MATH327: StatMech and Thermo, Spring 2025 Extra practice — Randomly walking inventory

Suppose a company has developed a revolutionary zero-emission airplane, which is in high demand. Let I(t) be the inventory of planes available to sell at time t, with negative values representing a backlog of planes already ordered that still need to be produced. Ten pre-orders produce a backlog of $I_0 \equiv I(0) = -10$ when production starts at time t=0. Once production starts, a single plane is produced every $\Delta t=3$ weeks. Every single week there is a 50% chance of receiving a new order for a plane.

Treat the inventory as a random walk, taking one step every $\Delta t = 3$ weeks.

- (a) What are the possible step sizes ΔI and the corresponding probabilities for the random walk described above? Compute the resulting mean and variance of the single-step process.
- (b) What is the minimum time t_{\min} in which the initial backlog could be cleared, to give $I(t_{\min}) \geq 0$? What is the probability the backlog will be cleared in this time?
- (c) Using the central limit theorem, what is the expected size of the inventory when t = 78 weeks (approximately 18 months)?
- (d) Using the central limit theorem and the integral

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{U} e^{-u^2} du \approx 0.9984$$
 for $U = 2.082$,

what is the probability the backlog will be reduced, so that $I(t) > I_0$, when t = 78 weeks?