that this system Ω =
{ω1, ω2, · · · , ωM} has a finite number of M possible micro-states, where now different
micro-states may involve different numbers of particles.

This again allows us to analyse the overall system of R replicas in terms of oc-
cupation numbers ni and the corresponding occupation probabilities pi. Recall that ni

is the number of replicas that adopt the micro-state ωi ∈ Ω in any given micro-state of
the overall system Ωtot, so that

∑
i ni = R. Similarly, pi = ni/R is the probability that a

randomly chosen replica will be in micro-state ωi, with
∑

i pi = 1 as usual. In terms of
ni and pi, the total number of micro-states of Ωtot, and the corresponding entropy, are
the same as we derived in Section 3.1.2,

Mtot =
R!

n1! n2! · · · nM !
−→ S(Etot, Ntot) = −R

M∑
i=1

pi log pi,

assuming R≫ 1 and ni ≫ 1 for all i = 1, · · · ,M . In this expression, the dependence on
both Etot and Ntot now enters through the occupation probabilities pi, since the micro-
states ωi may involve different numbers of particles in addition to different energies.

As before, we want to determine the (intensive) temperature and chemical poten-
tial of the micro-canonical system Ωtot through Eqs. 22 and 67, which requires express-
ing S directly in terms of Etot and Ntot. We again proceed by maximizing the entropy
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subject to the constraints on the conserved quantities of Ωtot. Labelling the energy and
particle number of each replica Er and Nr, respectively, as in Eq. 27 we can rearrange
sums over replicas into sums over the micro-states of Ω:

1 =
M∑
i=1

pi Etot =
R∑

r=1

Er =
M∑
i=1

niEi = R

M∑
i=1

piEi

Ntot =
R∑

r=1

Nr =
M∑
i=1

niNi = R

M∑
i=1

piNi, (68)

where Ei and Ni are the energies and particle numbers of the M micro-states ωi ∈ Ω.
The first two constraints, on the occupation probabilities and the total energy, are the
same as we had in Section 3.1.2. The third constraint, on the total particle number, is
the new ingredient for us to incorporate.

Writing everything in terms of occupation probabilities, we see that we need to
maximize the modified entropy

S = −R
M∑
i=1

pi log pi + α

(
M∑
i=1

pi − 1

)

− β

(
R

M∑
i=1

piEi − Etot

)
+ γ

(
R

M∑
i=1

piNi −Ntot

)
,

adding the Lagrange multiplier γ to the α and (negative) β we previously had in Sec-
tion 3.1.2. What is the occupation probability pk that maximizes S?

0 =
∂S

∂pk
=

You should find a probability of the form

pk =
1

Zg

e−βEk+γNk , (69)

defining Zg = exp
[
1− α

R

]
to work in terms of the parameters {Zg, β, γ}. As usual, we

fix these three parameters by demanding that the three constraints above are satisfied.
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Using the first constraint, what is Zg in terms of β and γ?

1 =
M∑
i=1

pi =

Analogously to Eq. 31 in Section 3.1.2, the other two constraints

Etot = R
∑
i

piEi Ntot = R
∑
i

piNi

now produce complicated relations between {β, γ} and {Etot, Ntot}:

Etot = R

∑M
i=1Ei e

−βEi+γNi∑M
j=1 e

−βEj+γNj

= − R

Zg

∂

∂β

M∑
i=1

e−βEi+γNi = −R ∂

∂β
logZg(β, γ) (70)

Ntot = R

∑M
i=1Ni e

−βEi+γNi∑M
j=1 e

−βEj+γNj

=
R

Zg

∂

∂γ

M∑
i=1

e−βEi+γNi = R
∂

∂γ
logZg(β, γ). (71)

These relations between {Etot, Ntot} and partial derivatives of logZg will be useful when
we consider the partial derivatives of the entropy that define the temperature and chem-
ical potential. Of course, in order to consider those partial derivatives, we need to
express the entropy itself in terms of Etot, Ntot and the parameters

{Zg(β, γ), β(Etot, Ntot), γ(Etot, Ntot)}

that we have now related to Etot and Ntot. What do you obtain upon inserting Eq. 69 for
pi into the formula for the entropy?

S(Etot, Ntot) = −R
M∑
i=1

pi log pi =
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Taking the derivative of the resulting entropy with respect to Etot, keeping Ntot

fixed, gives the temperature from Eq. 22. Thanks to Eqs. 70 and 71, the result should
simplify in a pleasant way:

1

T
=

∂S

∂Etot

∣∣∣∣
Ntot

=

In the same way, the derivative with respect to Ntot, keeping Etot fixed, gives the chem-
ical potential with similar simplifications:

µ = −T ∂S

∂Ntot

∣∣∣∣
Etot

=

In the end you should find

β =
1

T
γ = βµ =

µ

T
, (72)

meaning that (as desired) all information about the particle reservoir has dropped out,
with no remaining reference to R, Etot or Ntot. This large external reservoir is still
present to fix the temperature T and chemical potential µ that characterize the grand-
canonical system Ω, but beyond that nothing about it is relevant (or even knowable) in
the grand-canonical approach.

Every aspect of Ω can now be specified in terms of its fixed temperature T and
chemical potential µ, starting with the parameters β = 1/T and γ = µ/T . In par-
ticular, the thermodynamic equilibrium probability that Ω adopts micro-state ωi with
(non-conserved) internal energy Ei and particle number Ni is

pi =
1

Zg

e−β(Ei−µNi) =
1

Zg

e−(Ei−µNi)/T . (73)

Since the particle number Ni is dimensionless, the combination Ei − µNi that appears
here reflects our observation below Eq. 67 that the chemical potential µ has dimensions
of energy.
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These micro-state probabilities are normalized by the grand-canonical partition
function

Zg(T, µ) =
M∑
i=1

e−β(Ei−µNi) =
M∑
i=1

e−(Ei−µNi)/T . (74)

Analogously to the canonical partition function, this Zg is a fundamental quantity in the
grand-canonical ensemble, from which many other derived quantities can be obtained.

6.3 The grand-canonical potential, internal energy, entropy, and
particle number

The development of the grand-canonical ensemble we have seen so far closely
resembles our earlier work setting up the canonical ensemble. We have generalized
the thermal reservoir to a particle reservoir that fixes both the temperature T and chem-
ical potential µ, while allowing the system’s internal energy and particle number to vary
between different micro-states ωi. By adapting the replica ansatz to this setup, we de-
termined the micro-state probabilities pi and the grand-canonical partition function Zg,
confirming that they are independent of the details of the particle reservoir.

We now continue by considering a similar set of derived quantities for the grand-
canonical ensemble in thermodynamic equilibrium. In addition to the expectation value
of the internal energy introduced in Section 3.2, the fluctuations of the particle number
mean that we also need to consider its expectation value,

⟨E⟩(T, µ) =
M∑
i=1

Ei pi =
1

Zg

M∑
i=1

Ei e
−β(Ei−µNi)

⟨N⟩(T, µ) =
M∑
i=1

Ni pi =
1

Zg

M∑
i=1

Ni e
−β(Ei−µNi).

Looking back to Eqs. 70 and 71, we can expect both of these derived quantities to be
related to derivatives of the logarithm of the grand-canonical partition function. In Sec-
tion 3.3, similar relations led us to define the Helmholtz free energy for the canonical
ensemble, which we can also generalize to the grand-canonical case.

We define the grand-canonical potential of a grand-canonical ensemble to be

Φ(T, µ) = −T logZg(T, µ) = −
logZg(β, µ)

β
, (75)

where Zg is the grand-canonical partition function of the ensemble. In terms of this
quantity, Eqs. 73 and 74 are

Zg = e−Φ/T pi = e(Φ−Ei+µNi)/T .
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The grand-canonical potential is similar to the Helmholtz free energy, and to high-
light this similarity it is sometimes called the Landau free energy (named after Lev
Landau). As mentioned above, we want to consider derivatives of the grand-canonical
potential, the simplest of which is with respect to the chemical potential,

∂

∂µ
Φ(β, µ) =

The derivative with respect to the temperature is a little messier, but can be simplified
by recalling ∂

∂T
= −β2 ∂

∂β
from Eq. 35. As in Section 3.3, it involves ∂

∂T
logZg, which is

again worth collecting in advance,

− ∂

∂T

[
Φ(T, µ)

T

]
=

∂

∂T
logZg(T, µ) =

∂

∂T
Φ(T, µ) =

You should find

∂Φ

∂T
=

Φ− ⟨E⟩+ µ ⟨N⟩
T

= − logZg − β ⟨E⟩+ βµ ⟨N⟩ ,
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which we can connect to the entropy by inserting the probabilities pi from Eq. 73 into
the general definition of the entropy from Eq. 20:

S(T, µ) = −
M∑
i=1

pi log pi =

From this work we can read off the following relations involving the grand-
canonical potential Φ(T, µ):

⟨N⟩(T, µ) = − ∂

∂µ
Φ (76)

S(T, µ) = − ∂

∂T
Φ (77)

⟨E⟩(T, µ) = −T 2 ∂

∂T

[
Φ

T

]
+ µ ⟨N⟩ (78)

Φ(T, µ) = −T S + ⟨E⟩ − µ ⟨N⟩ (79)

Finally, the connections between the energy, entropy and particle number pro-
vided by these relations motivate a further extension of the generalized first law of
thermodynamics we derived in Eq. 63. To make the notation less cumbersome here,
we write ⟨E⟩ and ⟨N⟩ as E and N , keeping in mind that these are properties of the
system’s thermodynamic macro-state rather than its fluctuating micro-state. In this no-
tation, Eq. 63 reads dE = T dS−P dV = Q+W , and relates any changes in the internal
energy of a canonical system to changes in its entropy (heat) or volume (work).

Extending this to the grand-canonical ensemble, we can express the entropy as
a function of the internal energy, volume and particle number, S(E, V,N), and consider
the change in entropy due to changes in each of these three parameters,

dS =
∂S

∂E

∣∣∣∣
V,N

dE+
∂S

∂V

∣∣∣∣
E,N

dV +
∂S

∂N

∣∣∣∣
V,E

dN =
1

T
dE+

∂S

∂V

∣∣∣∣
E,N

dV −µ

T
dN .

We can interpret the remaining partial derivative by considering Eq. 63 in the case of
fixed internal energy E. This equation already incorporates the fixed particle number
N , since it was derived in the framework of the canonical ensemble:

dE = 0 = T dS−P dV =⇒ ∂S

∂V

∣∣∣∣
E,N

=
P

T
.
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Putting things together, we obtain the generalized thermodynamic identity

dE = T dS−P dV +µ dN . (80)

Due to this result, the term µ dN is sometimes referred to as “chemical work”, in analogy
to the mechanical work W = −P dV done on a system by changing its volume. This
thermodynamic identity provides a convenient way to remember (or derive) relations
between the internal energy, entropy, volume and particle number in thermodynamic
equilibrium, by considering processes in which any two of these are fixed. For example,
fixing N and V gets us back to Eq. 22 for the temperature,

dE = T dS =⇒ 1

T
=

∂S

∂E

∣∣∣∣
N,V

,

while fixing N and S gives Eq. 55 for the pressure,

dE = −P dV =⇒ P = − ∂E

∂V

∣∣∣∣
N,S

.

If we fix the entropy S and volume V , we end up with another way of understand-
ing the chemical potential,

dE = µ dN =⇒ µ =
∂E

∂N

∣∣∣∣
S,V

. (81)

That is, the chemical potential is the change in the internal energy when we change
the number of particles in the system, without changing its entropy or volume. If we
consider adding particles to the system, ∆N > 0, we argued below Eq. 67 that we
should generically expect an increase in the entropy. In order to keep the entropy fixed
in this process, we therefore need the change in the energy to decrease the entropy
by the corresponding amount. For natural systems with positive temperatures, this
requires decreasing the energy, ∆E < 0. Similarly, keeping the entropy fixed as we
decrease N would require increasing E, so that Eq. 81 confirms our earlier finding that
for natural systems the chemical potential is negative in general.
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Unit 7: Quantum statistics

7.1 Quantized energy levels and their micro-states

Now that we have defined the grand-canonical ensemble, we will apply it to inves-
tigate quantum statistical systems. The first step is to introduce quantum statistics itself
— it is worth reiterating that no prior knowledge of quantum physics is assumed, nor
will this module attempt to teach quantum mechanics. We will simply consider quan-
tum behaviour as an ansatz (that turns out to be realized in nature), and analyse the
resulting systems by making use of the statistical mechanics tools we have developed.

Quantum physics was mentioned in passing during our derivation of the canon-
ical partition function for a classical (non-quantum) ideal gas in Section 4.1. You may
have felt that this derivation involved seemingly circular reasoning. First, because the
partition function is defined as a sum over micro-states ωi,

Z =
∑
i

e−E(p⃗i)/T ,

we regularized the system by supposing that the gas particles’ momenta p⃗i are quan-
tized and can take only particular discrete values, rather than varying continuously.
These quantized momenta produce a countable number of discrete energy levels, lead-
ing to a countable number of micro-states and hence a well-defined partition function
that involves sums over all possible discrete momenta for each particle. Second, after
the system was regularized, we switched back to continuously varying momenta, con-
verting sums to integrals while retaining the dimensionful factors we had derived along
the way.

Two changes are required to define quantum statistics. First, not surprisingly,
we need to retain discrete energy levels rather than approximating these as contin-
uous. This will allow our calculations to remain valid even in the quantum regime
where L

√
mT ∼ ℏ (or equivalently λ3

th ∼ V ). The second change is more subtle, and
is connected to the fundamental indistinguishability of identical particles governed by
quantum mechanics — a fact about nature that we will take as given. The issue is how
to handle micro-states in which multiple indistinguishable particles occupy the same
energy level.

To build up to this issue, we will first see what happens when we ignore it and
apply our usual classical approach to compute the grand-canonical partition function
for a system with discrete energy levels. Despite the quantized energy levels, this cal-
culation will still produce a non-quantum result known as Maxwell–Boltzmann (MB)
statistics, named after James Clerk Maxwell and Ludwig Boltzmann. We will then con-
sider how this approach can break down, and use this insight to develop true quantum
statistics in the following sections. Finally, we will wrap up this unit by confirming that
Maxwell–Boltzmann statistics remains an excellent approximation to quantum statistics
in the classical limit.
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7.1.1 Maxwell–Boltzmann statistics

Let’s begin our classical derivation of the grand-canonical partition function for
a system with discrete energy levels by defining some necessary notation. We label
the discrete energy levels Eℓ for ℓ = 0, 1, · · · , L, where L can be taken to infinity
while retaining a countable number of micro-states and hence well-defined partition
functions. The energy level Eℓ may be characterized by extra information in addition
to the actual value of its energy, Eℓ. As we saw in Section 4.1, it is therefore possible
for distinct energy levels {Em, En} to have the same energy Em = En for m ̸= n. Such
energy levels with the same value of the energy are said to be degenerate. We will
label energy levels so that Em ≤ En for m < n. Without loss of generality, we can take
Eℓ ≥ E0 ≥ 0.

Now starting from the general expression for the grand-canonical partition func-
tion, Eq. 74,

Zg(β, µ) =
∑
i

e−β(Ei−µNi),

we just need to define the micro-states ωi with energy Ei and particle number Ni. In
the classical Maxwell–Boltzmann approach, we arrange this into a series of sums with
fixed particle numbers:

ZMB
g (β, µ) =

∑
i,Ni=0

e−βEi +
∑

j,Nj=1

e−β(Ej−µ) +
∑

k,Nk=2

e−β(Ek−2µ) + · · · ,

where the micro-states labelled {ωi, ωj, ωk, · · · } are those that have N = 0, 1, 2, · · ·
particles, respectively. We can recognize N -particle canonical partition functions ZN(β)
in the expression above:

ZMB
g (β, µ) = Z0(β) + eβµZ1(β) + e2βµZ2(β) + · · · =

∞∑
N=0

[
eβµ
]N

ZN(β). (82)

This is a general result known as the fugacity expansion, where eβµ is called the fugac-
ity. Organizing the calculation in this way allows us to take advantage of our experience
with the canonical ensemble.

In particular, because we continue to consider only ‘ideal’ systems in which the
particles don’t interact with each other, each ZN(β) is simply the product of the single-
particle partition functions Z1(β) for all N independent particles,

ZN(β) =
1

N !
[Z1(β)]

N ,

with the factor of N ! included to correct for over-counting indistinguishable particles.
This is exactly the derivation we performed in Section 4.1, to obtain Eq. 51 for the
classical ideal gas. Inserting this ZN into Eq. 82, we have

ZMB
g (β, µ) =

∞∑
N=0

[
eβµ
]N 1

N !
[Z1(β)]

N =
∞∑

N=0

1

N !

[
eβµZ1(β)

]N
= exp

[
eβµZ1(β)

]
.

In the case of a system with discrete energy levels Eℓ, the single-particle partition func-
tion is simply

Z1(β) =
L∑

ℓ=0

e−βEℓ ,
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where each micro-state has the particle in a different energy level. This gives us the
Maxwell–Boltzmann grand-canonical partition function

ZMB
g (β, µ) = exp

[
eβµ

L∑
ℓ=0

e−βEℓ

]
= exp

[
L∑

ℓ=0

e−β(Eℓ−µ)

]
. (83)

7.1.2 Over-counting and quantum statistics

The problem with the derivation above was already mentioned in the footnote ac-
companying Eq. 51. Recall that the factor of 1

N !
comes from the N ! different ways the

N particles could be labeled — since indistinguishable particles cannot be labeled, we
have only a single micro-state rather than the N ! micro-states arising from ZN

1 itself.
We will see that this analysis is only correct when each of the particles is in a different
energy level. When the particles’ energies can vary continuously it is practically im-
possible for two of them to have exactly the same energy, making it safe to assume a
different energy level for each particle. More generally, this assumption can remain an
excellent approximation whenever there are many more accessible energy levels than
there are particles to occupy them. Here we are interested in situations where there is
a non-negligible chance of multiple particles occupying the same energy level, which
we can call the ‘quantum regime’).

Let’s illustrate the problem by considering a simple system with N = 2 particles
that can each occupy any of five energy levels, E0 through E4. The canonical partition
function for this system sums over all possible ways these particles can occupy the
available energy levels — equivalent to the ways N = 2 balls can be placed into L+1 =
5 boxes. We can represent possible micro-states by drawing these balls and boxes, for
example • • • • • and • • •• • • . How many terms are there in the sum for the
distinguishable partition function, ZD?

For indistinguishable particles, our earlier derivation predicts there are half as many
( 1
2!

) terms in the sum for the indistinguishable partition function, ZI , but this would be a
non-integer number of terms and therefore cannot be correct.

We can see where the derivation goes wrong by explicitly writing down all the
micro-states in both cases of distinguishable and indistinguishable particles. In the
distinguishable case, we can suppose that the balls are red (•) and blue (•), and com-
pactly represent micro-states by recording whether each box is empty (“0”) or contains
the red ball (“R”), the blue ball (“B”) or both balls (“2”):

• • • • • = 00R0B • • •• • • = 00200.
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The full set of micro-states is then

RB000 0R0B0 BR000 0B0R0 20000

R0B00 0R00B B0R00 0B00R 02000

R00B0 00RB0 B00R0 00BR0 00200

R000B 00R0B B000R 00B0R 00020

0RB00 000RB 0BR00 000BR 00002

If we now consider indistinguishable particles where we can only know the num-
ber of particles in each box (R,B → 1), we see that the third and fourth columns above
duplicate the first two columns. This is exactly the over-counting that the usual factor
of 1

N !
= 1

2
corrects. On the other hand, the micro-states in the final column, with both

particles in the same energy level, were not over-counted, and must not be divided by
N !. This leaves us with 15 micro-states, rather than 25/2:

11000 01010 20000

10100 01001 02000

10010 00110 00200

10001 00101 00020

01100 00011 00002

We can generalize this simple exercise by systematically labeling the micro-states
for indistinguishable particles by occupation numbers nℓ, similar to those that we en-
countered when using replicas to set up the canonical ensemble in Section 3.1 and
the grand-canonical ensemble in Section 6.2. In this case the occupation number nℓ

is simply the number of particles in energy level Eℓ. This new approach is the second
change promised above, and the final ingredient needed for the following definition.

In quantum statistics, the micro-states are defined by considering each energy
level Eℓ in turn, and summing over the possible occupation numbers nℓ that it could
have. This differs from the classical approach in which the micro-states were defined
by considering each particle in turn, and summing over the possible energies (etc.)
that it could have.

Because quantum mechanics requires all particles of the same type to be in-
distinguishable, the classical approach forces us to correct for over-counting, and we
have now seen how this becomes non-trivial whenever multiple particles can occupy
the same energy level. The quantum approach of summing over the occupation num-
bers of the quantized energy levels avoids this issue, and doesn’t encounter any over-
counting that would require correction.

