
MATH327: Statistical Physics
David Schaich Spring Term 2024

LECTURE NOTES
Last modified 30 April 2024

Module information and logistics 2

Unit 1: Central limit theorem and diffusion 8

Unit 2: Micro-canonical ensemble 26

Unit 3: Canonical ensemble 40

Unit 4: Ideal gases 56

Unit 5: Thermodynamic cycles 68

Unit 6: Grand-canonical ensemble 80

Unit 7: Quantum statistics 90

Unit 8: Quantum gases 102

Unit 9: Interacting systems 130

Unit 10: Synthesis and broader applications 155



Module information and logistics

Coordinator

David Schaich
Theoretical Physics Wing Room 123
david.schaich@liverpool.ac.uk
calendly.com/daschaich
www.davidschaich.net

Overview

Along with quantum mechanics and relativity, statistical physics is a cen-
tral pillar of modern physics. It uses stochastic (i.e., probabilistic) techniques to
predict the large-scale behaviour that emerges from the microscopic dynamics
of many underlying objects — for example, the ∼1022 atoms in a cubic centime-
tre of water. Applications of statistical physics range from nuclear physics and
cosmology to climate science and biophysics, often with outstanding success.

The module outline on the previous page is organized around the concept
of statistical ensembles introduced in the early 1900s. In essence, a statistical
ensemble is a mathematical framework for concisely describing the properties of
idealized physical systems subject to certain constraints. After studying the prob-
ability foundations underlying these frameworks, we meet the micro-canonical
ensemble in unit 2 and the canonical ensemble in unit 3. The following two units
4–5 apply the canonical ensemble to investigate non-interacting (“ideal”) gases
and thermodynamic cycles. Unit 6 introduces our third and final statistical en-
semble, the grand-canonical ensemble, which units 7–8 apply to several types of
non-interacting quantum gases. Finally, in unit 9 we begin to explore the effects
of interactions, which open up a much broader landscape of applications that we
will survey for the remainder of the term.

Schedule

Most weeks we will have the following schedule:

• Lecture at 9:00–10:00 on Tuesdays in Room 210
• Tutorial at 14:00–15:00 on Thursdays in Elec. Eng. Lecture Room E2 (202)
• Lecture at 11:00–13:00 on Fridays in Room 210

During weeks 2, 3 and 4 (starting 5, 12 and 19 February) we will instead have
computer lab sessions to provide opportunities for you to work on the computer
project discussed further below:

• Computer lab at 09:00–11:00 on Tuesdays in the Central Teaching Lab PC
Centre [Room 117, Green Zone]

• Lecture at 11:00–13:00 on Fridays in Room 210
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I will use Zoom to record lectures (and lecturey bits of tutorials and computer
labs), which also provides a way for anyone off campus or out of town to con-
nect remotely through this link (meeting ID 914 9918 8829, passcode Math327!).
Zoom recordings will appear along with all other resources at our Canvas site,

canvas.liverpool.ac.uk/courses/69036

Office hours will take place after each scheduled activity. Most weeks this
will be at 10:00 on Tuesdays, 15:00 on Thursdays and 13:00 on Fridays. Dur-
ing weeks 2, 3 and 4 this will instead be at 11:00 on Tuesdays and 13:00 on
Fridays. In all cases office hours will be held in Room 123 of the Theoretical
Physics Wing, and will also connect to the Zoom link above. If these times do
not work with your schedule, you can also make an appointment through cal-
endly.com/daschaich, use the Canvas discussion board, or reach me by email
at david.schaich@liverpool.ac.uk. I will aim to respond to emails and discussion
board queries within 48 hours.

Assessment and academic integrity

There will be three in-term assignments. Each accounts for 15% of the
module mark, with the remaining 55% coming from the final exam. Although the
deadlines listed below are not ideal, they have been centrally coordinated within
the Department to minimize pile-up across different modules.

15% A computer project due Tuesday, 20 February

30% Two equally weighted homework assignments, the first due Tuesday, 5
March and the second due Friday, 26 April

55% A two-hour in-person final examination to be centrally scheduled within the
20–31 May exam period

According to the University’s Code of Practice on Assessment (COPA), late
submissions completed within 120 hours after the submission deadline will have
5% of the total marks deducted each 24-hour period after the deadline. Sub-
missions more than five days late will be awarded zero marks, though I will still
endeavour to provide feedback on them. I will aim to return feedback and share
model solutions within two weeks of the deadline.