7.2 Bosons and fermions

In Sections 7.3 and 7.4 we will carry out explicit computations to show how the
quantum statistics defined above work in practice. In preparation, we will take into ac-
count some additional information about nature, specifically concerning the occupation
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numbers nℓ that are possible for each energy level Eℓ. As before, for the purposes of
this module we can simply consider this information to be part of our ansatz.

Using quantum mechanics and special relativity, it is possible to prove that all par-
ticles in three spatial dimensions fall into two distinct classes. (More exotic behaviour is
possible for particles confined to two-dimensional surfaces.) This result is known as the
spin–statistics theorem, while the two types of particles it describes are called bosons
(named after Satyendra Nath Bose) and fermions (named after Enrico Fermi). These
two classes of particles obey different rules for their possible occupation numbers, and
therefore give rise to distinct quantum statistics.

Any non-negative number of identical bosons can simultaneously occupy the
same energy level, corresponding to occupation numbers nℓ = 0, 1, 2, · · · . Physi-
cal examples of bosons include photons (particles of light), pions, helium-4 atoms and
the famous Higgs particle.

In contrast, it is impossible for multiple identical fermions to occupy the same
energy level, meaning that their only possible occupation numbers are nℓ = 0 and 1.
This behaviour is known as the Pauli exclusion principle (named after Wolfgang Pauli)
and has extremely important consequences, including the existence of chemistry and
life. Physical examples of fermions include electrons, protons, neutrons, neutrinos and
helium-3 atoms.

The reason multiple identical fermions cannot occupy the same energy level is
due to a feature of quantum mechanics, and not because they physically repel each
other. This paragraph will imprecisely describe how this works, for those who may
be curious, and can be skipped without any problem. Consider a system of identical
quantum particles occupying various energy levels. Loosely speaking, all observable
properties of this system depend on the square of the quantum function that defines
it. Interchanging any pair of indistinguishable particles must leave all these observable
properties unchanged. Just as

√
1 = ±1, there are two ways the underlying quantum

function can behave to leave its square unchanged: it can be completely symmetric or
completely antisymmetric under all possible interchanges. Bosons correspond to the
symmetric case, while fermions correspond to the antisymmetric case. At the same
time, if two identical particles occupy the same energy level, then the quantum func-
tion itself is unchanged (i.e., symmetric) when they are interchanged. In the fermionic
case, the resulting quantum function must therefore be simultaneously symmetric and
antisymmetric, which is only possible if it is exactly zero. In other words no systems
with multiple identical fermions in the same energy level can possibly exist.

Looking back at the example system of N = 2 particles with five energy levels in
the previous section, all 15 micro-states we wrote down are possible if the particles are
bosons. How many micro-states are allowed if the particles are fermions?

This difference in the possible micro-states ensures that bosons and fermions exhibit
different quantum statistics. We will now consider each case in turn.
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7.3 Bose–Einstein statistics

The quantum statistics of bosons is known as Bose–Einstein (BE) statistics,
named after Satyendra Nath Bose and Albert Einstein. As described above, to carry
out the sum over all micro-states in the grand-canonical partition function

Zg(β, µ) =
∑
i

e−β(Ei−µNi),

we first sum over all energy levels Eℓ, and then over all possible occupation numbers
nℓ ∈ N0 for each energy level.

Consider first the simple case of a system that only has a single energy level E0,
with energy E0. In this case, each micro-state ωi is uniquely described by its particle
number Ni, which is just the occupation number of E0. What is the energy Ei of micro-
state ωi with occupation number n0 = Ni?

Ei =

Summing over all possible occupation numbers for this single energy level, the Bose–
Einstein grand-canonical partition function for this system is

ZBE
g (β, µ) =

∞∑
n0=0

e−β(E0−µ)n0 =
∞∑

n0=0

[
e−β(E0−µ)

]n0
=

1

1− e−β(E0−µ)
. (84)

In the last step we recognized the geometric series

1

1− x
= 1 + x+ x2 + · · · ,

which only converges for x = e−β(E0−µ) < 1. For natural systems with β = 1/T > 0,
this condition requires E0 − µ > 0 or equivalently µ < E0. Since we can take all
Eℓ ≥ 0 without loss of generality, this constraint is consistent with the negative chemical
potential µ < 0 that we discussed in Unit 6.

At this point, it is straightforward to generalize to multiple energy levels Eℓ with
ℓ = 0, 1, · · · , L. For systems of non-interacting particles, the micro-state ωi defined by
the set of occupation numbers {nℓ} has energy and particle number

Ei =
L∑

ℓ=0

Eℓ nℓ Ni =
L∑

ℓ=0

nℓ. (85)

The general Bose–Einstein grand-canonical partition function is therefore

ZBE
g (β, µ) =

∞∑
n0=0

∞∑
n1=0

· · ·
∞∑

nL=0

exp

[
−β

L∑
ℓ=0

(Eℓ − µ)nℓ

]
.
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We can apply the identity e
∑

i xi =
∏

i e
xi to rewrite

exp

[
−β

L∑
ℓ=0

(Eℓ − µ)nℓ

]
=
(
e−β(E0−µ)n0

) (
e−β(E1−µ)n1

)
· · ·
(
e−β(EL−µ)nL

)
.

Recalling µ < Eℓ for all ℓ, by rearranging the terms we find

ZBE
g (β, µ) =

(
∞∑

n0=0

e−β(E0−µ)n0

)(
∞∑

n1=0

e−β(E1−µ)n1

)
· · ·

(
∞∑

nL=0

e−β(EL−µ)nL

)

=
L∏

ℓ=0

1

1− e−β(Eℓ−µ)
. (86)

This grand-canonical partition function defines the quantum Bose–Einstein statis-
tics of bosons. Its structure as the product of an independent contribution for each
energy level is reminiscent of the result ZN ∝ ZN

1 for the classical N -particle canonical
partition function discussed above. In such situations we say that the calculation fac-
torizes into a product of many simpler terms, allowing us to build up the full result on
the basis of much easier computations. Looking back to Eq. 83, we can also observe
factorization in the classical Maxwell–Boltzmann grand-canonical partition function,

ZMB
g (β, µ) = exp

[
L∑

ℓ=0

e−β(Eℓ−µ)

]
=

L∏
ℓ=0

exp
[
e−β(Eℓ−µ)

]
. (87)

In both cases factorization results from working with non-interacting particles. Starting
in Unit 9 we will consider non-ideal systems in which the particles can interact with
each other, where the absence of factorization will make analyses much more difficult.

7.4 Fermi–Dirac statistics

Next, the quantum statistics of fermions is known as Fermi–Dirac (FD) statistics,
named after Enrico Fermi and Paul Dirac. The derivation of the Fermi–Dirac grand-
canonical partition function is very similar to the Bose–Einstein case above. We again
proceed by summing over all energy levels Eℓ, and just have to account for the more
limited possible occupation numbers nℓ ∈ {0, 1} for each energy level.

Taking the same approach of first considering a simple system with only a single
energy level, Eq. 84 would just change to

ZFD
g (β, µ) =

1∑
n0=0

e−β(E0−µ)n0 = 1 + e−β(E0−µ).

Generalizing to multiple energy levels Eℓ with ℓ = 0, 1, · · · , L, the micro-state energies
Ei =

∑
ℓ Eℓ nℓ and particle numbers Ni =

∑
ℓ nℓ remain the same as in Eq. 85, and the
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computation again factorizes,

ZFD
g (β, µ) =

1∑
n0=0

1∑
n1=0

· · ·
1∑

nL=0

exp

[
−β

L∑
ℓ=0

(Eℓ − µ)nℓ

]

=

(
1∑

n0=0

e−β(E0−µ)n0

)(
1∑

n1=0

e−β(E1−µ)n1

)
· · ·

(
1∑

nL=0

e−β(EL−µ)nL

)

=
L∏

ℓ=0

[
1 + e−β(Eℓ−µ)

]
. (88)

This grand-canonical partition function defines the quantum Fermi–Dirac statistics of
fermions. In both this case and the case of classical Maxwell–Boltzmann statistics
there is no constraint on β(Eℓ − µ).

In Unit 8 we will take ZBE
g and ZFD

g as starting points to analyse quantum gases
of bosons and fermions, respectively. Before beginning those more detailed analyses,
let’s quickly compare the three types of statistics that we have derived in this unit, while
they are all close to hand.

7.5 The classical limit

In Section 7.1 we claimed that if the probability of multiple particles occupying
the same energy level is negligible, then the classical Maxwell–Boltzmann statistics
can be an excellent approximation to quantum statistics — both bosonic and fermionic.
We will wrap up this unit by demonstrating this result and clarifying the conditions that
correspond to this ‘classical limit’ of quantum statistics.

It is useful to start by asking when we should expect classical statistics to pre-
dict a non-negligible probability for multiple particles to occupy the same energy level,
leading to the over-counting problems that are solved by quantum statistics. This is
actually a question we have already considered, back in Section 3.4. There we used
the canonical ensemble to analyse classical spin systems with discrete energy lev-
els, finding that at low temperatures the systems are dominated by their lowest-energy
micro-states, with only exponentially suppressed corrections coming from any higher-
energy micro-states. In the present context, this corresponds to a classical prediction of
exponentially small probabilities for particles to occupy any energy levels with Eℓ > E0

— effectively guaranteeing that the lowest energy level E0 will be occupied by multiple
particles and classical statistics will break down.

In short, the low-temperature regime is where quantum and classical statistics
disagree, while high temperatures correspond to the classical limit of quantum
statistics. If you are not convinced by the argument leading to this conclusion, you can
find a more detailed derivation based on the equation of state and thermal de Broglie
wavelength in Section 3.5 of David Tong’s Lectures on Statistical Physics.

For now, we want to consider the grand-canonical ensemble at high tempera-
tures, to see whether the quantum and classical statistics we derived in the previous
sections become equivalent in this regime. However, it can be subtle to work with the
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grand-canonical ensemble at high temperatures, due to the dependence of the average
number of particles on the temperature. To demonstrate this subtlety, let’s compute the
average particle number ⟨N⟩(T, µ) starting from the grand-canonical partition function,
for both classical and quantum statistics.

For convenience, let’s collect our earlier results for the grand-canonical partition
functions corresponding to classical Maxwell–Boltzmann statistics (Eq. 87), the quan-
tum Bose–Einstein statistics of bosons (Eq. 86) and the quantum Fermi–Dirac statistics
of fermions (Eq. 88):

ZMB
g =

L∏
ℓ=0

exp
[
e−β(Eℓ−µ)

]

ZBE
g =

L∏
ℓ=0

1

1− e−β(Eℓ−µ)
ZFD

g =
L∏

ℓ=0

[
1 + e−β(Eℓ−µ)

]
.

Recalling log [
∏

i xi] =
∑

i log xi, the three corresponding grand-canonical potentials
Φ = −T logZg are

ΦMB = −T
L∑

ℓ=0

e−β(Eℓ−µ)

ΦBE = T
L∑

ℓ=0

log
[
1− e−β(Eℓ−µ)

]
ΦFD = −T

L∑
ℓ=0

log
[
1 + e−β(Eℓ−µ)

]
.

We are now ready to compute the average particle numbers. Using the result we
derived in Section 6.3,

⟨N⟩ = −∂Φ

∂µ
,

what are the average particle numbers resulting from the three grand-canonical poten-
tials above?

⟨N⟩MB =

⟨N⟩BE =

⟨N⟩FD =
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You should find that the average particle number in all three cases can be ex-
pressed as a sum over the average occupation numbers,

⟨N⟩ =
L∑

ℓ=0

⟨nℓ⟩ ,

where the corresponding average occupation numbers are

⟨nℓ⟩MB =
1

eβ(Eℓ−µ)

⟨nℓ⟩BE =
1

eβ(Eℓ−µ) − 1
⟨nℓ⟩FD =

1

eβ(Eℓ−µ) + 1
.

Note that ⟨nℓ⟩ ≥ 0 in all cases, and also ⟨nℓ⟩FD ≤ 1, as required for fermions. From
these results we see that the classical limit ⟨nℓ⟩BE ≈ ⟨nℓ⟩FD ≈ ⟨nℓ⟩MB corresponds to

eβ(Eℓ−µ) ± 1 ≈ eβ(Eℓ−µ) =⇒ eβ(Eℓ−µ) ≫ 1.

We can also confirm that this limit corresponds to ⟨nℓ⟩ ≪ 1 for all energy levels Eℓ and
all three types of statistics, confirming our starting point of very small probabilities for
multiple particles to occupy the same energy level.

Now we can appreciate the subtlety promised above, because

β(Eℓ − µ) =
Eℓ − µ

T
≫ 1. (89)

does not look like a high-temperature limit! Indeed, if we consider the naive high-
temperature limit β = 1/T → 0 with fixed (Eℓ − µ), we would find large average occu-
pation numbers,

⟨nℓ⟩MB ≈ 1 ⟨nℓ⟩BE →∞ ⟨nℓ⟩FD ≈
1

2
.

In addition to implying non-negligible probabilities for multiple particles to occupy the
same energy level, this result indicates that higher temperatures in the grand-canonical
ensemble lead to larger particle numbers in total — at least when (Eℓ − µ) is fixed.

In order to balance this effect, we need to adjust the other parameter offered
by the grand-canonical ensemble: the chemical potential µ. Specifically, in order to
satisfy Eq. 89 in the high-temperature limit, we need Eℓ − µ ≫ T , which requires
that µ → −∞ as T → ∞. Making the chemical potential more negative reduces the
probability of having large numbers of particles in the system, at the same time as the
smaller β increases the number of energy levels that these particles can occupy with
non-negligible probability. Taken together, these two effects guarantee that there are
many more accessible energy levels than there are particles, allowing us to conclude
that the true high-temperature limit in which quantum statistics becomes classical is

−µ≫ T ≫ Eℓ =⇒ Eℓ − µ

T
≫ 1. (90)

This corresponds to the right edge of the plot on the next page, where we can confirm
that all three sets of statistics predict essentially the same average occupation number
⟨nℓ⟩ for any energy level Eℓ.
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In the low-temperature regime Eℓ−µ
T
≪ 1 corresponding to the left portion of

the plot, we see dramatically different behaviour for the three cases. The classical
Maxwell–Boltzmann prediction for the average occupation number grows exponentially,
while the quantum Bose–Einstein prediction diverges as either Eℓ → µ or β → 0 with
(Eℓ − µ) fixed, and the Fermi–Dirac prediction slowly approaches its maximum possi-
ble value ⟨nℓ⟩FD → 1. In the next unit we will explore these results in more detail by
considering specific examples of quantum gases of bosons and fermions.
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Unit 8: Quantum gases

8.1 The photon gas

8.1.1 Massive bosons in a box

In Section 7.3 we derived the grand-canonical partition function (Eq. 86) that de-
fines quantum Bose–Einstein statistics for systems of non-interacting bosons,

ZBE
g (β, µ) =

L∏
ℓ=0

1

1− e−β(Eℓ−µ)
.

Following the quantum approach, we obtained this result by considering in turn each
energy level Eℓ with energy Eℓ, and summing over all possible occupation numbers that
it could have. For bosons, nℓ ∈ N0 produces sums that only converge if µ < Eℓ for all ℓ.
The corresponding grand-canonical potential is

ΦBE = −T logZBE
g = T

L∑
ℓ=0

log
[
1− e−β(Eℓ−µ)

]
,

from which we can determine the large-scale properties of the system, including its
average internal energy ⟨E⟩, average particle number ⟨N⟩, entropy S, and pressure P .

To do so, we have to specify the energy levels of the particles that compose
the system of interest, including any degenerate energy levels {Em, En} with the same
energy Em = En for m ̸= n. One example of this that we have already considered is
the analysis of non-relativistic ideal gas particles in Section 4.1. For a single particle
with mass m in a volume V = L3, we adopted an ansatz for the quantized energies,

E(kx, ky, kz) =
ℏ2π2

2mL2

(
k2
x + k2

y + k2
z

)
= εk2 ε ≡ ℏ2π2

2mL2
, (91)

where the positive integers kx,y,z = 1, 2, · · · specify the possible momentum magnitude
of the particle, p = ℏ π

L
k.

Compared to Section 4.1, where kx,y,z = 0 was allowed, here we have adjusted
our ansatz to require strictly positive values. This adjustment is required by another
feature of quantum mechanics, which this paragraph will imprecisely describe for the
curious. This description can be skipped without any problem, with the adjusted ansatz
simply taken as input. The feature at play here is known as Heisenberg’s uncertainty
principle (named after Werner Heisenberg), which relates the precision with which the
position and momentum of each particle can simultaneously be defined :

(∆x) (∆px) ≳ ℏ

and similarly for y and z. The ‘≳’ sign here hints that we’re ignoring irrelevant factors
of 2 and π, while ‘∆’ refers to the precision (or uncertainty) with which x and px are
defined. Since the particle is within a volume V = L3, we know ∆x ≲ L. Therefore the
uncertainty principle requires ∆px ≳ ℏ/L, which is only possible if px is non-zero, cor-
responding to kx ≥ 1. Note that smaller lengths L imply larger momenta and therefore
larger energies.
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With this adjusted ansatz, kx,y,z ≥ 1, we can adapt an exercise from Section 4.1
and ask: What are the lowest energies and the degeneracies of the corresponding
energy levels?

8.1.2 Massless photons

Now we will adapt these considerations to analyse a gas of photons, massless
bosonic quantum particles of light. For our purposes, with no prior knowledge of par-
ticle physics, we can define photons simply by specifying their energy levels. Clearly
E ∝ 1/m from Eq. 91 is problematic for massless particles with m = 0. Instead, a
photon’s energy is proportional to the magnitude of its momentum,

Eph(p) = cp = c
√

p2x + p2y + p2z.

Here the speed of light c is really just a unit conversion factor (like the Boltzmann
constant) that we could set to c = 1 by working in appropriate units.

This relation is connected to the non-relativistic energy E = p2

2m
that we consid-

ered in Section 4.1 through the general expression

E2 =
(
mc2

)2
+ (pc)2 ,

which is sometimes called Einstein’s triangle. When m = 0, or m≪ p/c more generally,
this reproduces the ultra-relativistic relation above. For stationary particles with p = 0 it
reduces to the famous ‘mass-energy’ E = mc2, while the non-relativistic kinetic energy
is recovered for m≫ p/c:

For photons in a volume V = L3, we again have quantized energies,

Eph(k) = ℏc
π

L
k = ℏc

π

L

√
k2
x + k2

y + k2
z kx,y,z = 1, 2, · · · , (92)
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with the same p = ℏ π
L
k as in Eq. 91. Another feature of photons is that each ‘wavenum-

ber’ (kx, ky, kz) corresponds to two degenerate energy levels with the same Eph(k). This
arises from photons’ connection to electric and magnetic fields, which allows each pho-
ton to be polarized in two different ways. If there is interest we can discuss this further
in a tutorial, but it is not relevant to the statistical mechanics of photons, for which we
can take this double degeneracy as input. Note that this factor of two multiplies all other
degeneracies, for instance from permutations of (kx, ky, kz).

Because light is an electromagnetic wave, it is convenient to work in terms of
photons’ wavelength λ and angular frequency ω = 2πf (not to be confused with generic
micro-states ωi). Together, the wavelength and frequency determine the speed of the
wave’s propagation, in this case the speed of light

c =
λω

2π
.

In quantum physics, a particle’s momentum is related to its de Broglie wavelength, im-
plying that in a volume V = L3 the wavelengths are also quantized as illustrated in the
picture below (from Schroeder’s Introduction to Thermal Physics).

Specifically, the length L must be an integer multiple of half a wavelength,

L = k
λ

2
=⇒ c =

L

k

ω

π
=

ω
π
L
k
,

and we can rewrite Eq. 92 as
Eph(ω) = ℏω. (93)

Since λ ∝ c/ω, we can observe the relation between length and energy scales men-
tioned above, in the discussion of Heisenberg’s uncertainty principle. Low (infrared)
frequencies correspond to small energies and long wavelengths, while high (ultravio-
let) frequencies correspond to large energies and short wavelengths.

We are now ready to write down the grand-canonical potential for a photon gas:

Φph = T

L∑
ℓ=0

log
[
1− e−β(Eℓ−µ)

]
= 2T

∑
k⃗

log
[
1− e−β(Eph(k)−µ)

]
,
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where the factor of 2 in the final expression accounts for the doubly degenerate energy
levels. We can simplify this expression by appreciating that photons are easy to create
and absorb. For example, every time a light is turned on, it starts emitting a constant
flood of photons (with wavelengths of several hundred nanometres). Similarly, food
in a microwave oven gets hot by absorbing many lower-energy photons (with longer
wavelengths around 12 centimetres). In general an enormous number of photons is
required to make even a small change in energy, so that Eq. 81 implies the chemical
potential of a photon gas is negligible,15

µ =
∂E

∂N

∣∣∣∣
S

≈ 0 =⇒ Φph ≈ 2T
∑
k⃗

log
[
1− e−βEph(k)

]
.

Since we have kx,y,z ≥ 1, the strictly positive energies Eph(k) ∝ k/L > 0 ensure Bose–
Einstein statistics is still convergent even with µ = 0.

Another simplification comes from considering the photon gas in a volume that is
large compared to the typical wavelengths of the photons. Then the energies Eph(k) ∝
k/L are very closely spaced, and we can approximate the sums over integer kx,y,z as
integrals over continuous real k̂x,y,z,16

Φph ≈ 2T

∫
log
[
1− e−βEph(k̂)

]
dk̂x dk̂y dk̂z .

Since the energy Eph(k̂) depends only on the magnitude k̂, we can profit from convert-
ing to spherical coordinates. When we do so, we have to keep in mind that kx,y,z > 0
corresponds to the positive octant of the sphere,∫ ∞

0

dk̂x

∫ ∞

0

dk̂y

∫ ∞

0

dk̂z =

∫ ∞

0

k̂2 dk̂

∫ π/2

0

sin θ dθ

∫ π/2

0

dϕ =
π

2

∫ ∞

0

k̂2 dk̂,

so that
Φph ≈ πT

∫ ∞

0

k̂2 log
[
1− e−βEph(k̂)

]
dk̂ .

We can finally change variables to integrate over the angular frequency ω = c π
L
k, with

Eph = ℏω, to find

Φph ≈ πT

(
L

cπ

)3 ∫ ∞

0

ω2 log
[
1− e−βℏω] dω =

V T

π2c3

∫ ∞

0

ω2 log
[
1− e−βℏω] dω, (94)

recognizing L3 = V . With this grand-canonical potential derived, we just need to take
the appropriate derivatives to determine the thermodynamics and equation of state for
the photon gas.

15If you are not convinced by the argument leading to this conclusion, you can find alternative analyses
in Section VI.C of “The elusive chemical potential” by Ralph Baierlein.

16We mentioned this approximation in a footnote in Section 4.1, and you can find further discussion in
Section 6.7 of Dan Schroeder’s Introduction to Thermal Physics.
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8.2 The sun and the void

It will be very interesting to use Φph in Eq. 94 to analyse the average internal
energy for a photon gas. With µ = 0, Eq. 78 from Section 6.3 becomes

⟨E⟩ph = −T 2 ∂

∂T

[
Φph

T

]
=

∂

∂β
[βΦph] .

To begin, let’s consider the energy density, as an integral over photon frequencies:

⟨E⟩ph

V
=

∫ ∞

0

P (ω) dω,

where the function P (ω) is known as the spectral density, or simply the spectrum. (It’s
not the pressure!) What is the spectrum for a photon gas?

You should find

P (ω) =

(
ℏ

π2c3

)
ω3

eβℏω − 1
, (95)

which is known as the Planck spectrum, named after Max Planck. We can equally
well consider the Planck spectrum P (λ) as a function of the wavelength λ = 2πc/ω, by
changing variables in the expression above:
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You should find

P (λ) =

(
16π2ℏc
λ5

)
1

e2πβℏc/λ − 1
, (96)

which is plotted for three temperatures T = 1/β in the figure below, which comes from
Wikimedia Commons. (The plot divides our P (λ) by 4π steradian and multiplies it by
c to convert from a spectral density to a spectral power per unit area per unit of solid
angle. For our purposes only the functional form is significant.)

Considering the high-energy ultraviolet (UV) limit of short wavelengths λ, we can
see from Eq. 96 that P (λ) is exponentially suppressed, which overwhelms the diverging
factor ∝ 1/λ5 in parentheses. In the low-energy infrared (IR) limit, the large λ has the
same effect that a large temperature (β ≪ 1) would have: e2πβℏc/λ − 1 ≈ 2πβℏc/λ and

P (λ) ≈
(
16π2ℏc
λ5

)
λ

2πβℏc
=

8πT

λ4
.

The connection to large temperatures indicates that this is what classical statistical
mechanics would predict for the spectrum of light. It is known as the Rayleigh–Jeans
spectrum, named after the third Baron Rayleigh and James Jeans. Recall that the
classical approach sums over all possible energies for each degree of freedom, cor-
responding to a light-emitting object (historically known as a black body ) emitting light
of all wavelengths λ. According to the classical Rayleigh–Jeans spectrum, in the limit
λ → 0 this light would carry an infinite amount of energy, a problem that became
known as the ultraviolet catastrophe. Planck described his 1900 derivation of the UV-
suppressed P (λ) as “an act of desperation” to avoid this problem; it turned out to be
one of the first steps towards quantum physics.
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Another noteworthy feature of the Planck spectrum shown above is that as the
temperature increases, the maximum of P (λ) moves to shorter wavelengths and cor-
respondingly larger energies. It is not a coincidence that the peak of the spectrum for
T ≈ 5000 K falls within the wavelengths of visible light, roughly 400–700 nm. As shown
in the figure below, also from Wikimedia Commons, the amount of sunlight that reaches
the surface of the earth is also largest for visible wavelengths, which are visible to us
because we have evolved to use this sunlight.

Taking into account the absorption of some sunlight by molecules in the atmo-
sphere, we can see from the figure below that the energy spectrum of the sunlight
reaching the top of the atmosphere is quite close to a Planck (or ‘blackbody’) spectrum
with temperature T ≈ 5778 K. The agreement isn’t perfect, which is to be expected
since the Planck spectrum relies on the non-trivial assumption of an ideal gas of non-
interacting particles. Despite that caveat, numerically fitting the measured sunlight to
the Planck spectrum is how this ‘effective’ surface temperature of the sun is deter-
mined. This same fitting procedure can even be done for distant stars, with red stars
corresponding to relatively low temperatures T ≲ 3500 K and blue stars corresponding
to relatively high temperatures T ≳ 10 000 K.

Even more remarkably, we can use the Planck spectrum to determine the temper-
ature of intergalactic space. Rather than being empty, these voids are actually perme-
ated by a very low-temperature photon gas left over from the Big Bang roughly 14 bil-
lion years ago. This photon gas is known as the cosmic microwave background (CMB),
and carries information about the early evolution of the universe, including some of the
strongest evidence for the existence of dark matter.

The picture below is a famous visualization of the CMB, provided by the European
Space Agency and produced from measurements taken by their ‘Planck’ satellite. For
each point in the sky the satellite measures the photon spectrum reaching it from that
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direction. The contributions from stars and galaxies are subtracted, and the remaining
data are fit to the Planck spectrum to find the temperature of the intergalactic CMB
photon gas at that point. From point to point, there are only small temperature fluctua-
tions around the average TCMB ≈ 2.725 K. That average temperature is subtracted and
the fluctuations themselves are shown below, with warmer red-coloured regions only
∆T ≈ 0.0002 K hotter than the cooler blue-coloured regions.

The final figure below illustrates such a fit of CMB data to the Planck spectrum,
using measurements taken by the Cosmic Background Explorer (COBE) satellite and
published in 1990. (This version of the figure is adapted from that publication, and
copied from Schroeder’s Introduction to Thermal Physics.) The squares are the mea-
sured data, and their size represents a cautious estimate of uncertainties. They are
plotted with the frequency f = ω/(2π) on the horizontal axis, where f ≈ 3 × 1011 s−1

corresponds to a low-energy wavelength λ = c/f ≈ 1 mm, roughly 1000 times longer
than the wavelengths of visible light. The solid line is a fit to the data, which produces
TCMB = 2.735± 0.060 K. While more recent satellites have increased the precision with
which we know TCMB, this first result was awarded the 2006 Nobel Prize in Physics.
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Even though we derived the Planck spectrum by assuming an ideal gas of non-
interacting photons, we see that it provides an excellent mathematical model for real
physical systems, stretching from the hottest to the coldest places in the universe.

8.3 Equation of state for the photon gas

Having looked in some detail at the integrand for the photon gas energy density,
Eq. 95, let’s complete the integration, which is related to the Riemann zeta function:∫ ∞

0

x3

ex − 1
dx = Γ(4)ζ(4) =

π4

15
.

Using this result, what is the average energy density for an ideal photon gas?

You should find a result proportional to T 4, which appears significantly more com-
plicated than Eq. 52 for the energy of an N -particle non-relativistic ideal gas in the
canonical ensemble. This is related to the fluctuating particle number now that we are
working in the grand-canonical ensemble. It’s possible to simplify the current situation
by computing the average photon number from Eq. 76,

⟨N⟩ph = − ∂

∂µ
Φph

∣∣∣∣
µ=0

= − V T

π2c3

∫ ∞

0

ω2 ∂

∂µ
log
[
1− e−βℏωeβµ

]
dω

∣∣∣∣
µ=0

,

recalling µ = 0 for photon gases. The calculation is quite similar to that for the average
internal energy density, now involving the integral∫ ∞

0

x2

ex − 1
dx = Γ(3)ζ(3) = 2ζ(3).

Using this result, what is the average particle number density for an ideal photon gas?
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You should find a result proportional to V T 3 ∝ ⟨E⟩ph /T , so that

⟨E⟩ph =
π2

15ℏ3c3
V T 4 =

π4

30ζ(3)
⟨N⟩ph T. (97)

The functional form is the same as Eq. 52, with a larger numerical factor

π4

30ζ(3)
=

Γ(4)ζ(4)

Γ(3)ζ(3)
≈ 2.7

compared to 3
2

for the classical non-relativistic case.

To get the rest of the way to the equation of state for the photon gas, we need to
compute the radiation pressure

Pph = − ∂

∂V
⟨E⟩ph

∣∣∣∣
Sph

,

which requires first figuring out the condition of constant entropy Sph for a photon gas.
From Eq. 79 with µ = 0, we have

Sph =
⟨E⟩ph − Φph

T
.

Looking back to Eq. 94 for the grand-canonical potential, we see

Φph

T
=

V

π2c3

∫ ∞

0

ω2 log
[
1− e−βℏω] dω =

V T 3

π2ℏ3c3

∫ ∞

0

x2 log
[
1− e−x

]
dx,

changing variables to x = βℏω = ℏω/T . The final factor in this expression is yet another
delightful integral, ∫ ∞

0

x2 log
[
1− e−x

]
dx = −2ζ(4) = −π4

45
.

Since this gives us S ∝ V T 3, we can conclude that the condition of constant entropy
for a photon gas is V T 3 = constant, in contrast to the V T 3/2 dependence of Eq. 53 for
classical non-relativistic particles.

At this point it is straightforward to take the derivative of the average internal
energy if we express the constant-entropy condition as T = bV −1/3, with b a constant:
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For the resulting equation of state for the photon gas, you should find

PphV =
1

3
⟨E⟩ph =

π4

90ζ(3)
⟨N⟩ph T. (98)

The functional form is the same as the (classical, non-relativistic) ideal gas law, with
just an additional numerical factor of

π4

90ζ(3)
=

ζ(4)

ζ(3)
≈ 0.9004.

8.4 Non-relativistic ideal fermion gas

For the remainder of this unit we will apply the grand-canonical ensemble to inves-
tigate ideal gases of non-interacting fermions. We again take the approach of quantum
statistics, defining micro-states by summing over the possible occupation numbers nℓ

for each energy level Eℓ with (possibly not unique) energy Eℓ. In contrast to the bosonic
case considered above, the only possible occupation numbers are now nℓ = 0 and 1,
since the Pauli exclusion principle prevents multiple identical fermions from occupying
the same energy level.

In Section 7.4 we derived the grand-canonical partition function (Eq. 88) that de-
fines quantum Fermi–Dirac statistics for systems of non-interacting fermions,

ZFD
g (β, µ) =

L∏
ℓ=0

[
1 + e−β(Eℓ−µ)

]
,

in terms of the inverse temperature β = 1/T and chemical potential µ. Recall that it
is possible for systems of fermions to have any value for the chemical potential, either
positive or negative, in contrast to the systems of bosons we considered above. From
the corresponding grand-canonical potential,

ΦFD = −T logZFD
g = −T

L∑
ℓ=0

log
[
1 + e−β(Eℓ−µ)

]
we can determine the large-scale properties of the system, including its average inter-
nal energy ⟨E⟩, average particle number ⟨N⟩, entropy S, and pressure P , along with
the equation of state relating these quantities.

Concrete calculations require specifying the energy levels of the system, including
the degeneracies of any distinct energy levels {Em, En}, m ̸= n, with the same energy
Em = En. In this section we’ll consider non-relativistic particles, expanding on our
review of such systems in Section 8.1. In a volume V = L3, the energy levels are
defined by the non-zero quantized energies

E(k) = ε
(
k2
x + k2

y + k2
z

)
ε ≡ ℏ2π2

2mL2
kx,y,z = 1, 2, · · · .

In addition to the usual degeneracies coming from permutations of (kx, ky, kz) that we
have already analysed, for each distinct k⃗ typical fermions such as electrons have two
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degenerate energy levels with the same energy E(k). This arises from a quantum prop-
erty called spin, rather than the two polarizations for photons discussed in Section 8.1:
‘spin-up’ and ‘spin-down’ electrons with everything else the same (including their ener-
gies) occupy distinct, degenerate energy levels. This property of spin is related to the
spin–statistics theorem mentioned in Section 7.2, and is another topic we can discuss
further in a tutorial if there is interest. For our statistical mechanics purposes it will
suffice simply to incorporate this information into our ansatz as input.

Thus the grand-canonical potential for an ideal gas of non-relativistic fermions is

Φf = −T
L∑

ℓ=0

log
[
1 + e−β(Eℓ−µ)

]
= −2T

∑
k⃗

log

[
1 + exp

(
− ℏ2π2k2

2mL2T
+

µ

T

)]
.

We can again proceed by considering the gas in a large volume and approximating the
sum over discrete integer kx,y,z by integrals over continuous real k̂x,y,z:

Φf ≈ −2T
∫

log

[
1 + exp

(
− ℏ2π2k̂2

2mL2T
+

µ

T

)]
dk̂x dk̂y dk̂z .

Converting to spherical coordinates and carrying out the angular integrations over the
π
2

solid angle of the octant of the sphere with kx,y,z > 0, we have

Φf ≈ −πT
∫ ∞

0

k̂2 log

[
1 + exp

(
− ℏ2π2k̂2

2mL2T
+

µ

T

)]
dk̂ .

In the same spirit as the change of variables we carried out to integrate over photon

frequencies ω, let’s now work in terms of the fermion energy E =
ℏ2π2

2mL2
k̂2:

As for the case of a photon gas, Eq. 94, you should find Φf ∝ V T . It will be
convenient to keep this grand-canonical potential in the form of an integral over the
energy E, which we will evaluate after taking appropriate derivatives to determine the
thermodynamics and equation of state for non-relativistic fermions.

8.5 Low-temperature equation of state

In contrast to the photon gas, we need to retain the chemical potential in our anal-
yses of non-relativistic fermions, which makes these calculations more complicated. To
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achieve a different simplification, we can focus on the low-temperature regime where
we expect quantum Fermi–Dirac statistics to differ significantly from the classical case
we considered back in Section 4.1. As we saw in Section 7.5, it is only at high temper-
atures, with large negative chemical potential, that the classical approach provides a
good approximation to the true quantum physics.

To see how low temperatures simplify the analysis of the non-relativistic fermion
gas, it will prove profitable to first consider the average particle number

⟨N⟩f = −
∂

∂µ
Φf,

using the grand-canonical potential we computed above. In analogy to the Planck
spectrum we derived for the photon gas in Section 8.2, we first express the average
particle number density as an integral over energies,

⟨N⟩f
V

=

√
2m3

π2ℏ3

∫ ∞

0

F (E)
√
E dE, (99)

where the function F (E) is known as the Fermi function. In contrast to the Planck
spectrum, some constant factors are kept separate from F (E), so that it more closely
resembles the average occupation numbers ⟨nℓ⟩ we computed in Section 7.5:

As usual in the grand-canonical approach, the average particle number density
and Fermi function depend on the inverse temperature β and the chemical potential µ.
Expressing F (E) in terms of the dimensionless ratios E/µ and T/µ,

F (E) =
1

exp
[
E−µ
T

]
+ 1

=
1

exp
[
µ
T

(
E
µ
− 1
)]

+ 1
=

1(
exp

[
E
µ
− 1
])µ/T

+ 1

,

we can highlight the two main features of the figure on the next page, which plots the
Fermi function against E/µ for various temperatures T/µ. Here we assume a positive
chemical potential, µ > 0, which we will soon show is required for low-temperature
non-relativistic fermion gases.

First, we can see that the point E = µ, where F (E) = 1/2 for any temperature, is
a threshold at which the behaviour of the Fermi function changes. For larger energies
E > µ, the factor exp

[
E
µ
− 1
]
> 1 and drives F (E) → 0 as the energy increases. For

smaller energies E < µ, the factor exp
[
E
µ
− 1
]
< 1 and becomes negligible if raised to
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a sufficiently large power µ
T

, leaving F (E)→ 1. These two asymptotic limits reflect the
possible energy level occupation numbers for fermions, nℓ = 0 and 1. Second, smaller
temperatures cause much more rapid approach to these two limits, with the exponen-
tial factor either enhanced (if E > µ) or suppressed (if E < µ) by a power µ/T ≫ 1.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

F(E)

E/µ

T = µ
T = µ/2

T = µ/10

T = µ/100

Therefore, for small temperatures T ≪ µ, we can simplify our calculations by
approximating the Fermi function as a step function,

F (E) ≈
{

1 for 0 ≤ E < µ
0 otherwise . (100)

Using this approximation, what is the resulting average particle number density?

You should find a result proportional to µ3/2 but independent of T . The tempera-
ture independence turns out to be the leading-order behaviour of a more general result
that can be organized in powers of T/µ ≪ 1, through a method known as the Som-
merfeld expansion (named after Arnold Sommerfeld). The µ3/2 dependence on the
chemical potential is something we could have predicted before doing the explicit cal-
culation. This is because the step function in Eq. 100 corresponds to a single fermion
occupying each and every energy level with Eℓ < µ, while all energy levels with Eℓ > µ
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are unoccupied. Since E(k) ∝ k2, summing over all kx,y,z for which E(k) < µ corre-
sponds to computing (a portion of) the volume of a sphere of radius rk =

√
µ. This

volume is proportional to r3k = µ3/2, in agreement with our result above. Inverting that
result defines the Fermi energy, the maximum fermion energy at zero temperature:

EF = µ =
ℏ2

2m

(
3π2 ⟨N⟩f

V

)2/3

. (101)

Like the step-function approximation to the Fermi function, this equality between the
Fermi energy and the chemical potential is only exact at zero temperature, with 0 <
T ≪ EF introducing small corrections discussed in Section 8.8.

Let’s compute the average energy density of the non-relativistic fermion gas at low
temperatures. Rather than taking another derivative of the grand-canonical potential,
we can note from Eq. 85 and from our work on the photon gas in Section 8.3 that

⟨E⟩f
V

=

√
2m3

π2ℏ3

∫ ∞

0

E F (E)
√
E dE . (102)

That is, instead of simply counting the number of fermions in the system, we need to
add up their energies, introducing an extra factor of E compared to Eq. 99. Still using
the low-temperature step-function approximation for the Fermi function in Eq. 100, what
is the average energy density?

You should find
⟨E⟩f =

3

5
µ ⟨N⟩f , (103)

which means that the average energy of each fermion in the low-temperature ideal gas,
⟨E⟩f / ⟨N⟩f, is three-fifths of the Fermi energy EF = µ.

In particular, we find that ideal gases of non-relativistic fermions have positive
internal energy even as the temperature approaches absolute zero, T → 0.

This can be understood by recalling that the lowest-energy pair of degenerate
energy levels can each hold only a single fermion, forcing any additional fermions to
‘fill’ energy levels with larger energies Eℓ > 0, up to the Fermi energy. It is a stark
contrast to the ⟨E⟩ = 3

2
NT we found for classical ideal gases in the canonical ensemble

in Eq. 52, as well as the ⟨E⟩ph ≈ 2.7 ⟨N⟩ph T ∝ T 4 we more recently computed in
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Eq. 97 for a grand-canonical quantum gas of photons. In both of those cases the
average energy vanishes in the zero-temperature limit. This is because all the particles
in those classical and bosonic systems are able to occupy the lowest energy level at
low temperatures, with exponentially small probabilities ∝ e−Eℓ/T for particles to occupy
any energy levels with Eℓ > E0.

This picture of fermions filling energy levels up to the Fermi energy also clarifies
why the chemical potential for a fermion gas must be positive at low temperatures.
Recall Eq. 81 for the chemical potential,

µ =
∂E

∂N

∣∣∣∣
S,V

,

which we derived from the generalized thermodynamic identity in Section 6.3. Let’s
use this to consider what happens when we increase the number of particles in a zero-
temperature fermion gas. In this limit T → 0, there is only the single quantum micro-
state described above, with all energy levels filled below the Fermi energy EF and
empty above EF . Adding particles, ∆N > 0, doesn’t increase the number of accessible
micro-states, and therefore doesn’t increase the entropy Sf = −

∑M
i=1 pi log pi = 0,

satisfying the constant-entropy condition required by this equation. However, it does
increase the energy, because the added particles must fill the first available energy
levels, just above the Fermi energy. That is, ∆E = EF∆N > 0, and we find µ =
EF > E0 ≥ 0 as claimed earlier in this section. It is an interesting but lengthy exercise
(discussed in Section 8.8) to show that the chemical potential becomes negative as the
temperature increases and we approach the classical limit.