For your other modules you already should have read and understood the
Academic Integrity Policy detailed in COPA Appendix L. If you have any questions
about what is or is not acceptable under this policy, please ask me or our Aca-
demic Integrity Officer Kamila Zychaluk. In all cases, the spirit of the Academic
Integrity Policy should take precedence over legalistic convolutions of the text.

In particular, I encourage you to discuss the in-term assignments with each
other, since discussing and debating your work is a very effective way to learn.
Note that I say your work — your submissions for all assignments must be your
own work representing your own understanding, and the examination must be
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done on your own. It is unacceptable to copy solutions in part or in whole from
other students (current or prior) or from other sources (commercial or otherwise).
Should you make use of resources beyond the module materials — including
generative AI tools such as ChatGPT — these must be explicitly referenced in
your submissions. Clear and neat presentations of your workings and the logic
behind them will contribute to your mark.

Main resources and materials

The main materials we will use are the lecture notes you are currently read-
ing. As you read further, you will encounter gaps in the notes, which provide
bite-sized exercises to help you check your understanding. We will fill most gaps
during lectures, but I encourage you to think about them for yourself.

The ten units into which the content is organized won’t neatly match up with
the twelve weeks of the term. Some units will require more time than others.
Regular Canvas announcements will summarize what we cover each week.

We work in units where the Boltzmann constant k = 1, and logarithms have
base e unless otherwise specified (i.e., log x = ln x). There is no need to memo-
rize any equations. Many equations are numbered so that they can be referenced
later on, not necessarily because they are important. Key results, definitions and
concepts are highlighted by coloured boxes, and you should aim to be confident
in your understanding of these.

These lecture notes were first written ‘live’ during the 2021 and 2022 edi-
tions of this module. While they are now much more stable, they continue to be
improved, refined and sometimes corrected. The “Last modified” date at the bot-
tom of each page will flag any changes that occur during the term. You can track
the changes themselves through this version control repository:

github.com/daschaich/MATH327_2024
This repository also provides tools for you to raise any issues you see. The Soft-
ware Carpentry project provides an introduction to Version Control with Git.

Expected background

No prior exposure to quantum mechanics or computer programming is re-
quired — all necessary information on these topics will be provided. I do antici-
pate that you have previously seen the standard deviation, the binomial coefficient(

N

k

)
=

N !

k! (N − k)!
=

(
N

N − k

)
that counts the number of possible ways to choose k objects out of a set of N ≥ k
total objects, and gaussian integrals,∫ ∞

−∞
e−a(x+b)2 dx =

√
π

a
a > 0.
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Programming

You are welcome to complete the computer project using the programming
language of your choice. I recommend Python, which is free, user-friendly, and
very widely used around the world. During the first two weeks of the term we
will review this demo that explains all the Python programming tools you’ll need.
Python may already be available on devices you have access to — either a per-
sonal computer or computers in our library. If it isn’t, you can also run Python
code on many Web sites, of which I have had the best experiences with Google’s
Colaboratory and CoCalc. You may need to create a free account, and you should
make sure to save a local copy to reduce the risk of losing your work. Alternative
languages could include C, Fortran, R, or even MATLAB (through the University’s
site license). Maple may struggle to handle parts of the project.

How to get the most out of this module

At this point in your studies, this advice should be familiar, but it’s worth
repeating.

Come to class — ideally in person, if necessary by Zoom. This will ensure
regular contact with the material, and help you check that you understand it. If the
module is moving slower than you’d prefer, coming to class will give you opportu-
nities to ask about more interesting extensions, applications or complications.

Before class, take a quick look at the upcoming pages in the lecture notes,
and think about how any gaps could be filled. Look for the big ideas rather than
digging in to every detail, and see if you have any questions (or objections) to
raise in class. After class, take a closer look at the details, and make sure the
gaps have been filled to your satisfaction. Even though the lecture notes reflect
my plans for the module, they may not exactly match what happens in class,
especially when questions arise. We may gloss over some topics that seem to be
sufficiently well explained in the notes, and we may delve deeper into other topics
that seem to merit further consideration.

Work on the homework problems, computer project and tutorial activities.
The best way to learn mathematics is by doing mathematics, and these assign-
ments and activities are designed to make you think and help develop your math-
ematical muscles. In particular, the homework problems will be harder than exam
questions, since you’ll have much more time to work on them — so make sure you
start thinking about them well in advance of the deadline. Afterwards, review the
model solutions and feedback, to make sure any confusing points are resolved.