To get the rest of the way to the low-temperature equation of state for ideal gases
of non-relativistic fermions, we need to compute the pressure

Pf = −
∂

∂V
⟨E⟩f

∣∣∣∣
N,Sf

.

As we just discussed, the single accessible micro-state for T → 0 automatically satis-
fies the condition of constant entropy, Sf = 0. Applying Eq. 101 that relates the chemical
potential to the average particle number density, we have

⟨E⟩f =
3

5
µ ⟨N⟩f =

3

5

(
ℏ2

2m

)(
3π2

V

)2/3

⟨N⟩5/3f .

This is all we need to determine the pressure, which we can relate to the energy density,
the Fermi energy EF = µ and the particle number density:
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In particular, we can see that the pressure (like the energy) remains positive even as
the temperature approaches absolute zero, with

Pf =
(
3π2
)2/3 ℏ2

5m
ρ
5/3
f , (104)

where we define the density ρf = ⟨N⟩f /V . This positive pressure in the T → 0 limit is
not due to any direct force between the fermions, which remain non-interacting in this
ideal gas. It is a purely quantum effect resulting from the Pauli exclusion principle.

As we saw earlier in this section, the temperature independence of the pressure
Pf is due to approximating the low-temperature Fermi function as a step function in
Eq. 100, and systematic corrections to this approximation can be computed through
a Sommerfeld expansion. Even without getting into such detailed calculations, we
know that in the high-temperature classical regime the quantum ideal gas of massive
fermions will be well approximated by the classical ideal gas we considered in Sec-
tion 4.4, with equation of state

PV = NT =⇒ P =
N

V
T = ρT. (105)

In words, at high temperatures the pressure depends linearly on the temperature, with
the slope corresponding to the density ρ. The plot below (produced by this Python
code) shows how the pressure changes from a positive constant as T → 0 to this lin-
ear behaviour at higher temperatures.

0
T

0

P

Fermion gas

8.6 Type-Ia supernovas

The positive pressure that remains for a fermion gas even at zero temperature,
Eq. 104, is known as the degeneracy pressure. (This use of the word ‘degeneracy’
is unrelated to its other use describing multiple energy levels with the same value of
the energy.) The degeneracy pressure plays a key role in a certain type of supernova
explosions of stars — a famous astrophysical phenomenon.

To begin exploring this, note that the temperature doesn’t need to be exactly zero
in order for the degeneracy pressure to be significant. The temperature just needs to
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be small compared to the Fermi energy, T ≪ EF . From Eq. 101 we see that EF ∝ ρ
2/3
f

increases for larger densities ρf = ⟨N⟩f /V . While the densities of stars can be very
large, due to the enormous amount of matter that is squeezed together by gravitational
attraction, these extreme conditions can also create very high temperatures.

For reference, everyday solids have densities around 1028–1029 atoms per cubic
metre (roughly Avogadro’s number per cubic centimetre). In the case of metals, the
density of conducting electrons (a gas of fermions that are not bound to particular
atoms) is similar, leading to Fermi energies EF ∼ 104 K, very large compared to ev-
eryday temperatures. Perhaps surprisingly, the average density of the sun is not much
different, around 1030 atoms per cubic metre, corresponding to EF ∼ 105 K. This is be-
cause the sun’s much larger gravitational forces are counter-balanced by the radiation
pressure coming from the fusion of hydrogen and helium nuclei. That fusion also heats
up the core of the sun to T ∼ 107 K ≫ EF , making our low-temperature derivations
above inapplicable.

Something interesting happens when this hydrogen and helium ‘fuel’ is exhausted
and the radiation pressure decreases precipitously. This causes stars to be gravitation-
ally compressed into much denser and more compact objects. The precise chain of
events depends on the mass of the star. Stars with masses comparable to our sun
turn into white dwarfs with radii comparable to the radius of the earth, roughly a hun-
dred times smaller than that of the sun. In other words, the density of a white dwarf is
ρ ∼ (100)3ρsun ∼ 1036 atoms per cubic meter, equivalent to a mass density around one
tonne per cubic centimetre.

The corresponding white dwarf Fermi energy is

EF ∼
(

ρ

ρsun

)2/3

E
(sun)
F ∼

(
106
)2/3

105 ∼ 109 K.

Even for a young white dwarf that retains its initial core temperature of roughly ten
million kelvin, we have T ∼ 107 K≪ EF and can accurately describe the star using the
low-temperature ideal (non-interacting) fermion gas we analysed above. In particular,
the degeneracy pressure, Eq. 104, coming from the electrons in the white dwarf is
what stabilizes these stars and prevents them from collapsing further into even denser
objects such as neutron stars or black holes.

That gravitational collapse could trigger a supernova explosion, but won’t hap-
pen for a white dwarf in isolation — these stars will happily cool for trillions of years,
supported by their degeneracy pressure, until they reach thermal equilibrium with the
∼2.725 K cosmic microwave background radiation we discussed in Section 8.2. (The
coldest known white dwarfs have cooled to temperatures of thousands of kelvin over
the past ∼14 billion years.) Things become more interesting for a white dwarf in a
binary system with a companion star. If this companion star is still burning hydrogen
or helium through nuclear fusion, it will emit matter that is then captured by the white
dwarf, slowly increasing the white dwarf’s mass. Such a binary system is pictured on
the next page, in an artist’s illustration provided by the European Space Agency.
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As the white dwarf accumulates the matter emitted by its companion, its mass
and its density steadily increase. As the mass of the white dwarf approaches a value
roughly 40% larger than the mass of our sun, known as the Chandrasekhar limit
(named after Subrahmanyan Chandrasekhar), its density becomes large enough for
new types of nuclear fusion reactions to occur. Instead of hydrogen or helium, which
the white dwarf has already burned, these new fusion reactions involve carbon and
oxygen, which remain present in abundance. In just a few seconds, these fusion re-
actions run away, increase the temperature of the white dwarf to billions of kelvin, and
blast it apart in a supernova explosion about five billion times brighter than the sun.

For obscure historical reasons, these particular stellar explosions are known as
type-Ia (“one-A”) supernovas. The degeneracy pressure of low-temperature fermion
gases plays a crucial role in these supernovas, by ensuring that a specific amount of
mass has to build up in order to trigger the explosion. The resulting regularity of type-Ia
supernovas allows them to be used as “standard candles” providing a consistent mea-
sure of astronomical distances. This in turn enabled the discovery that the expansion
of the universe is accelerating (a phenomenon popularly called ‘dark energy’), which
was awarded the 2011 Nobel Prize in Physics.

8.7 Relativistic ideal fermion gas

Gases of relativistic fermions also play important roles in nature. In fact, by
changing units we can appreciate that the white dwarf Fermi energy discussed above,
EF ∼ 109 K ∼ 0.3 MeV is comparable to the 0.511 MeV mass-energy of electrons, sug-
gesting that relativistic effects may be non-negligible in white dwarfs. Such effects are
indeed crucial to the computation of the Chandrasekhar limit mentioned above.

While full calculations for massive relativistic particles are beyond the scope of
this module, we can take advantage of our earlier analyses of gases of massless
photons to quickly obtain results for similar gases of massless fermions. Neutrinos
(denoted ‘ν’) are physical examples of fermions whose masses are so small that they
can be very well approximated as massless. In fact, for many years neutrinos were
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thought to be exactly massless — the discovery that neutrinos have non-zero masses
was awarded the 2015 Nobel Prize in Physics.

In the same way as photons, massless fermions would travel at the speed of
light, c, and have energies determined by their angular frequencies, Eν = cp = ℏω. In
a volume V = L3, these energies are quantized as usual,

ω =
2πc

λ
= c

π

L
k,

where k2 = k2
x+k2

y+k2
z and kx,y,z > 0 are positive integers. Just as for the non-relativistic

case considered in Section 8.4, typical massless fermions, including neutrinos, have
two degenerate energy levels for each distinct k⃗, with opposite spin.

The computations required to analyse a gas of massless fermions are very similar
to the work we recently did for photon gases. In particular, massless fermions are also
easy to create and absorb, implying a vanishing chemical potential, µ ≈ 0. Again
approximating sums over discrete integer kx,y,z by integrals over continuous real k̂x,y,z,
and changing variables to integrate over the angular frequency, we end up with the
grand-canonical potential

Φν = − V T

π2c3

∫ ∞

0

ω2 log
[
1 + e−βℏω] dω . (106)

The only changes here compared to Eq. 94 for the photon Φph are a couple of negative
signs, precisely as we would expect from comparing the Bose–Einstein and Fermi–
Dirac grand-canonical potentials in Section 7.5.

Due to these negative signs, when we take derivatives of the potential to com-
pute quantities like ⟨E⟩ν = ∂

∂β
[βΦν ] and ⟨N⟩ν = − ∂

∂µ
Φν

∣∣∣
µ=0

, we will encounter slightly

different but equally enjoyable integrals:∫ ∞

0

x3

ex + 1
dx =

(
1− 1

23

)
Γ(4)ζ(4) =

7π4

120
,∫ ∞

0

x2

ex + 1
dx =

(
1− 1

22

)
Γ(3)ζ(3) =

3

2
ζ(3).

Using these results, what are the average particle number and the average internal
energy for a gas of massless fermions?
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You should again find ⟨E⟩ν ∝ ⟨N⟩ν T ∝ V T 4, and by noting that

Φν

T
= − V

π2c3

(
T

ℏ

)3 ∫ ∞

0

x2 log
[
1 + e−x

]
dx ∝ V T 3,

we can see that the entropy Sν = (⟨E⟩ν − Φν) /T is constant when V T 3 = const.
Applying this, what is the pressure for a gas of massless fermions?

You should find an equation of state with the usual functional form and just a new
numerical factor:

PνV =
1

3
⟨E⟩ν =

7π4

540ζ(3)
⟨N⟩ν T =

(7/8)ζ(4)

(3/4)ζ(3)
⟨N⟩ν T ≈ 1.05 ⟨N⟩ν T.

8.8 Density of states & Sommerfeld expansion

In Eq. 103 we found that the average internal energy of a non-relativistic fermion
gas becomes independent of the temperature in the limit T → 0. This means that its
heat capacity,

cv =
∂

∂T
⟨E⟩
∣∣∣∣
N,V

,

vanishes in this limit, which we could also see by considering the fluctuation–dissipation
relation cv ∝

〈
(E − ⟨E⟩)2

〉
with only a single micro-state.

To derive the non-trivial heat capacity for a gas with a small but non-zero temper-
ature, we need to move beyond approximating the Fermi function

F (E) =
1

eβ(E−µ) + 1

as a step function, and return to the full Eq. 99 for the average particle number,

⟨N⟩f = V

√
2m3

π2ℏ3

∫ ∞

0

F (E)
√
E dE ≡

∫ ∞

0

g(E) F (E) dE . (107)

Here we have defined the density of states

g(E) ≡ V

√
2m3

π2ℏ3
√
E ≡ g0

√
E
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as the number of energy levels per unit energy, each of which can hold at most a single
fermion. We can read Eq. 107 as saying that the total number of particles is given by
integrating over the single-particle energy levels, g(E), times the probability F (E) that
each of these energy levels is occupied.

The figures below, from Schroeder’s Introduction to Thermal Physics, illustrate
this integral in the case of T = 0 (left) and T > 0 (right). As we have already seen,
when T → 0 all energy levels with E < EF are occupied while all those with E > EF

are unoccupied. With T > 0, there is an exponentially suppressed probability for some
energy levels with E > EF to be occupied. Because the Fermi energy is set by the
number of particles,

EF =
ℏ2

2m

(
3π2 ⟨N⟩f

V

)2/3

,

having some of these particles occupy energy levels with E > EF requires that an
equal number of energy levels with E < EF be unoccupied.

Note that E = µ is the point where the Fermi function F (E) = 1
2
. We will see

below that µ ≤ EF , as shown in the right figure above, with equality when T = 0.

In order to determine the particle number and internal energy, we need to evaluate
the integrals

⟨N⟩f = g0

∫ ∞

0

F (E)
√
E dE ⟨E⟩f = g0

∫ ∞

0

E F (E)
√
E dE (108)

without approximating the Fermi function as a step function. For T ≪ EF , we can do
this through a Sommerfeld expansion. Let’s begin by considering the particle number.
The first step in the Sommerfeld expansion is integrating by parts:
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Changing variables to x ≡ β(E − µ), you should find

⟨N⟩f =
2

3
g0

∫ ∞

−βµ

ex

(ex + 1)2
E3/2 dx .

This is not obviously simpler than the expression we started with (especially because
E depends on x), but has the benefit of being exponentially suppressed for both

x≫ 1 =⇒ ex

(ex + 1)2
≈ ex

e2x
=

1

ex

and x≪ −1 =⇒ ex

(ex + 1)2
≈ ex

1
=

1

e−x
.

The additional E3/2 factor is far too mild to overcome this exponential suppression. In
other words, non-negligible contributions to the integral as a whole come only from a
region centered at E = µ, which becomes narrower in E as the temperature decreases
(corresponding to larger β = 1/T ). This is illustrated by the plot below, which shows
the exponential suppression setting in when |E − µ| is larger than a few times the tem-
perature, and certainly for |E − µ| ≳ 5/β = 5T .
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These considerations justify two low-temperature approximations. First, recalling
µ > 0 at low temperatures, for large β we are free to extend the lower limit of the integral
to obtain a more convenient domain of integration,

⟨N⟩f =
2

3
g0

∫ ∞

−βµ

ex

(ex + 1)2
E3/2 dx ≈ 2

3
g0

∫ ∞

−∞

ex

(ex + 1)2
E3/2 dx .

Second, we can expand E3/2 in a Taylor series around E = µ, and truncate after the
first few terms:

E3/2 ≈ µ3/2 + (E − µ)
∂

∂E
E3/2

∣∣∣∣
E=µ

+
1

2
(E − µ)2

∂2

∂E2
E3/2

∣∣∣∣
E=µ

= µ3/2 +
3

2
(E − µ)µ1/2 +

3

8
(E − µ)2µ−1/2 = µ3/2 +

3

2

xµ1/2

β
+

3

8

x2µ−1/2

β2
.
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Switching to work with T = 1/β, the Sommerfeld expansion has given us a series
of manageable integrals we can consider one by one:

⟨N⟩f ≈
2

3
g0µ

3/2I0 + g0Tµ
1/2I1 +

g0T
2

4µ1/2
I2.

I0 =
∫ ∞

−∞

ex

(ex + 1)2
dx =

I1 =
∫ ∞

−∞

xex

(ex + 1)2
dx =

I2 =
∫ ∞

−∞

x2ex

(ex + 1)2
dx =

Collecting the results and restoring g0 = V
√
2m3

π2ℏ3 , you should find

⟨N⟩f ≈
2

3
g0µ

3/2 + g0
π2T 2

12µ1/2
= V

(2mµ)3/2

3π2ℏ3
+ V

√
2m3

12ℏ3µ1/2
T 2.

The first term reproduces what we found with the step-function approximation in Sec-
tion 8.5, while the second term provides the promised leading-order temperature de-
pendence in the Sommerfeld expansion. This becomes more interesting if we rear-
range Eq. 101 to work in terms of the Fermi energy:
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The result
µ

EF

≈

[
1− π2T 2

8E
3/2
F µ1/2

]2/3
can be simplified through one final low-temperature approximation. Because T is small,
just in the second term above we can set EF ≈ µ (the zero-temperature relation). Then

µ

EF

≈ 1− π2T 2

12E2
F

, (109)

which confirms our earlier claim µ ≤ EF , and reveals that the leading correction to the
zero-temperature relation is quadratic in T

EF
≪ 1.

The calculation is essentially the same for the internal energy from Eq. 108. With
E3/2 in place of E1/2, integrating by parts just gives

⟨E⟩f = g0

∫ ∞

0

E3/2

eβ(E−µ) + 1
dE ≈ 2

5
g0

∫ ∞

−∞

ex

(ex + 1)2
E5/2 dx

with the same x = β(E − µ) and extended limit of integration. The Taylor expansion

E5/2 ≈ µ5/2 +
5

2
(E − µ)µ3/2 +

15

8
(E − µ)2µ1/2 = µ5/2 +

5

2

xµ3/2

β
+

15

8

x2µ1/2

β2

also produces the same integrals, with different coefficients:

⟨E⟩f ≈
2

5
g0µ

5/2I0 + g0Tµ
3/2I1 +

3

4
g0T

2µ1/2I2 =
2

5
g0µ

5/2 +
1

4
g0π

2T 2µ1/2.

Inserting g0 =
3⟨N⟩f

2E
3/2
F

, we have

⟨E⟩f ≈
3

5
⟨N⟩f

µ5/2

E
3/2
F

+
3

8
⟨N⟩f π

2T 2 µ
1/2

E
3/2
F

,

which we can simplify by applying Eq. 109 and dropping O (T 3) terms:

From your result you should obtain the heat capacity

cv =
∂

∂T
⟨E⟩
∣∣∣∣
N,V

≈ π2

2

⟨N⟩f
EF

T.
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This low-temperature linear dependence on T agrees with experimental heat capacity
measurements, as we have seen in tutorials.

As a final comment in this section, let’s consider what would happen to ⟨N⟩f at
higher temperatures T 2 ∼ E2

F , for which the two terms in Eq. 109 would cancel out,
leaving O(T 4/E4

F ) effects non-negligible. In this regime, there’s no guarantee that the
low-temperature Sommerfeld expansion would even converge, so we need to work
with the full integral from Eq. 108. Fortunately, it is not hard to numerically evaluate this
integral, which is done by this Python code. For the purpose of numerical analysis, it’s
best to express everything in terms of dimensionless ratios, such as

t ≡ T

EF

c ≡ µ

EF

x ≡ E

T
= βE.

Also inserting g0 =
3⟨N⟩f

2E
3/2
F

, we have

⟨N⟩f =
3 ⟨N⟩f
2E

3/2
F

∫ ∞

0

√
E

eβ(E−µ) + 1
dE =

3 ⟨N⟩f
2

t3/2
∫ ∞

0

√
xe−x

e−c/t + e−x
dx,

working with small e−βE = e−x rather than large ex to avoid numerical overflow.

As in Eq. 109, ⟨N⟩f drops out, and we end up with the consistency condition

1 =
3

2
t3/2

∫ ∞

0

√
xe−x

e−c/t + e−x
dx . (110)

If we fix the temperature t = T/EF in units of the Fermi energy, by numerically evaluat-
ing this integral with different values of c = µ/EF we can determine the self-consistent
value of the chemical potential, also in units of the Fermi energy. The red ×’s in the
figure below are results of such work for eleven temperatures 0.1 ≤ t ≤ 2, compared
to the O(t2) result from the Sommerfeld expansion, Eq. 109. This leading-order Som-
merfeld expansion clearly deviates from the full results by the time T ∼ EF . The more
interesting result is that the chemical potential continues to decrease as the temper-
ature increases, becoming negative for T ≳ EF and approaching the expected high-
temperature classical limit.
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Unit 9: Interacting systems

9.1 The Ising model

So far in this module we have considered ‘ideal’ systems whose degrees of free-
dom do not interact with each other. While we have seen that statistical mechanics
employing this approximation of non-interacting particles can provide excellent de-
scriptions of real physical systems ranging from the low-temperature heat capacities
of solids to solar radiation and the cosmic microwave background, there are crucial
emergent phenomena that this approach fails to predict.

An important class of examples, which we investigate in this unit, are phase tran-
sitions. These occur when interactions allow extremely different large-scale behaviours
to arise from the same set of degrees of freedom, depending on control parame-
ters such as the temperature or pressure. Phase transitions occur in both everyday
and extreme situations. Everyday examples include the liquid–gas transition of H2O
molecules from water to steam upon boiling a kettle, as well as the transition from liq-
uid water to solid ice as the temperature decreases. In the extreme conditions following
the big bang, matter in the universe existed as a charged plasma of quarks and glu-
ons. Once the universe was a few micro-seconds old, it cooled enough for this matter
to transition into the protons and neutrons we are made out of today.

An intermediate example in between the everyday and the extreme involves two
layers of graphene as illustrated in the figure below.17 Graphene is an amazing mate-
rial (recognized by the 2010 Nobel Prize in Physics) that consists of a single-atom-thick
sheet of carbon atoms arranged in a hexagonal ‘honeycomb’ lattice. Under most condi-
tions, graphene is an electrical insulator. However, if two graphene sheets are stacked
and rotated with respect to each other by a small “magic angle” θ ≈ 1.1◦, the system
transitions into a superconducting phase at low temperatures T ≲ 1.7 K. Superconduc-
tivity allows electrical current to flow with no resistance, meaning that no energy is lost
to the production of waste heat. If we could discover or design materials that exhibit
superconductivity at everyday temperatures T ∼ 300 K rather than low T ∼ O(1) K, it
would revolutionize the energy efficiency of electronics and the power grid.

17Heather M. Hill, “Twisted bilayer graphene enters a new phase”, Physics Today 73:18, 2020.
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With this motivation for investigating phase transitions, let’s step back to introduce
interactions and explore their effects using simple spin systems of the sort we consid-
ered in units 2 and 3. In the non-interacting case we previously analysed (Eq. 40), the
internal energy of the system is

Ei = −H
N∑

n=1

sn (non-interacting)

for micro-state ωi specified by the N spins {sn} (and, as always for this module, in
thermodynamic equilibrium). Here H > 0 is the constant strength of an external mag-
netic field and the orientation of the nth spin, sn, takes one of only two possible values:
sn = 1 if the spin is aligned parallel to the field and sn = −1 if the spin is aligned anti-
parallel to the field. The ground state of the system features all N spins aligned parallel
to the magnetic field, with minimal energy E0 = −NH.

In this unit we will only consider systems of distinguishable spins that we label by
their fixed position in a d-dimensional simple cubic lattice. The d = 1 case of a one-
dimensional lattice is precisely the system of spins arranged in a line that we analysed
in Section 3.4.1. This and the case of d = 2 are both easy to visualize and draw on a
sheet of paper:

While we can only have physical lattices with d = 1, 2 or 3 in nature, the mathematical
construction works just as well for any integer d ≥ 1.

We can see that the total internal energy of the non-interacting system can easily
be written as a sum over energies εn for each individual spin,

εn = −Hsn Ei =
N∑

n=1

εn (non-interacting).

This is a generic feature of non-interacting systems, and an aspect of the factoriza-
tion that enormously simplifies calculations — in this case by causing the N -particle
partition function (Eq. 41) to take the form of a product of N identical terms, ZN =
[2 cosh (βH)]N = ZN

1 . However, it is possible to have non-factorizable systems in which
the internal energy can be expressed as a sum of this sort. A stronger condition needs
to be satisfied in order to guarantee factorization, and this conditions rigorously defines
what it means for a system to be non-interacting.
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Let ∆Ej be the change in the system’s internal energy caused by changing its
jth degree of freedom. Then the system is defined to be non-interacting if and only if
∆Ej is independent of all other degrees of freedom k ̸= j.

For our system of N distinguishable spins, the only possible change we can make
to a degree of freedom is to negate it, sj → −sj, which corresponds to flipping its
alignment relative to the external magnetic field. It is easy to check that the change
in the internal energy resulting from such a spin flip satisfies our definition of a non-
interacting system:

Now let’s make things more interesting by considering a different spin system that
includes a simple two-spin contribution to the internal energy:

Ei = −
∑
(jk)

sjsk −H
N∑

n=1

sn. (111)

The first sum runs over all pairs of nearest-neighbour spins in the lattice, denoted (jk).
What is the change in energy ∆Ej from Eq. 111 upon negating sj → −sj? Does this
indicate an interacting or non-interacting system?

The pictures on the next page illustrate nearest-neighbour pairs for simple cubic
lattices in d = 2 and 3 dimensions, while also introducing some additional lattice ter-
minology. Instead of drawing up- and down-pointing arrows, these pictures identify the
spins with sites in the lattice represented as points (or larger filled circles). In simple
cubic lattices, all sites are positioned in a regular grid, separated by a constant dis-
tance along each basis vector. We can also draw links as solid lines connecting these
nearest-neighbour sites, with each link corresponding to a term in

∑
(jk). The picture of
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a two-dimensional lattice on the left highlights the four links (with red hatch marks) that
correspond to the four nearest neighbours (circled in red) of a particular site (circled
in blue). For d ≥ 2, the elementary unit of surface area is called a plaquette, while for
d ≥ 3 the elementary unit of volume is called a cube.

The nearest-neighbour pairs appearing in the energy, Eq. 111, correspond to the
links in the lattice, ℓ = (jk). Assuming a finite lattice, the presence of any edges will
make analyses more complicated, since sites on the edges or in the corners will have
a different number of nearest neighbours than other sites. We can avoid this com-
plication by imposing periodic boundary conditions, which remove these edges by
adding links between each site on the left edge of the lattice and the corresponding
site on the right edge, and similarly in all other dimensions. This is illustrated below
for the simple case of the one-dimensional lattice, drawn as a circle to emphasize that
all N sites remain separated by a constant distance. In higher dimensions, periodic
boundary conditions produce flat (zero-curvature) d-dimensional tori that preserve the
simple cubic lattice structure.

Periodic boundary conditions cause the one-dimensional lattice drawn above to
have the same number of links as sites: Each site has two links connecting it to its
two nearest neighbours, and each of those links is shared between two sites, so that
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#ℓ = 2N/2 = N . Looking back to the two-dimensional lattice drawn farther above, the
four links per site produce #ℓ = 4N/2 = 2N . How many terms are there in the sum∑

(jk) in Eq. 111 for N -site lattices with periodic boundary conditions in d dimensions?

The energy of interacting spins given by Eq. 111, with a lattice structure specifying
which spins form the nearest-neighbour pairs (jk), defines a famous system known as
the d-dimensional Ising model. Since the 1960s, the Ising model has been the basis
of thousands of scientific studies analysing everything from ferromagnetism to neural
networks to urban segregation.18 The model was proposed in 1920 by Wilhelm Lenz,
whose PhD student Ernst Ising solved the one-dimensional system for his thesis in
1924. Exactly solving the two-dimensional case (with H = 0) took another twenty
years, culminating in renowned work by Lars Onsager in 1944. The three-dimensional
Ising model remains an open mathematical question, with no known exact solution.

In this context, ‘solving’ the Ising model means deriving a closed-form expression
for its canonical partition function,

Z(β,N,H) =
∑
{sn}

exp [−βE(sn)] =
∑
{sn}

exp

β∑
(jk)

sjsk + βH
∑
n

sn

 .

As in Section 3.4, the partition function sums over all possible spin configurations {sn},
which amounts to a sum of 2N exponential factors for N spins, with O(N) terms within
each exponential. Now that the system is interacting, the partition function no longer
factorizes into the N identical cosh factors of Eq. 41, making it extremely difficult to
evaluate. This is why there is no known exact solution for the three-dimensional Ising
model, and it also makes ‘brute-force’ numerical computations impractical. Even for a
system of N = 1023 spins, twenty orders of magnitude smaller than our typical N ∼
1023, there are roughly 21023 ∼ 10310 terms in the partition function, far beyond the
capabilities of existing or foreseeable supercomputers.

9.2 Ising model phases and phase transition

Even without exactly solving the Ising model, we can still make robust predictions
for its large-scale behaviour by considering the simplified limits of high and low tem-
perature, much as we did for non-interacting spin systems in Section 3.4. We can also
simplify the system by setting H = 0 in this section, and considering just

Ei = −
∑
(jk)

sjsk Z(β,N) =
∑
{sn}

exp

β∑
(jk)

sjsk

 . (112)

18For a brief discussion, see Charlie Wood, “The Cartoon Picture of Magnets That Has Transformed
Science”, Quanta Magazine, 2020.
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We will see that the behaviour of this zero-field Ising model is qualitatively different at
high temperatures compared to low temperatures. In other words, the system exhibits
at least two distinct phases for different temperatures. This is a necessary but not suffi-
cient condition for there to be a true phase transition — it leaves open the possibility of
a gradual crossover between these two phases, as opposed to a rapid transition. In this
section we will use the Ising model to more rigorously define what exactly constitutes
a phase transition, and how this can be distinguished from a crossover.

First, though, let’s consider the high-temperature limit β → 0, where the Ising
model partition function becomes extremely simple:

In this limit, all 2N spin configurations are adopted with the same probability pi = 1/2N ,
regardless of their internal energy from Eq. 112. In effect, that energy has become
negligible compared to the temperature.

There is a simple observable we can use to characterize this high-temperature
phase. This is the magnetization M = n+ − n−, retaining our definition of n± as the
number of spins with value ±1, even without an external field for them to align with or
align against. It is convenient to normalize the magnetization by the number of spins,

m ≡ M

N
=

n+ − n−

n+ + n−
, (113)

so that −1 ≤ m ≤ 1 for any value of N . In addition, without an external field to
distinguish between ±1 spins, it is also convenient to consider the absolute magnitude
0 ≤ |m| ≤ 1.

Our task is now to determine the expectation value of the magnetization at high
temperatures. Above we found that all spin configurations are equally probable in this
regime, so ⟨|m|⟩ will be determined by how many of these equally probable micro-
states have a particular magnetization. For example, there are only two micro-states
with |m| = 1, corresponding to (n+, n−) = (N, 0) and (0, N). In general, just as we saw
in Eq. 23, there are (

N

n+

)
=

(
N

n−

)
=

N !

n+! n−!

equally probable micro-states with a given n+ = N −n−. For large N ≫ 1 this binomial
coefficient has a factorially narrow peak around

n+ = n− =
1

2
N −→ |m| = 0.

This characterizes a disordered phase with similar numbers of up- and down-pointing
spins producing a small magnetization. In the thermodynamic limit N →∞, the expec-
tation value of the magnetization in the disordered phase vanishes exactly, ⟨|m|⟩ → 0.
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We next need to determine ⟨|m|⟩ in the low-temperature limit β → ∞. In this
regime, as we saw in Section 3.4.1, the Boltzmann factor exp

[
β
∑

(jk) sjsk

]
makes it

exponentially more likely for the system to adopt micro-states with lower energies. In
particular, we can expect the ground state to dominate the expectation value of the
magnetization, ⟨|m|⟩, up to exponentially suppressed corrections from excited states.
With H = 0, the Ising model has two degenerate ground states corresponding to the
two ways all the spins can be aligned with each other: (n+, n−) = (N, 0) and (0, N).
What is the ground-state energy of the N -site Ising model in d dimensions?

As mentioned above, both of these degenerate ground states have the maximal
magnetization |m| = 1. Let’s check what effect the first excited state would have on the
overall magnetization of the system. For d > 1, the first excited energy level is obtained
by flipping a single spin, negating its value. Starting from the two degenerate ground
states, this produces all possible micro-states with (n+, n−) = (N − 1, 1) and (1, N − 1).
Because any one of the N spins in the lattice could be flipped, the degeneracy of this
first excited energy level grows with N :(

N

1

)
+

(
N

N − 1

)
= 2N.

At the same time, as N increases the magnetization of each of these micro-states gets
closer to that of the ground state,

|m| = N − 2

N
= 1− 2

N
.

The key factor is the probability for the system to be in one of these micro-states, which
depends on the value of the energy E1 for the first excited energy level. What is this E1

for the N -site Ising model in d dimensions?

Let’s bring everything together by computing the relative probability for the d-
dimensional Ising model to be in its ground state with |m| = 1 compared to its first
excited state with |m| = 1− 2

N
. We just need to multiply the degeneracy of each energy
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level times the corresponding Boltzmann factor, while the 1
Z

normalization cancels out
in the ratio

P (E0)

P (E1)
=

2 · exp [βd ·N ]

2N · exp [β (d ·N − 4d)]
=

exp [4βd]

N
.

For any fixed N , a sufficiently low temperature will cause the ground state to dominate,
with exponentially suppressed contributions from higher energy levels, just as we previ-
ously found for simpler non-interacting systems. This characterizes an ordered phase
with essentially all spins aligned in the same direction, producing a large expectation
value for the magnetization, ⟨|m|⟩ → 1.

We have now seen how the behaviour of the magnetization ⟨|m|⟩ distinguishes the
high- and low-temperature phases of the zero-field Ising model in d > 1 dimensions. In
the high-temperature disordered phase, the magnetization is small and ⟨|m|⟩ → 0 in the
thermodynamic limit N →∞. In the low-temperature ordered phase, the magnetization
is large and ⟨|m|⟩ → 1 as T → 0.

This contrast between ordered and disordered phases is typical behaviour for
interacting statistical systems. These two phases are distinguished by an order pa-
rameter — an observable (related to a derivative of the free energy) that is zero in the
disordered phase but non-zero in the ordered phase.19 The magnetization is the order
parameter for the Ising model, and we will relate it to the free energy in the next sec-
tion. Note that the order parameter need not reach its maximum value in the ordered
phase — it only needs to be non-zero. The details of how the order parameter changes
between zero and non-zero values distinguish crossovers from true transitions.

A phase transition is defined by a discontinuity or divergence in the order param-
eter or its derivative(s), in the N →∞ thermodynamic limit. The value(s) of the control
parameter(s) at which the discontinuity occurs define the critical point corresponding
to the transition.

For the zero-field Ising model, since we have set H = 0, the only remaining con-
trol parameter is the temperature T . Any phase transition would therefore occur at
a critical temperature TC . The sketches on the next page illustrate the most com-
mon types of phase transitions. When the order parameter (OP) itself is discontinuous
(shown by a dashed line), the transition is said to be a first-order phase transition.
When the order parameter is continuous at TC but its first derivative with respect to the
control parameter is discontinuous (typically divergent), the transition is said to be a
second-order phase transition. Historically, this naming scheme was extended to nth-
order phase transitions for which discontinuities don’t occur until the (n−1)th derivative
of the order parameter (related to an nth derivative of the free energy). At present it is
more common for any phase transition with a continuous order parameter to be called
simply a second-order transition.

19There are atypical (but interesting and important) topological phase transitions that are not charac-
terized by such an order parameter. The most famous example is the BKT phase transition named after
Vadim Berezinskii, J. Michael Kosterlitz and David Thouless, which was recognized by the 2016 Nobel
Prize in Physics. It is also possible for a single system to have multiple distinct phase transitions, each
characterized by a different order parameter.
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In practice, any system with a finite number of degrees of freedom will not ex-
hibit a true discontinuity or divergence in any observable. As a result, it is sometimes
said that true phase transitions only occur in the N → ∞ thermodynamic limit, but I
consider this excessively pedantic, especially given the finite number of atoms in the
observable universe. We are still able to distinguish crossovers from true phase tran-
sitions when considering a finite number of degrees of freedom, by analysing the way
in which the system approaches the thermodynomic limit. If there is time and interest,
we can explore such finite-size scaling, but first we will develop a useful approximation
technique, and apply it to the Ising model to investigate its (dimensionality-dependent)
phase transition in more detail.

9.3 The mean-field approximation

Having identified the low-temperature ordered phase and high-temperature dis-
ordered phase of the zero-field Ising model, let’s now restore a non-zero external mag-
netic field, H > 0. This will allow us to gain a deeper appreciation of the magnetization
(now with no absolute value) by noting that Eq. 113 means it is just the average spin:

m =
M

N
=

1

N
(n+ − n−) =

1

N

N∑
n=1

sn.

We can benefit from this observation in two ways. First, we can recognize the magne-
tization in the internal energy of the full Ising model with H > 0:

Ei = −
∑
(jk)

sjsk −H

N∑
n=1

sn = −
∑
(jk)

sjsk −HNm = −
∑
(jk)

sjsk −HM.

The corresponding canonical partition function is

Z =
∑
{sn}

exp

β∑
(jk)

sjsk + βHM

 .
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Based on this expression, and our earlier experience with the entropy and internal en-
ergy, we can anticipate that ⟨m⟩ = ⟨M⟩ /N is related to the derivative of the Helmholtz
free energy F = −T logZ with respect to the field strength H:

As promised in the previous section, this relation ensures that the magnetization is an
appropriate order parameter for the Ising model phase transition.

The second way we can benefit from relating the magnetization to the average
spin is to express the Ising model in terms of the expectation value

⟨m⟩ = 1

Z

∑
{sn}

m e−βE(sn) =
1

N

N∑
n=1

⟨sn⟩ .

The expectation value of the average spin, 1
N

∑N
n=1 ⟨sn⟩, is independent of the spin

configuration {sn} and is simply a function of the inverse temperature β and magnetic
field strength H. By adding and subtracting factors of ⟨m⟩, we can exactly rewrite each
nearest-neighbour term in the Ising model energy, Eq. 111, as

sjsk = [(sj − ⟨m⟩) + ⟨m⟩]× [(sk − ⟨m⟩) + ⟨m⟩]
= (sj − ⟨m⟩) (sk − ⟨m⟩) + (sj + sk) ⟨m⟩ − ⟨m⟩2 . (114)

This is beneficial because we can note that the factors of (sj − ⟨m⟩) correspond to
the spins’ fluctuations around their mean value ⟨m⟩. By conjecturing that these fluctu-
ations are small on average, we can approximate the Ising model energy by neglecting
the first term in Eq. 114 when summing over all links:

Ei = −
∑
(jk)

sjsk −H

N∑
n=1

sn −→ EMF = −
∑
(jk)

[
(sj + sk) ⟨m⟩ − ⟨m⟩2

]
−H

N∑
n=1

sn.

The sum over the links ℓ = (jk) in d dimensions simply counts d · N factors of the
constant ⟨m⟩2. Similarly, since the first term includes both spins (sj + sk) on each end
of the link, every individual spin appears 2d times in the sum over links. Therefore this
term just gives us 2d ⟨m⟩ times another sum over the spins sn, which we can combine
with the final term above:

EMF = d ·N ⟨m⟩2 − (2d ⟨m⟩+H)
N∑

n=1

sn ≡ d ·N ⟨m⟩2 −Heff

N∑
n=1

sn. (115)
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In this expression we define an effective magnetic field Heff = 2d ⟨m⟩ + H that
depends on the mean spin. This approach of neglecting the squared fluctuations
(sj − ⟨m⟩) (sk − ⟨m⟩) is therefore known as the mean-field approximation. It can be
applied to generic lattice systems, not just the Ising model, and essentially supposes
that we can average over all 2d nearest neighbours of each lattice site and end up with
an approximately constant factor that behaves like a modification of the magnetic field.
Given the resulting mean-field energy EMF from Eq. 115, let’s check the change in this
energy, ∆Ej, upon negating any sj → −sj:

Your result should suggest that the mean-field approximation producing Eq. 115
makes it very easy to compute the corresponding canonical partition function

ZMF =
∑
{sn}

exp [−βEMF] = exp
[
−βd ·N ⟨m⟩2

] ∑
s1=±1

· · ·
∑

sN=±1

exp

[
−x

N∑
n=1

sn

]
= exp

[
−βd ·N ⟨m⟩2

]
(2 cosh [βHeff])

N

= exp
[
−βd ·N ⟨m⟩2

]
(2 cosh [β (2d ⟨m⟩+H)])N , (116)

where we defined x ≡ −βHeff to put the sums into the same form as in Eq. 41. Although
this factorized result is far simpler than the partition function for the full Ising model, it
does involve some complicated dependence on ⟨m⟩— especially when we recall that
⟨m⟩ itself is related to a derivative of logZMF. With

logZMF = N log cosh [β (2d ⟨m⟩+H)] + {H-independent terms} ,

the relation we derived above gives us

⟨m⟩ = 1

Nβ

∂

∂H
logZMF =

1

β

1

cosh [β (2d ⟨m⟩+H)]

∂

∂H
cosh [β (2d ⟨m⟩+H)] .

Simplifying, we obtain a self-consistency condition for the Ising model magnetization
in the mean-field approximation:

⟨m⟩ = tanh [β (2d ⟨m⟩+H)] . (117)

Solving this equation for ⟨m⟩ is equivalent to finding the roots of the transcendental
equation tanh [β(2d · x+H)]− x = 0.

A straightforward way to inspect such solutions is by plotting both

f(⟨m⟩) = ⟨m⟩ g(⟨m⟩) = tanh [β(2d ⟨m⟩+H)]
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and monitoring the intersections of these two functions. Fixing d = 2, the plot on the
next page considers the simplest case β = 1

4
and H = 0 for which g(⟨m⟩) = tanh [⟨m⟩]

(the solid line). There is only a single intersection between this function and f(⟨m⟩)
(the dashed line), at ⟨m⟩ = 0, which suggests the disordered phase.

−1

0

1

〈m〉

tanh(〈m〉)

To confirm our interpretation of this result, let’s check how the intersections de-
pend on β and H. In the next plot below we keep the same temperature T = 1/β = 4
while comparing two non-zero values for the external magnetic field. A positive H = 2
simply shifts g(⟨m⟩) to the left (the green line), while a negative H = −2 shifts it to the
right (the blue line). In both cases there is still only a single intersection, at ⟨m⟩ ≈ ±0.88
for H = ±2. We can interpret this non-zero result as an indication that the system is in
an ordered phase where the spins tend to align with the external field.

−1

0

1

〈m〉

tanh, H > 0

tanh, H < 0

From our work in the previous section, we can expect that the spins’ alignment
will increase — reflecting the minimum-energy ground states — as the temperature de-
creases. Decreasing the temperature increases β, which causes the argument of the
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tanh to vary more rapidly with ⟨m⟩, making g(⟨m⟩) a steeper function that more rapidly
approaches its limiting values ±1. The plot below illustrates this for T = 1/β = 2. For
this temperature with magnetic field H = ±2, the intersection is ⟨m⟩ ≈ ±1 to a very
good approximation. We can also appreciate that −1 ≤ tanhx ≤ 1 ensures that the
mean-field self-consistency condition can only ever be satisfied for −1 ≤ ⟨m⟩ ≤ 1, re-
assuringly consistent with the definition of the magnetization.

−1

0

1

〈m〉

tanh, H > 0

tanh, H < 0

Also in the previous section, we saw that the Ising model spins should align at low
temperatures, even without an external field to promote one direction over the other.
To check whether this behaviour is preserved by the mean-field approximation, we can
consider the self-consistency condition for various temperatures with H = 0. The plot
below shows the results, considering a low temperature T = 2 (the blue line), the same
T = 4 green curve shown in the first plot above, and a high temperature T = 8 (the red
line). While the ⟨m⟩ = 0 expected in the disordered phase is always a possible solution,
something interesting happens at lower temperatures, where the steeper tanh function
introduces two additional solutions at non-zero ⟨m⟩ = ±m0 corresponding to the or-
dered phase. As T → 0, this magnetization approaches its maximum value m0 → 1.

−1

0

1

〈m〉

tanh, T = 2

tanh, T = 4

tanh, T = 8
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When there are three solutions ⟨m⟩ = {−m0, 0,m0} at low temperatures, we can
determine that the ⟨m⟩ = 0 solution is actually unstable. Here we are venturing briefly
into non-equilibrium territory, and thinking of the mean-field system as a ‘blind’ process
that attempts to satisfy the self-consistency condition ⟨m⟩ = tanh [2βd ⟨m⟩], based only
on whether the expectation value of the magnetization is too small or too large com-
pared to the tanh. Once the magnetization is self-consistent, the system can happily
settle into thermodynamic equilibrium.

From the figure above we can see that with H = 0 we can have three solutions
only when the slope of the tanh at ⟨m⟩ = 0 is greater than 1. Any positive value
⟨m⟩ = ε > 0 would then produce tanh [2βd ⟨m⟩] > ⟨m⟩, which the system ‘feels’ as a
magnetization that is too small to be self-consistent. This drives the system to continue
increasing its magnetization, until it eventually settles at the non-zero solution ⟨m⟩ =
m0. Similarly, any negative magnetization ⟨m⟩ = −ε < 0 would drive ⟨m⟩ away from
zero and to the ⟨m⟩ = −m0 solution.

This argument can be visualized more easily by plotting tanh [2βd ⟨m⟩] − ⟨m⟩ vs.
⟨m⟩ as shown in the final plot below. When this difference is negative, ⟨m⟩ is larger than
the self-consistency condition allows, driving the system to smaller ⟨m⟩ as shown by
the arrows pointing to the left. Conversely, when the difference is positive, the system
‘seeks’ self-consistency by increasing ⟨m⟩ as shown by the arrows pointing to the right.
For the low temperature T = 2, we see that the arrows move the system away from the
unstable solution ⟨m⟩ = 0 and to the stable solutions ⟨m⟩ = ±m0.

At this point we can conclude that the non-interacting mean-field approximation
successfully captures at least the high- and low-temperature limits of the interacting
zero-field Ising model that we determined in the previous section. For high temper-
atures the mean-field self-consistency condition demands ⟨m⟩ = 0 in the disordered
phase, while for low temperatures it produces ⟨m⟩ = ±m0 ̸= 0 in the ordered phase.

Going further, now that we have a more tractable non-interacting system we can
determine the value of the temperature at which its ⟨m⟩ = ±m0 solutions appear and
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the ⟨m⟩ = 0 solution becomes unstable. As described above, this occurs whenever
the slope of the tanh function at ⟨m⟩ = 0 is greater than 1. Let’s call the correspond-
ing temperature Tc, though it remains to be determined whether it is really the critical
temperature of a true phase transition. Expanding tanh(x) for x ≈ 0, what is Tc?

You should find that the change from the high-temperature disordered phase to
the low-temperature ordered phase occurs at Tc = 2d in d dimensions, or equivalently
βc = 1

2d
— corresponding to the green lines in the two figures above with d = 2. In

order to determine whether or not this is a true critical temperature, we need to check
whether the order parameter ⟨m⟩ or its T -derivatives are discontinuous at Tc. We can
do this by considering the self-consistency condition for a temperature T lower than
but very near to Tc = 2d, which would produce 0 < | ⟨m⟩ | ≪ 1 and allow us to expand
tanh(x) = x− x3

3
+O (x5). What is the resulting prediction for ⟨m⟩?

Making the approximation
(

T
Tc

)2
≈ 1, your result should resemble

⟨m⟩ = ±
√
3

(
Tc − T

Tc

)1/2

for T ≲ Tc.

From this, we can see that the order parameter ⟨m⟩ is continuous at Tc:

⟨m⟩ ∝

{
(Tc − T )1/2 for T ≲ Tc

0 for T ≳ Tc

. (118)

However, its first derivative
d ⟨m⟩
dT

∝ 1

(Tc − T )1/2

diverges as T → Tc from below. This is the situation we discussed at the end of the pre-
vious section, which predicts a second-order phase transition with critical temperature
Tc = 2d in d dimensions. The power-law dependence ⟨m⟩ ∝ (Tc − T )b with 0 < b < 1 is
a generic feature of second-order phase transitions. The power b is known as a critical
exponent, in this case b = 1/2.
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At this point we have invested some effort to find that the mean-field approxi-
mation of the d-dimensional Ising model, with H = 0, predicts a second-order phase
transition at Tc = 2d with critical exponent 1/2. Let’s wrap up this section with some
quick comments on the reliability of the mean-field approximation and the accuracy of
these results it has given us.

The accuracy of the mean-field results turns out to depend on the number of
dimensions. For the one-dimensional Ising model that Ising himself solved, there is
no phase transition at all, as we will derive in the next section. In other words, the
mean-field approximation simply fails for d = 1.

The situation improves for the two-dimensional Ising model. Onsager’s exact H =
0 solution features a second-order phase transition, at an inverse critical temperature
βc = 1

2
log
(
1 +
√
2
)
≈ 0.44 that had been exactly determined a few years before his

work. For T ≲ Tc, the magnetization vanishes as ⟨m⟩ ∝ (Tc − T )1/8, corresponding
to a critical exponent 1/8. While the mean-field prediction of a second-order phase
transition is now qualitatively correct, at a quantitative level its predicted βc =

1
2d

= 0.25
is off by almost a factor of 2, while the mean-field critical exponent b = 1/2 is four times
larger than the true b = 1/8.

For higher dimensions d ≥ 3 there is no known exact solution for the Ising model,
but the existence of a second-order phase transition can be established and the corre-
sponding critical temperature and critical exponents can be computed numerically, as
we will discuss in Unit 10. In three dimensions the mean-field Tc = 2d = 6 and b = 1/2
are still significantly different from the true Tc ≈ 4.5 and b ≈ 0.32. The mean-field pre-
diction for the critical exponent b = 1/2 turns out to be correct for d ≥ 4, while the critical
temperature Tc = 2d gradually approaches the true value as the number of dimensions
increases. Numerical computations find Tc ≈ 6.7, 8.8, 10.8, 12.9 and 14.9 for d = 4, 5, 6,
7 and 8, respectively, so that the mean-field result improves from being ∼19% too high
for d = 4 to only ∼7% too high for d = 8. Formally, the mean-field approximation exactly
reproduces the Ising model in the abstract limit of infinite dimensions, d→∞. Roughly
speaking, the greater reliability of the mean-field approach in higher dimensions is due
to the larger number of nearest neighbours for each site, 2d. The larger number of
nearest-neighbour spins produces a more reliable approximation of the mean spin in
the effective field seen by each site in the mean-field approach.

9.4 Exact results for the Ising model

If time permits, it is not too hard to prove some of the exact results mentioned
above, for the Ising model in one and two dimensions where the mean-field approxi-
mation is least reliable.

9.4.1 One-dimensional partition function and magnetization

The special property of the one-dimensional Ising model that helps us derive a
closed-form expression for its partition function is the fact that it has exactly as many
links as it has sites. Looking back to the illustration on page 130, we can rewrite the
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nearest-neighbour interaction term as∑
(jk)

sjsk =
N∑

n=1

snsn+1,

where the periodic boundary conditions identify sN+1 = s1. If we also rewrite the
magnetic-field term as H

∑N
n=1 sn = H

2

∑N
n=1 (sn + sn+1), then the full internal energy is

Ei = −
N∑

n=1

[
snsn+1 +

H

2
(sn + sn+1)

]
.

Inserting this into the partition function Z(β,N,H) =
∑

{sn} exp [−βE(sn)], we can con-
vert the exponential of the sum into a product of exponentials,

Z =
∑

s1=±1

· · ·
∑

sN=±1

N∏
n=1

exp

[
βsnsn+1 +

βH

2
(sn + sn+1)

]
.

Similarly to Eq. 41 for the non-interacting case, we are going to distribute the
summations. Now, however, we have to keep track of the fact that a given spin sj will
appear both when n = j and when n + 1 = j, and for each spin configuration it must
have the same value both times it appears. An elegant way to account for all allowed
possibilities is through matrix multiplication. Use the 2× 2 matrix

Tn =

(
eβ+βH e−β

e−β eβ−βH

)
(119)

to collect the exponential factors for the four possibilities

{sn, sn+1} =
(
{1, 1} {1,−1}
{−1, 1} {−1,−1}

)
.

The matrix product Tn ·Tn+1 then provides the sum over all contributions with consistent
values for sn+1. Repeating this for all terms in

∏N
n=1, the periodic boundary conditions

produce the (cyclic) trace, making the exact partition function simply

Z = Tr

[
N∏

n=1

Tn

]
.

What’s more, since Tn ≡ T is actually independent of n, this simplifies further to

Z = Tr
[
TN
]
. (120)

T is known as the transfer matrix — roughly speaking, it ‘transfers’ information
about the values of the spins from one link to the next. At this point we can appreciate
that our earlier rewriting of the magnetic-field term in the energy just helped to make T
more symmetric. If we now diagonalize

T =

(
eβeβH e−β

e−β eβe−βH

)
−→

(
λ+ 0
0 λ−

)
,

the partition function will become simply

Z = Tr

[(
λ+ 0
0 λ−

)N
]
= Tr

(
λN
+ 0
0 λN

−

)
= λN

+ + λN
− .
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What are the two eigenvalues λ± of T?

With β ≥ 0 and H ≥ 0, we can check that both eigenvalues are real and λ+ > λ−.
For asymptotically high temperatures, β → 0, the eigenvalues reduce to λ+ = 2 and
λ− = 0 independent of H. In the special case H = 0, the eigenvalues are λ+ = 2 cosh β
and λ− = 2 sinh β, while H > 0 typically produces λ+ ≫ λ−. Because λ−/λ+ < 1, for
sufficiently large N ≫ 1 we can further simplify

Z = λN
+

[
1 +

(
λ−

λ+

)N
]
≈ λN

+ = eNβ coshN(βH)

[
1 +

√
1− 2 sinh(2β)

e2β cosh2(βH)

]N
.

So there we have it — the solution of the Ising model in one dimension. As usual,
the partition function Z is not so revelatory in and of itself. Its principal value lies in
enabling us to predict observables like the magnetization — so let’s do that, returning
to the zero-field case for which we computed the mean-field critical temperature and
critical exponent in the previous section:

Note that we set H = 0 only after computing the derivative of the free energy, which
allows us to consider ⟨m⟩ rather than ⟨|m|⟩. Upon setting H = 0, something remarkable
happens: ⟨m⟩ = 0 for all temperatures!

As claimed at the end of the previous section, the zero-field one-dimensional Ising
model has no phase transition at all. It is always in the disordered phase, even in the
limit of absolute zero T → 0. In addition to showing that the mean-field approximation
fails in one dimension, this result also reveals how the balance of energy level degen-
eracy vs. Boltzmann factor considered in Section 9.2 depends on the lattice structure.

Specifically, for the case of a one-dimensional lattice, the first excited energy level
with energy E1 includes more micro-states than the 2N we get by flipping a single spin

MATH327 Unit 9 144 Last modified 1 May 2025



to oppose the full alignment of the ground state. Suppose we start from the ground
state and flip spin sj to reach the first excited energy level. Relative to the ground-state
energy E0 = −N , the energy of this micro-state is increased to E1 = −N + 4 due to
the positive contributions from the sj−1sj and sjsj+1 links. But if we now consider also
flipping spin sj+1, the sjsj+1 link goes back to providing a negative contribution while
the positive contribution shifts to the sj+1sj+2 link. This gives us an additional 2N micro-
states featuring a flipped nearest-neighbour pair of spins, with the same energy E1 but
a smaller magnetization |m| = 1− 4

N
. And we can continue this process, finding more

degenerate micro-states with a flipped block of any number of neighbouring spins up
to N − 1, and hence any magnetization, including m = 0.

The non-existence of an ordered phase in one dimension also holds for more
general interacting systems beyond just the Ising model. A useful way to analyse this
sort of behaviour is to describe all of the micro-states in the first excited energy level
as consisting of two domains separated by two domain walls (recalling the periodic
boundary conditions). For the Ising model, one domain will contain only up spins while
the other will contain only down spins. The two domain walls are able to move freely
through the lattice without changing the energy, but as the domain walls move the
magnetization samples the full range of values −

(
1− 2

N

)
≤ m ≤ 1− 2

N
.

9.4.2 Two-dimensional critical temperature

While the zero-field Ising model on the d = 2 square lattice has also been exactly
solved, both Onsager’s original calculation and subsequent re-derivations using sim-
pler techniques are much too complicated to cover here. However, a few years before
Onsager published his famous result, Hans Kramers and Gregory Wannier were able
to determine the exact d = 2 critical temperature in 1941. They did this by identifying a
relation between two Ising model partition functions, without actually evaluating either
sum over micro-states:

Z(β)

2N cosh2N β
=

Z(β̃)

2e2Nβ̃
, (121)

where the two inverse temperatures β and β̃ are related by

sinh(2β) =
1

sinh(2β̃)
. (122)

This relation is now known as Kramers–Wannier duality, and the general concept of
duality has become a powerful tool in modern theoretical physics. Note that small β
implies large β̃ and vice versa — the duality relates one d = 2 Ising model at a high
temperature to another one at a low temperature.

Although it can be useful to explicitly compare such high- and low-temperature
partition functions, by computing series expansions as we did for the non-interacting
spin system in Section 3.4 and for the Einstein solid in tutorial exercises, we’ll skip
that exercise, to keep this section from becoming too long. Those who are interested
can find related discussions in Sections 5.3.2 and 5.3.3 of David Tong’s Lectures on
Statistical Physics. Some of the manipulations below, which may seem to come out of
thin air, can be motivated by considering these expansions.
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The first manipulation is to express the zero-field partition function as

Z =
∑
{sn}

exp

β∑
(jk)

sjsk

 =
∑
{sn}

∏
(jk)

exp [βsjsk] =
∑
{sn}

∏
(jk)

[cosh β + sjsk sinh β] ,

which relies on the fact sjsk = ±1 for the Ising model. It’s easy to check the relation
eβsjsk = cosh β + sjsk sinh β for both sjsk = 1 and sjsk = −1:

Next, we write the sum over the cosh and sinh as a summation,

Z =
∑
{sn}

∏
(jk)

[cosh β + sjsk sinh β] =
∑
{sn}

∏
(jk)

∑
pjk=0,1

Cpjk(β)(sjsk)
pjk ,

by defining C0(β) ≡ cosh β and C1(β) ≡ sinh β while raising sjsk to the corresponding
power pjk. Recall that the nearest-neighbour pairs (jk) correspond to all 2N links in
the d = 2 lattice. To make the language a little less awkward, we can say that pjk = 1
corresponds to link jk being ‘on’ while pjk = 0 when it is turned ‘off’. The product and
sum above account for all possible configurations of links that are turned on and off,
which we can more conveniently represent as another configuration sum,∑

{p}

≡
∑

p1=0,1

· · ·
∑

p2N=0,1

.

Our partition function is now written in terms of two configuration sums, but we
can expect only one to be necessary. We will aim to eliminate the sum over all spin
configurations, by pulling out everything independent of the spins:

Z =
∑
{sn}

∑
{p}

∏
(jk)

Cpjk(β)(sjsk)
pjk =

∑
{p}

∏
(jk)

Cpjk(β)

∑
{sn}

∏
(jk)

s
pjk
j s

pjk
k

 .

The final factor can be converted from a product over links to a product over sites. For
d = 2, any spin sn will appear four times in the product, once for each of the four links
connected to it. The product of these four factors can be rewritten as∏

(nk)

spnk
n = sPn

n , defining Pn ≡
∑
(nk)

pnk.

We are now left with a product over individual sn:

Z =
∑
{p}

∏
(jk)

Cpjk(β)

∑
{sn}

[
N∏

n=1

sPn
n

]
.
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Although each sn is raised to a power that depends on pnk for all four of its links to its
nearest neighbours, consider what happens when we sum over the two values sn = ±1.
There are two possibilities: If Pn is odd, then the sn = 1 and sn = −1 contributions
cancel — making the entire product over sites vanish! Otherwise, if Pn is even, they
add up to give twice the product over the other sites. Repeating for all sites, the only
non-zero contribution must have N factors of 2:

Z =
∑
{p}

∏
(jk)

Cpjk(β)
N∏

n=1

2δ2(Pn) = 2N
∑
{p}

∏
(jk)

Cpjk(β)
N∏

n=1

δ2
(
Σ(nk)pnk

)
, (123)

where the ‘mod-2’ Kronecker delta δ2(Pn) vanishes if Pn is odd and equals one if Pn is
even.

We have successfully eliminated the spin configuration sum {sn} in Eq. 123,
which no longer explicitly refers to our original degrees of freedom at all! In its place
we now have a configuration sum over all on-or-off links — pjk = 1 or 0, respectively.
And there is a very tricky set of N inter-dependent constraints coming from the product
of δ2 factors, which require that an even number of links be turned on at every lattice
site, in order to get a non-zero contribution to the partition function. This is a sign that
our new variables pjk aren’t entirely independent of each other — which makes sense,
since we have 2N of them, but started off with only N degrees of freedom.

What we can do about these constraints? Well, the constraints arose as a result
of eliminating a configuration sum over sn = ±1, so it is at least plausible that we can
unwind them by introducing a different set of spin variables, s̃n = ±1. We want the ±1
values of s̃n to be related to the {0, 1} values of pjk, which we can achieve by implicitly
defining s̃n via

p12 =
1− s̃1s̃2

2
p13 =

1− s̃2s̃3
2

p14 =
1− s̃3s̃4

2
p15 =

1− s̃1s̃4
2

and so on for all 2N links. A convenient way to keep track of the subscripts above is
to identify these s̃n with the dual lattice drawn on the next page. Each s̃n is identified
with one of the N plaquettes of the original lattice, and pairs s̃a and s̃b determine pjk for
the link passing between them.
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This provides another way to see that pjk aren’t completely independent variables:
Both p12 and p15 depend on s̃1, both p12 and p13 depend on s̃2, and so on. Delightfully,
these patterns of dependence are precisely what we need to handle the δ2 factors that
are still in our partition function. If we consider

P1 = p12 + p13 + p14 + p15 = 2− s̃1s̃2 + s̃2s̃3 + s̃3s̃4 + s̃1s̃4
2

= 2− (s̃1 + s̃3)(s̃2 + s̃4)

2
∈ {0, 2, 4} ,

we see that working in terms of s̃n automatically turns on an even number of links at
every site, producing

∏N
n=1 δ2(Pn) = 1!

In order to replace
∑

{p} by
∑

{s̃}, we need to confirm that the latter accounts for
all possible Pn = {0, 2, 4}. It turns out that the dual-spin configuration sum provides all
values of Pn twice, which we can check for the simple case P1 = 4:

This generalizes to the full N -spin system: Negating all s̃n → −s̃n leaves all Pn un-
changed.20 Therefore converting the partition function from Eq. 123 into a configuration
sum over {s̃} gives us

Z =
1

2
2N
∑
{s̃}

∏
(jk)

C(1−s̃j s̃k)/2(β),

where (jk) now refers to the dual lattice.

The final step is to express C0(β) = cosh β and C1(β) = sinh β in terms of the dual
variables s̃n that we’re now working with. The trick here is to write

Cp(β) = (cosh β) exp [p log tanh β] = (cosh β) exp

[
1− s̃j s̃k

2
log tanh β

]
,

substituting p = (1− s̃j s̃k)/2. Breaking up the exponential gives us

Cp(β) = (cosh β sinh β)1/2 exp

[
−1

2
s̃j s̃k log tanh β

]
.

Inserting this into the partition function, the product over all links just provides 2N
factors of the s̃n-independent first term, and we can then convert the product of expo-
nentials into an exponential of the sum, producing

Z =
1

2
(2 cosh β sinh β)N

∑
{s̃}

exp

− log tanh β

2

∑
(jk)

s̃j s̃k

 .

20This is discussed in more detail by Robert Savit, “Duality in field theory and statistical systems”,
Reviews of Modern Physics 52 (1980), 453.
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By defining β̃ ≡ −1
2
log tanh β, we can recognize the sum over {s̃} configurations

as simply a zero-field Ising model partition function Z(β̃), Eq. 112. We can also confirm
that this definition of β̃ is equivalent to Eq. 122:

Using similar manipulations, we can express the spin-independent prefactor in terms
of either β or β̃,

2 cosh β sinh β = sinh(2β) =
1

sinh(2β̃)
,

or in the mixed form that reproduces Eq. 121:

2 cosh β sinh β = 2 cosh2 β tanh β =
2 cosh2 β

e2β̃
=⇒ Z(β)(

2 cosh2 β
)N =

Z(β̃)

2e2Nβ̃
.

We have successfully derived Kramers–Wannier duality! Now let’s briefly interpret
what it means. It’s a worthwhile exercise to show that multiplying a partition function
by an overall spin-independent factor, Z(β) → c(β)Z(β), has no effect on expectation
values. (Try it!) Therefore the relation above identifies a d = 2 Ising system at temper-
ature 1/β with another such system at temperature 1/β̃, where small β corresponds to
large β̃ and vice versa.

This does not mean that d = 2 Ising model behaves the same at low and high
temperatures. Indeed, we saw already in Section 9.2 that it changes between qualita-
tively different ordered and disordered phases in these two regimes. What Kramers–
Wannier duality is telling us is that the ordered phase of Ising spins in two dimensions,
characterized by their order parameter, is secretly equivalent to the disordered phase
of the dual spins — a different set of degrees of freedom, which can be characterized
by a ‘disorder parameter’. Similarly, the disordered phase of the original system maps
onto the ordered phase of the dual system.

If we assume there is a single phase transition where the ordered and disor-
dered phases coincide (which Rudolf Peierls had established in 1936), then Kramers–
Wannier duality implies this must occur when β = β̃. In other words,

sinh2(2βc) = 1 =⇒ βc =
1

2
arcsinh(1) =

log
(
1 +
√
2
)

2
= 0.440686 . . . ,

recalling (or looking up) that arcsinh(x) = log
(
x+
√
x2 + 1

)
. Because this exact critical

temperature Tc = 2/ log
(
1 +
√
2
)
= 2.269185 . . . was predicted three years before On-

sager analytically solved the d = 2 Ising model, the fact that his solution reproduced it
was an important check of correctness.
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As mentioned at the start of this subsection, dualities of this sort are central to
theoretical physics in the 21st century. In general, these dualities are much more
complicated than Kramers–Wannier duality, in two main ways. First, the dual degrees
of freedom are typically different — and have different interactions — than the original
degrees of freedom. For example, if we were to carry out a similar analysis of the
three-dimensional Ising model, we would find that the dual system is not just another
Ising model. The d = 2 Ising model is a special case of a self-dual system, which we
exploited to determine Tc.

Second, the Ising model is special in that we were able to explicitly derive the
duality it exhibits, which is typically not (yet) possible. Instead, most dualities have to
be conjectured and then checked by subjecting them to as many tests as possible. For
example, this is the case for holographic dualities that are conjectured to relate certain
theories of quantum gravity to non-gravitational quantum systems that can be much
easier to analyse mathematically. As an aside, the fully connected lattice encountered
in a tutorial also makes an appearance in holography — the behaviour of interacting
fermions on this fully connected lattice (known as the SYK model, named after Subir
Sachdev, Jinwu Ye and Alexei Kitaev) is conjected to be dual to the gravitational dy-
namics of quantum black holes. More than 1500 scientific studies related to the SYK
model and its conjectured holographic duality have been published since 2016!
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Unit 10: Synthesis and broader applications

10.1 Monte Carlo importance sampling

Although we have now seen how to derive some exact results for the Ising model
in one and two dimensions, it’s worth recalling that for 3 ≤ d < ∞ no exact solution is
known even for this simple system. In general, interacting statistical systems are not
exactly solvable. In order to explore their broad applications throughout the mathemati-
cal sciences and beyond, we therefore need to analyse them either through systematic
approximation schemes (such as perturbation theory ) or by numerical computations.
Numerical approaches have become increasingly important over the past fifty years,
and in this section we’ll outline the general methods they employ.

Our goal is to compute expectation values that may be experimentally observed,
which are formally defined by sums over all micro-states. Considering the canonical
ensemble for simplicity,

⟨O⟩ =
M∑
i=1

Oi pi =
1

Z

M∑
i=1

Oi e
−βEi =

∑M
i=1Oi e

−βEi∑M
i=1 e

−βEi

.

We already saw, at the end of Section 9.1, that enormous computational resources
would be required to explicitly carry out such sums over micro-states. Even for tiny
Ising systems with N ∼ 1000 spins, the largest existing or foreseeable supercomputers
would have to run for far longer than the age of the universe in order to evaluate the
roughly 21000 ∼ 10300 terms in the partition function. To quantify ‘tiny’, consider that
N ∼ 1000 would correspond to a 10×10×10 lattice in three dimensions or a 6×6×6×6
lattice in four dimensions, both very far from the N →∞ thermodynamic limit of interest
for phase transitions.

And yet, at the end of Section 9.3 we were able to quote numerical results for the
Ising model critical temperature for 3 ≤ d ≤ 8, along with a d = 3 critical exponent.
These results are obtainable because practical numerical computations do not perform
a ‘brute-force’ evaluation of every single micro-state. Instead, they proceed by (pseudo-
)randomly sampling a very small subset of those micro-states, and using this subset
to compute results for the average energy, magnetization, and other thermodynamic
quantities. As long as this sampling is done appropriately, without bias, the law of large
numbers allows us to treat these averages as controlled approximations to the true
ensemble expectation values.

As we saw in the computer assignment, such numerical calculations employ
pseudo-random numbers rather than complete randomness, which allows them to
be reproducible up to very high precision by different people using different comput-
ers. Due to the role of randomness, these numerical approaches have become known
as Monte Carlo methods — a whimsical reference to the famous gambling centre in
Monaco. Monte Carlo methods are crucial in statistical mechanics, and related disci-
plines, because they are very broadly applicable to interacting systems that no longer
benefit from dramatic simplifications through factorization.

We can gain some intuition about how Monte Carlo methods work by using such
pseudo-random sampling to numerically evaluate a simple integral. The idea is that
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the integral can be numerically approximated by evaluating its integrand at randomly
sampled points in the integration domain, and normalizing by the number of samples.
An amusing example is to compute

π =

∫ 1

−1

dx

∫ 1

−1

dy H
(
1−

{
x2 + y2

})
H(r) =

{
1 for r ≥ 0
0 for r < 0

,

where the Heaviside step function H(r) picks out a disk with radius R = 1 in a square
integration domain with area 4, as shown below. Since the integrand is either 0 or 1
for each randomly sampled point in that domain, simply counting the fraction of the S
samples that lie in the disk provides an unbiased numerical determination of π, with a
statistical uncertainty that vanishes ∝ 1/

√
S. In just a few minutes, this Python code

predicts π = 3.14163± 0.00022 purely from sampling pseudo-random numbers.

Of course, numerically computing π can be done far more efficiently with other,
more specialized, techniques. Monte Carlo integration is most useful when we need to
consider very high-dimensional integrals — such as canonical partition functions of in-
teracting statistical systems, interpreted as N -dimensional integrals over the system’s
N degrees of freedom. To illustrate the scale of computations that can currently be car-
ried out, ongoing theoretical physics research here in Liverpool routinely uses Monte
Carlo methods to numerically evaluate roughly billion-dimensional integrals.

At this point, you should be concerned that such sampling can account for only
an extremely small fraction of the possible micro-states for the systems under consid-
eration, suggesting a risk of inaccurate results from insufficient sampling. This is a new
manifestation of the obstacle we encountered when considering brute-force computa-
tions above. If the brute-force evaluation of every single micro-state takes far longer
than the age of the universe, then the fraction we could sample in days — or even
years — is almost vanishingly small.
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As a concrete example, if we generously suppose our computer only needs a
few nanoseconds to sample a micro-state of a tiny N ∼ 1000 Ising system, over the
course of a day it would sample roughly ten trillion (1013) spin configurations — only
about one part in 10287 of the total 2N ∼ 10300 micro-states. To make the situation
even worse, as N increases the number of possible Ising model micro-states grows
exponentially quickly, ∼2N , in addition to the more modest growth in the amount of
computing required to sample each micro-state. For illustration, this 2015 publication
numerically predicting Tc for the Ising model in d = 5, 6 and 7 dimensions includes
calculations up to N = 645 ≈ 109. Out of the roughly 210

9 ∼ 10323,000,000 micro-states for
this systems, only ∼104 could be sampled in a reasonable amount of time. How much
trust should we place in results from such numerical work?

Thinking back to our consideration of the ordered and disordered phases of the
Ising model in Section 9.2, we can argue that this should be all right in the high-
temperature disordered phase. In the infinite-temperature limit, all the micro-states
become equally probable, and observable expectation values are determined by the
degeneracies of the different energy levels. Random sampling is more likely to ac-
count for the dominant energy levels with large degeneracies, making it plausible that
reasonable results could be obtained even by averaging over such a tiny fraction of the
total number of micro-states.

In the low-temperature ordered phase, however, the opposite occurs. As the tem-
perature decreases, the large-scale behaviour of the system in this phase is dominated
by a very small number of micro-states. For sufficiently low temperatures, observable
expectation values are effectively determined by the two degenerate minimum-energy
micro-states with all spins aligned either up or down. Only exponentially suppressed
corrections would then be introduced by higher-energy excited states. As there is es-
sentially no chance of randomly sampling either of those two minimum-energy micro-
states, the approach described above seems doomed to fail.

A key breakthrough that made numerical results truly reliable was the invention
of stochastic procedures to sample any micro-state ωi with a probability proportional
to its Boltzmann factor, pi ∝ e−βEi. Such automated procedures are known as algo-
rithms (a term that evolved from the name of Muhammad ibn Musa al-Khwarizmi), and
the overall approach is called importance sampling, since it preferentially samples
the important micro-states that make the most significant contributions to the partition
function and expectation values. Assuming we have such an algorithm, applying it to
the β → ∞ low-temperature phase considered above would produce an exponentially
enhanced probability of sampling low-energy micro-states, as desired. As β → 0 in the
high-temperature phase, there would be little change compared to the naive random
sampling considered above, since all micro-states would become equally probable.

The challenge is to design importance sampling algorithms in the first place. In
particular, these algorithms can’t rely on knowing the full set of micro-state energies
Ei, and the corresponding probabilities pi, since enumerating this information would
be equivalent to brute-force computation of the full partition function. In essence, the
algorithm has to exploit its stochastic nature — its use of pseudo-random numbers
— to guide the sampling to important, high-probability micro-states. And this guiding
needs to be done without introducing any other bias that might cause distorted results
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to be obtained from averaging over the tiny fraction of micro-states that can be sampled
in a reasonable amount of time.

A famous solution to this challenge was developed in 1953 by Nick Metropolis,
Arianna Rosenbluth, Marshall Rosenbluth, Mici Teller and Edward Teller. I will call
this solution the MRRTT algorithm.21 It relies on the concept of Markov chains that
we briefly discussed when considering random walks all the way back in Section 1.5.
To reiterate the essence of this concept, a Markov chain is a process in which the
next micro-state to be sampled is pseudo-randomly chosen based on the micro-state
currently under consideration, with no ‘memory’ of any other micro-states that may
previously have been sampled.

We can use the Ising model to illustrate how the MRRTT algorithm employs
Markov chains to sample micro-states proportionally to their importance. Any spin
configuration can serve equally well as the initial micro-state at the start of the chain.
Starting from this initial configuration, we pseudo-randomly select one spin, sj, and
compute ∆Ej, the change in the system’s energy that would be caused by flipping
sj → −sj. We then update the spin configuration by ‘accepting’ this flip with probability

Paccept = min
{
1, e−β∆Ej

}
, (124)

which defines the next micro-state in the Markov chain. Importantly, this new micro-
state may be identical to the previous micro-state — this occurs with probability Preject =
1−Paccept. The final step of the algorithm is to repeat this single-spin update procedure
as many times as our computers can handle.

We can appreciate why micro-states may need to be repeated in the Markov
chain by considering what should happen if we were to sample the ground state at
low temperatures. In this regime, the ground state should dominate, so the algorithm
should sample it repeatedly, proportionally to its probability.

Digging into Eq. 124, we can see that any spin flip that lowers the energy will
always be accepted, since ∆E < 0 =⇒ e−β∆E > 1. The MRRTT algorithm is therefore
free to approach the minimum-energy ground state of the system. If it is in the ground
state, then any spin flip will increase the energy, ∆E > 0, and will only be accepted with
an exponentially suppressed probability e−β∆E → 0 as T = 1/β → 0, as desired. More
generally, if we consider two micro-states ωA and ωB, then the relative probabilities of
moving between these two micro-states are

P (A→ B)

P (B → A)
=

min
{
1, e−β(EB−EA)

}
min {1, e−β(EA−EB)}

= e−β(EB−EA) =
e−βEB

e−βEA
, (125)

regardless of whether EA ≤ EB or EB ≤ EA.

So long as every micro-state can be generated from any other micro-state by
making a series of pseudo-random changes to individual degrees of freedom, Eq. 125

21In an infamous misfiring of alphabetical ordering, this remains widely known as the “Metropolis
algorithm” even though Metropolis’s role was providing specialized computing equipment rather than
developing the algorithm itself. In addition, the key contributions of Arianna Rosenbluth and Mici Teller
were widely under-appreciated for many years.
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ensures that the micro-states ωi will indeed be sampled with probabilities proportional
to the Boltzmann factors e−βEi that quantify their importance. The necessary condition
that the Markov chain can reach every micro-state (at least in principle) is called er-
godicity. Because the micro-state probabilities pi are effectively ‘felt out’ through the
accept/reject test described above, in non-ergodic situations the algorithm will fail to
account for the probabilities of micro-states that can’t be reached by the Markov chain.
This can easily lead to incorrect results.

You can read more about the MRRTT algorithm in Section 8.2 of Dan Schroeder’s
Introduction to Thermal Physics, which provides a single-page annotated code imple-
menting it for the two-dimensional Ising model. While the conceptually simple MRRTT
algorithm is the most famous means to carry out Markov-chain Monte Carlo importance
sampling, it is far from the only option, and often far from the best. If time permits, we
may discuss some of the challenges that make it advantageous to go beyond the MR-
RTT algorithm, in particular the issue of auto-correlations.

For now, suffice it to say that there is an enormous amount of ongoing research
developing, optimizing and applying more elaborate Monte Carlo methods to inves-
tigate topics throughout the mathematical sciences and beyond. In Section 10.3 we
will briefly look at some of these broader applications. First, there is another important
concept to introduce, called universality, which helps to reveal why interacting statistical
systems are so useful to apply to such a diverse range of scientific investigations.

10.2 Universality

In Section 9.3 we defined the critical exponent b as the non-integer power gov-
erning the behaviour of the order parameter ⟨m⟩ ∝ (Tc − T )b for temperatures slightly
lower than the critical temperature Tc of the second-order phase transition. In addition
to being an important characteristic any specific phase transition, it was discovered dur-
ing the twentieth century that precisely the same critical exponents turn out to govern
the behaviour of phase transitions that we initially would not have expected to resemble
each other at all.

A famous example of universality involves the liquid–gas phase transition. We
no longer have time to analyse this phase transition in full detail. It occurs only for in-
teracting (non-ideal) gases, and after our studies of simple interacting spin systems in
Unit 9 we can appreciate that such interacting gases are far more complicated than the
ideal gases we considered in Units 4 and 8. For example, Section 8.2 of Schroeder’s
Introduction to Thermal Physics considers the equation of state of a low-density inter-
acting gas, organized as an expansion around the ideal gas law,

PV = NT
[
1 +B(T )ρgas +O

(
ρ2gas

)]
.

Here ρgas = N/V is the density of the atoms in the gas, which needs to be small in
order for this approach to work. The temperature-dependent function that governs the
leading correction to the ideal gas law,

B(T ) = −2π
∫ ∞

0

r2
(
e−u(r)/T − 1

)
dr,
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in turn depends on the interaction energy u(r) between pairs of particles separated by
distance r. This function u(r) can change significantly for different types of particles.
You should confirm that B(T ) = 0 in the non-interacting case u(r) = 0, and consider the
consequences of both an attractive interaction with u(r) < 0 and a repulsive interaction
with u(r) > 0. (Try it!)

Unfortunately, the restriction to low densities in this analysis prevents its applica-
tion to the liquid–gas phase transition. From everyday experience we can appreciate
that the liquid phase of a given set of particles (for example, water) has a higher den-
sity than the gas phase of those same particles (in this case, steam). The liquid–gas
phase transition occurs at a critical temperature Tc that produces equal densities for
the two phases — this is the largest density the gas can reach while still remaining a
gas, rather than the low density assumed above.

An alternative approach, pioneered by Johannes van der Waals in the late 1800s
(and recognized by the 1910 Nobel Prize), is to propose modifications to the equation
of state based on qualitative physical arguments. The van der Waals equation of state,(

P + aρ2
)
(V −Nb) = NT,

aims to model two aspects of interacting fluids and gases, through two positive param-
eters a and b. First, Nb represents the volume occupied by the N particles, which is
subtracted from the total available volume V . Second, the aρ2 dependence on the den-
sity represents repulsive forces that the particles are assumed to exert on each other
when they are packed more closely together.

These are obviously rough, imprecise arguments, and you may not be surprised
to hear that the van der Waals equation of state does not provide a very accurate
description of real fluids and gases. However, as discussed in Section 5.1 of David
Tong’s Lectures on Statistical Physics, it does successfully predict a phase transition
between the liquid and gas phases, along with a set of critical exponents characterizing
this transition. One of these critical exponents concerns the behaviour of the densities,

1

ρgas
− 1

ρliquid
∝ (Tc − T )b .

The van der Waals equation of state predicts b = 1/2, while the true value is b ≈ 0.32,
for any liquid–gas transition (not just H2O water/steam).

It may seem surprising that all liquids involve the same critical exponent. If we
look back to the end of Section 9.3, we can be even more surprised that this b ≈ 0.32
is the same as the critical exponent of the magnetization in the three-dimensional Ising
model! This is not merely a numerical coincidence, but an example of an amazing
phenomenon known as universality. In essence, universality states that the specific
details of interacting statistical systems become irrelevant close to critical points at
which phase transitions occur. It doesn’t matter whether we are considering a three-
dimensional lattice of Ising spins or a liquid such as water — the behaviour of both
systems is governed by the same set of critical exponents, completely specified by
their universality class.

The detailed mathematics underlying universality is beyond the scope of this mod-
ule. Important contributions to its development were made by Michael Fisher, Leo
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Kadanoff and Ken Wilson, among many others (with Wilson’s contributions recognized
by the 1982 Nobel Prize). Suffice it to say that universality causes the same large-
scale behaviour to appear in the vicinity of critical points even for systems that appear
completely different. This insensitivity to the details of the system helps to explain the
power of even simple interacting statistical systems such as the Ising model, and their
applicability in so many different domains.

10.3 Broader applications

In this section we will quickly highlight a few ways in which the concepts and tools
of statistical mechanics find application within and beyond the mathematical sciences.
These discussions are just brief high-level summaries, without detailed derivations.
The familiarity you have now gained with statistical mechanics can help you to uncover
and understand further examples in addition to the five below.

Quantum field theory

First considering an example within the mathematical sciences, let’s elaborate
on the Liverpool theoretical physics research mentioned in Section 10.1 as a major
use of Monte Carlo importance sampling. This research investigates the behaviours
of various quantum field theories (QFTs), with applications ranging from the strong
nuclear force (explaining how protons, neutrons and other composite particles arise
from the fundamental interactions of quarks and gluons), to the Higgs boson, dark
matter, and even holographic gauge/gravity duality.

Qualitatively, any particular QFT involves a set of fields, Φ(x⃗, t), that fill all of
space and time. These fields interact with each other (and with themselves), producing
behaviour that is governed by the Feynman path integral

Z[Φ(x⃗, t)] =
∫
DΦ exp

[
i

ℏ

∫
L[Φ(x⃗, t)] d3x dt

]
,

where the lagrangian L[Φ(x⃗, t)] specifies the interactions between the degrees of free-
dom. Both the lagrangian and the path integral are functionals of the fields, which are
in turn functions of space and time. The measure DΦ represents integration over all
configurations of all the fields at every (x⃗, t).

The path integral should look tantalizingly similar to the partition function in the
canonical ensemble, with L appearing in place of the energy of each field configura-
tion, and Planck’s constant ℏ appearing in place of the temperature — which we can
interpret as quantum fluctuations playing a role analogous to thermal fluctuations in
statistical mechanics. The main difference is the imaginary unit i in the exponential,
which we can address through the trick of working in “imaginary time” iτ = t. This is
known as a Wick rotation, and gives us

Z[Φ(x⃗, τ)] =
∫
DΦ exp

[
−1

ℏ

∫
L[Φ(x⃗, τ)] d3x dτ

]
⟨O⟩ = 1

Z

∫
DΦ O[Φ(x⃗, τ)] exp

[
−1

ℏ

∫
L[Φ(x⃗, τ)] d3x dτ

]
,
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which we can analyse through Monte Carlo importance sampling in much the same
way as we would for an Ising model. The catch is that Wick rotation is only valid in
equilibrium, limiting the phenomena that can be analysed through this approach.

Finally, there is one more complication we need to deal with. Treating space and
time as continuous implies that there are infinitely many degrees of freedom for each
field, making Z formally an infinite-dimensional integral. We need to regularize this
integral by replacing space and (imaginary) time with a discrete lattice of space-time
points, as illustrated below.

This approach of Wick rotating and then discretizing space and time is known as
lattice field theory. The image above comes from a lattice field theory computation
that predicted properties of protons. It visualizes a snapshot (at a single point in imag-
inary time) of the spatial configuration of a quark field within that proton. Each quark
degree of freedom has a “colour charge” — a linear combination of {red,blue,green}
— whose orientation in colour space is indicated by the colour of each point in the
illustration above, while the size of each point represents the magnitude of the charge.
By repeating these numerical calculations for discrete space-times with more lattice
sites placed closer together, we can recover the original, continuous system by extrap-
olating to the continuum limit where there are infinitely many lattice sites infinitesimally
close together. Lattice field theory is an extremely successful and broadly applicable
approach, which has proven able to predict many aspects of complicated interacting
QFTs with high precision and controlled uncertainties that are systematically improv-
able through additional computing resources or algorithmic innovations.

Machine learning and artificial intelligence

In tutorials we are exploring generalizations of the Ising model both to different
lattice structures (hyper-diamond, A∗

d, kagome, etc.) as well as to different interactions
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between the sj = ±1 spins, including the general

ESG = −
∑
j ̸=k

Jjksjsk

with zero external magnetic field. From this expression we can recover the usual Ising
model by setting the interaction strength Jjk = 1

2
for nearest-neighbour pairs, other-

wise Jjk = 0. Alternatively, a great deal of interesting physics and mathematics can
be investigated by considering symmetric non-zero Jjk that connect all pairs of lattice
sites (more generally called nodes). In tutorials, for example, we focus on the exactly
solvable Curie–Weiss model defined by constant Jjk = J

2N
for all j ̸= k.

As another example, if the values of Jjk are randomly sampled from a gaussian
distribution, the resulting model is also solvable, and the 2021 Nobel Prize recognized
Giorgio Parisi in part for finding this solution. This is often called the Sherrington–
Kirkpatrick model, to recognize David Sherrington and Scott Kirkpatrick for developing
it in 1975, and beginning to work on the solution that Parisi eventually found in 1979.
More generally, this is called a spin glass, in analogy to everyday glass — the latter is
formally in a liquid phase without solid order, but disorder sets in so slowly that remnant
solidity persists for long periods (centuries). Similarly, when a spin glass transitions
from an ordered phase to a disordered phase, disorder sets in so slowly that remnant
magnetization persists for long periods (days).

A third name given to this same system is to call it a Hopfield network, named
after John Hopfield, which is an example of a recurrent neural network in which the Jjk
are interpreted as weights that can be used to store and access (or “learn”) information.
Similarly, adding a node-dependent external magnetic field term,

EBM = −
∑
j ̸=k

Jjksjsk −
∑
n

Hnsn,

defines another type of neural network known as a Boltzmann machine, co-invented
by Geoffrey Hinton. Boltzmann machines have proven most useful if restricted so
that the nodes are divided into layers, with non-zero weights connecting only pairs of
nodes in different, neighbouring layers. Such restricted Boltzmann machines with many
layers are one of the most common approaches to the type of artificial intelligence (AI)
known as deep learning. Other forms of AI, such as the large language models that
form the foundation for generative AI systems in the 2020s, can also be analysed and
interpreted in terms of interacting statistical mechanics systems. Hopfield and Hinton
were recognized for their work on neural networks by the 2024 Nobel Prize, and many
other researchers are making major contributions in these areas. The annual Elizabeth
Gardner Lectures are a good place to hear about some of these advances; they are
named after Elizabeth Gardner, an early leader in the field who died at the age of 30.

Voter models

Moving beyond the mathematical sciences, we can consider sociology as a do-
main where the applicability of statistical mechanics is less obvious. Despite this, there
is a diverse and active field of “sociophysics”, which uses methods and perspectives
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of statistical mechanics to describe various aspects of social and political behaviour.
Serge Galam’s 2012 book Sociophysics provides a comprehensive introduction. In
the years since it was published, the continued growth of enormous online social net-
works has provided a flood of data that can be modeled through frameworks based on
interacting statistical systems.

A particular branch of sociology where connections to statistical mechanics may
be more apparent is the field of opinion formation, where “voter models” have been
widely used since the 1970s to model elections, and more general political debates,
with varying degrees of success. Voter models are interacting statistical systems not
too different from the Ising model, where the spin degrees of freedom that we have
been working with are reinterpreted as voters’ opinions on a certain topic. For example,
support for a particular proposition, candidate or political party can be represented as
sn = +1, with sn = −1 indicating opposition. Just like the interactions in the Ising
model encourage spins to align with each other, voter models incorporate a tendency
for voters to align (i.e., agree) with the majority of the other voters they interact with.

There are many generalizations that can then be added to better describe the
outcomes of surveys and elections. A simple extension is to allow voters to be neutral
or indifferent, represented as sn = 0. Similarly, the strength of a voter’s commitment to
their opinion can be modelled by extending the range of possible spin values,

sn ∈ {· · · ,−2,−1, 0,+1,+2, · · · } .

Voter models should also be defined on flexible and evolving graphs, rather than
the regular lattices we considered for the Ising model, in order to capture the possibility
of people interacting with different sets of individuals over time. The figure on the next
page, from Richard Durrett et al., “Graph fission in an evolving voter model” (2012),
illustrates how such a graph can look for a two-state voter model with sn ∈ {−1,+1}
coloured red and blue. As in everyday experience (and inspired by social networks),
different voters have different numbers of connections with each other. In this particu-
lar investigation, network connections between disagreeing voters are probabilistically
severed, which enables a transition between two phases. In one of these phases a
consensus develops among the vast majority of voters. In the other phase the popula-
tion becomes increasingly polarized, as shown below. Voters with a particular opinion
increasingly interact only with others who share that opinion, and eventually nearly all
connections are severed between the two opposing groups.

Simpler studies, that don’t allow connections to be severed, can also observe a
transition to consensus once an opinion reaches a critical concentration. For example,
Alexander Balankin et al., “Ising percolation in a three-state majority vote model” (2016)
considers a case with a second-order phase transition in the universality class of the
two-dimensional Ising model. This work also observed the possibility of a “stable non-
consensus” phase, with long-term polarization between ‘clusters’ of aligned voters who
interact mainly with each other rather than with voters holding different opinions. These
stable clusters eventually formed even without severing connections, as an emergent
consequence of the seemingly simple interactions voters had with each other.
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Epidemiology

Another application of interacting statistical systems, which attracted a lot of at-
tention in the early 2020s, is to model the spread of diseases in populations. As in
the case of voter models, the degrees of freedom under consideration are again indi-
viduals, whose interactions with each other can allow the infection to spread to those
who are susceptible. Numerical Monte Carlo calculations can then be used to model
how many people are likely to be infected as time passes, guided by data on typical
movement and contacts.

The picture on the next page is a snapshot from an over-simplified simulation
provided by The Washington Post to illustrate these concepts. Here individuals are
modeled simply as a gas of interacting particles in two dimensions, and various ways
of restricting their motion are used to explore the likely effects of measures such as
quarantines and social distancing. By coincidence, the scale of this simulation, which
considers a population of just 200 people, is comparable to the first importance sam-
pling Monte Carlo calculation carried out in 1953, which computed the pressure (i.e.,
equation of state) for 224 interacting particles in a two-dimensional ‘volume’. At the
time, this required several days of computing on a state-of-the-art machine; now these
sorts of calculations are easily done on a smartphone.

Larger-scale and more realistic versions of these epidemiological simulations pro-
vide important input into government deliberations regarding what restrictions (such as
lockdowns) would be most beneficial to reduce the spread of disease, and how long it
would be best to maintain such restrictions. Rather than investigating a phase transi-
tion, the goal is to quantify likely effects of various potential restrictions. As described
in Section 1.2, the numerical experiments are therefore repeated many times with dif-
ferent sequences of pseudo-random numbers, to produce an ensemble of possibilities
from which the likely outcomes of interventions can be inferred.
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Flocking

Let’s conclude these brief highlights by considering another biological application,
in which interacting statistical systems are used to model the large-scale collective
motion of certain groups of animals. The image below, from Marcus Woo, “How bird
flocks are like liquid helium” (2014) illustrates the “flocking” behaviour of groups of
starlings, which fly through the sky in surprisingly tight coordination, producing shape-
shifting clouds known as murmurations. Qualitatively similar behaviour is also seen in
schools of fish, swarms of insects, and even crowds of humans.

Many models based on interacting statistical systems have been — and continue
to be — developed to describe this emergent collective behaviour. Much of this work
builds upon a particularly simple “Vicsek model” introduced in 1995, which hypothe-
sizes that each particle (i.e., bird) will interact with others near to it. These interactions
encourage the particle to move in the same direction as its neighbours, similar to how
the nearest-neighbour interactions in the Ising model encourage its spins to align.
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Models of this sort exhibit a transition between two distinct phases. When there is
a low density of particles, there are relatively few interactions and the particles’ motion
is disordered, with no murmurations or swarms. At high densities, in contrast, large-
scale collective motion appears, based solely on the interactions between the individual
particles in the system. An order parameter sensitive to this behaviour is the average
angle of the particles’ motion. Different model variations can predict either first-order or
second-order transitions between these two phases, and in the second-order case the
universality class of the critical exponents also depends on the model details. In some
cases, as the critical density is approached from the disordered phase, the particles
exhibit anomalous super-diffusion like that investigated in the computer assignment.

10.4 Wrap-up recap and synthesis

In this module we have built on foundations from probability theory to develop
and apply the core concepts of statistical mechanics. In Unit 1 we defined probabil-
ity spaces, expectation values and variances, and used these to establish the law of
large numbers through which stable large-scale behaviour occurs for stochastic sys-
tems that involve a large number of degrees of freedom, N ≫ 1. We also saw how the
central limit theorem relates large-N probability distributions to the underlying mean
and variance of the microscopic degrees of freedom, and practiced extracting probabil-
ities from such distributions. The law of diffusion results from the central limit theorem,
and the computer assignment applied inverse transform sampling to study how anoma-
lous diffusion can arise when the central limit theorem’s assumption of a finite mean
and variance breaks down.

Starting in Unit 2 we focused on statistical ensembles in thermodynamic equilib-
rium as more specialized realizations of probability spaces. These statistical ensem-
bles consist of the set of micro-states ωi that a system can possibly adopt through
its evolution in time, each with the corresponding probability pi that it will actually be
adopted. The laws of nature — such as the first law of thermodynamics that requires
conservation of energy — impose constraints on statistical ensembles. The micro-
canonical ensemble directly implements such constraints, by requiring the system’s
internal energy and particle number be constant as it evolves in time. This implies that
the system must be completely isolated from the rest of the universe. Important derived
quantities in the micro-canonical ensemble are the entropy (Eq. 20) and temperature
(Eq. 22), which we explored through the simple example of non-interacting spin sys-
tems. In particular, we derived a form of the second law of thermodynamics, which
states that the total entropy never decreases as time passes and therefore implies that
maximal entropy corresponds to thermodynamic equilibrium.

Motivated by the impracticality of demanding that a system be completely iso-
lated, in Unit 3 we turned to the canonical ensemble, which allows systems to ex-
change energy with a large thermal reservoir that imposes a constant temperature.
The particle number is still fixed, while the entropy, internal energy and heat capacity
are now important derived quantities, with a fluctuation–dissipation relation between
the last two. Maximizing the entropy to consider systems in thermodynamic equilib-
rium provides the partition function (Eq. 33) and Boltzmann distribution (Eq. 34) as a
fundamental mathematical definition of the system. Derived quantities are determined
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from the partition function, or equivalently from the Helmholtz free energy (Eq. 37).

By analysing non-interacting systems of both distinguishable and indistinguish-
able spins, we demonstrated that the intrinsic information content of statistical sys-
tems has physically measurable effects. These physical measurements are possible
for canonical systems that don’t have to be completely isolated, and in tutorial activi-
ties we saw that experimentally measured heat capacities for many materials can be
modeled by the Einstein solid, with improved results obtainable through the Debye the-
ory of solids. These analyses highlighted the key strategy of considering high- and
low-temperature limits in which statistical systems can simplify dramatically.

In Unit 4 we continued working with the canonical ensemble, applying it to study
non-interacting (ideal) gases of non-relativistic, classical particles. At the start of this
analysis we had to regulate the system to ensure that its partition function was well-
defined. We did this by assuming that only discrete momenta are possible in a finite
volume V , and then taking the limit of continuously varying momenta that allowed us
to replace discrete sums with continuous integrals. Considering ideal gases of both
distinguishable and indistinguishable particles, we determined their partition functions
and used these to derive the internal energy (Eq. 52) and entropy (Eq. 53). We saw
that mixing two gases of distinguishable particles produces a positive mixing entropy,
meaning this process is irreversible, in contrast to combining and reseparating gases
of indistinguishable particles. Finally we defined the pressure as the change in the
system’s internal energy upon changing its volume while keeping its entropy constant
(Eq. 55), and derived the ideal gas law (Eq. 56) as a famous equation of state.

Building on these analyses of ideal gases in the canonical ensemble, in Unit 5
we considered thermodynamic cycles as systems that perform a repeatable sequence
of expansions, compressions and heat transfers in order to act as heat engines or
refrigerators. This required first considering the work done on the system through
these processes (Eq. 59), the heat added to or removed from it (Eq. 61), and the
first law of thermodynamics expressed in terms of these quantities (Eq. 63). As two
limiting cases, we contrasted slow isothermal processes that feature sufficient heat
exchange to keep the temperature constant, versus more realistic adiabatic processes
that occur too quickly for any heat to be exchanged. After introducing PV diagrams as
a convenient way to visualize thermodynamic cycles and the individual processes that
comprise them, we analysed the Carnot heat engine and computed how much work it
can do on its surroundings as heat flows through it from a hot thermal reservoir to a
cold reservoir. This balance of work and heat defines the engine’s efficiency (Eq. 64).
We showed that the Carnot cycle achieves the maximum possible efficiency allowed by
the second law of thermodynamics, and in tutorials we confirmed the lower efficiency
of the Otto cycle that describes a petrol engine.

Returning to the formulation of statistical ensembles, in Unit 6 we further general-
ized our perspective to consider systems that can exchange both particles and energy
with a large particle reservoir. Introducing the chemical potential (Eq. 67) as the new
quantity that the particle reservoir keeps constant — along with the temperature —
defined the grand-canonical ensemble. A final round of entropy maximization gave us
the grand-canonical partition function (Eq. 74) and the corresponding grand-canonical
potential (Eq. 75) that determine the derived quantities, which now include the particle
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number in addition to the internal energy and the entropy. We were also able to derive
a generalized thermodynamic identity (Eq. 80) that relates the chemical potential to the
change in energy upon adiabatically adding a particle to the system.

Our main applications of the grand-canonical ensemble involved analysing quan-
tum gases, and as preparation for that we introduced quantum statistics in Unit 7 —
simply considering this as an ansatz rather than relying on prior knowledge of quantum
mechanics. After demonstrating how our earlier classical (non-quantum) approach to
ideal gases breaks down when there is a non-negligible probability for multiple identical
particles to occupy the same energy level, we got around this problem by organizing the
micro-states in terms of the possible occupation numbers of the energy levels. These
possible occupation numbers distinguish the two types of particles that appear in na-
ture: bosons can have any non-negative occupation numbers nℓ ∈ N0, while fermions
obey the Pauli exclusion principle and can have only nℓ ∈ {0, 1}. We derived (and
factorized) the respective Bose–Einstein (Eq. 86) and Fermi–Dirac (Eq. 88) statistics
for these two types of quantum particles, and checked that both approach classical
Maxwell–Boltzmann statistics (Eq. 87) in the limit of high temperature with large nega-
tive chemical potential −µ≫ T .

With quantum statistics in hand, we applied the grand-canonical ensemble to
analyse quantum gases in Unit 8, first considering a non-interacting ideal gas of ultra-
relativistic photons with energies defined in terms of frequencies (Eq. 93). Based on
the grand-canonical potential, we derived the Planck spectrum (Eq. 95) governing the
frequency dependence of the energy density for the photon gas, and learned how it
solves the ultraviolet catastrophe of the classical Rayleigh–Jeans spectrum. We also
saw how the Planck spectrum provides an excellent mathematical model for both solar
radiation from stars — among the hottest environments in the universe — as well as the
cosmic microwave background that fills frigid inter-galactic space and provides strong
evidence for the existence of dark matter. We finally derived the radiation pressure of
photon gases, and the corresponding equation of state (Eq. 98), which has the same
form as the ideal gas law, just with a different numerical factor.

We continued with a similar application of the grand-canonical ensemble to ideal
quantum gases of non-interacting fermions, focusing mainly on non-relativistic particles
and considering the low-temperature regime where quantum Fermi–Dirac statistics dif-
fers the most from the classical case. Again based on the grand-canonical potential,
we derived the Fermi function F (E) and saw how it approaches a step function at
low temperatures. This corresponds to all the low-lying energy levels being filled —
each level occupied by the single fermion allowed by the Pauli exclusion principle. The
transition from filled to empty energy levels defines the Fermi energy, which in the
zero-temperature limit is simply the chemical potential (Eq. 101). The resulting inter-
nal energy (Eq. 103) and pressure (Eq. 104) remain positive even as the temperature
approaches absolute zero. This non-zero degeneracy pressure helps to explain the
regularity of type-Ia supernovas, which play a key role in establishing the existence of
so-called dark energy. After also deriving the equation of state for a relativistic ideal
fermion gas, we wrapped up the non-interacting portion of the module by using the
Sommerfeld expansion to predict the leading low-temperature corrections to the zero-
temperature limits of µ

EF
(Eq. 109) and the heat capacity (cv ∝ T ).
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Our final major topic was to explore interacting statistical systems, making fur-
ther use of the tools we had previously developed. Statistical systems in which the
microscopic degrees of freedom interact with each other can exhibit a broader array of
phenomena, including phase transitions. At the same time, they become enormously
more difficult to analyse, because their partition functions and derived quantities no
longer factorize into independent single-particle contributions. In Unit 9 we focused on
the famous Ising model, which is simple to write down as a system of spins interact-
ing with their nearest neighbours on a d-dimensional lattice (Eq. 111), but extremely
difficult to solve exactly in two or more dimensions. For d ≥ 2 dimensions, the Ising
model exhibits a second-order phase transition between its high-temperature disor-
dered phase and its low-temperature ordered phase, with its magnetization serving as
the order parameter. We analysed the Ising model through the mean-field approxi-
mation that produced a self-consistency condition (Eq. 117) for this order parameter.
We then exactly solved the one-dimensional Ising model and used Kramers–Wannier
duality to predict the exact critical temperature in two dimensions, showing that the
mean-field approximation is not very reliable in a low number of dimensions.

Although the mean-field approximation to the Ising model does capture a second-
order phase transition, the critical temperature and critical exponents it predicts for this
transition only slowly converge towards the correct values as the dimensionality of the
system increases. Determining the correct critical behaviour in d > 2 dimensions re-
quires numerical analyses that we discussed in this final Unit 10. Monte Carlo impor-
tance sampling algorithms are the standard way to carry out reliable numerical compu-
tations with controlled uncertainties in a realistic amount of time, and are very broadly
applicable to more general interacting statistical systems. Amazingly, extremely differ-
ent physical systems can exhibit phase transitions characterized by exactly the same
critical exponents, a phenomenon known as universality, which helps to explain the
broad applicability and far-reaching power of statistical mechanics.

In summary, we have learned foundations including statistical ensembles, en-
tropy, and the laws of thermodynamics. We have studied applications including diffu-
sion, ideal gases, thermodynamic cycles, and phase transitions. And we have explored
advanced topics including numerical methods and universality. All together, our new
knowledge of statistical mechanics and thermodynamics enables us to observe and
appreciate many further uses of these concepts and tools across the mathematical
sciences and beyond.
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