Ask questions. Ask questions you think you’re supposed to know the answer
to. Ask questions you think everyone else knows the answer to. (They don’t.) Ask
questions about the big ideas, the specific details, and the connections between
them. The opportunity to ask questions is the main benefit of taking a module.
You can ask me; you can ask your classmates; you can ask the additional re-
sources below.
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Additional resources

The lists below provide some optional additional resources that may be help-
ful. You can use the module Reading List on Canvas to reach our library’s records
for the books.

Resources at roughly the level of this module:

1. David Tong, Lectures on Statistical Physics (2012),
www.damtp.cam.ac.uk/user/tong/statphys.html

2. MIT OpenCourseWare for undergraduate Statistical Physics I (2013) and
Statistical Physics II (2005),
ocw.mit.edu/courses/8-044-statistical-physics-i-spring-2013/
ocw.mit.edu/courses/8-08-statistical-physics-ii-spring-2005/

3. Daniel V. Schroeder, An Introduction to Thermal Physics (2021)

4. C. Kittel and H. Kroemer, Thermal Physics (1980)

5. F. Reif, Fundamentals of Statistical and Thermal Physics (1965)

More advanced and more specialized resources, which may be useful to con-
sult concerning specific questions or topics:

6. MIT OpenCourseWare for postgraduate Statistical Mechanics I (2013) and
Statistical Mechanics II (2014),
ocw.mit.edu/courses/8-333-statistical-mechanics-i-statistical-mechanics-of-
particles-fall-2013/
ocw.mit.edu/courses/8-334-statistical-mechanics-ii-statistical-physics-of-
fields-spring-2014/

7. R. K. Pathria, Statistical Mechanics (1996)

8. Sidney Redner, A Guide to First-Passage Processes (2007)

9. Pavel L. Krapivsky, Sidney Redner and Eli Ben-Naim, A Kinetic View of
Statistical Physics (2010)

10. Kerson Huang, Statistical Mechanics (1987)

11. Andreas Wipf, Statistical Approach to Quantum Field Theory (2021)

12. Weinan E, Tiejun Li and Eric Vanden-Eijnden, Applied Stochastic Analysis
(2019)

13. Michael Plischke & Birger Bergersen, Equilibrium Statistical Physics (2005)

14. Sacha Friedli and Yvan Velenik, Statistical Mechanics of Lattice Systems
(2018)

15. L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (1980)
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A general book about learning, emphasizing (among other things) the value of
retrieval practice compared to re-reading lecture notes or re-watching videos:

16. Peter C. Brown, Henry L. Roediger III and Mark A. McDaniel, Make it Stick:
The Science of Successful Learning (2014)
A short summary video is also available

Programming resources:

17. MATH327 Python programming demo (2024)

18. Beginner’s Guide to Python (2023)

19. Software Carpentry tutorials:
hack Version Control with Git (2023)
hack Programming with Python (2024)
hack Plotting and Programming in Python (2023)

20. Stormy Attaway, MATLAB: A Practical Introduction to Programming and
Problem Solving (2013)

21. B. Barnes and G. R. Fulford, Mathematical Modelling with Case Studies:
Using Maple and MATLAB (2014)

In addition, there is a vast constellation of other online resources such as
StackExchange and Wikipedia. These can be great places to start learning about
a topic, but are often terrible places to stop.

MATH327 information 7 Last modified 4 Feb. 2024

https://www.youtube.com/watch?v=MfylloWuuZU
https://tinyurl.com/math327demo
https://wiki.python.org/moin/BeginnersGuide
https://software-carpentry.org
https://swcarpentry.github.io/git-novice/
https://swcarpentry.github.io/python-novice-inflammation/
https://swcarpentry.github.io/python-novice-gapminder/
https://physics.stackexchange.com/questions/tagged/statistical-mechanics
https://en.wikipedia.org/wiki/Statistical_physics


Unit 1: Central limit theorem and diffusion

Introductory remarks: What is Statistical Physics?

Mathematical sciences such as physics aim to determine the laws of nature
and understand how these govern experimental observations — both in everyday
circumstances and under extreme conditions. This mathematical understanding
is typically guided by reproducing a set of observations, with the resulting frame-
work then used to make predictions for other “observables”.

Over the past few centuries this process has been tremendously successful,
with theoretical physics accurately predicting experimental and observational re-
sults from sub-atomic through to supra-galactic scales. Modern physics labs can
create a vacuum better than in outer space and the coldest temperatures in the
known universe, as well as going to the other extreme to reach temperatures of
millions of degrees and pressures millions of times atmospheric pressure at sea
level. Amazingly, many aspects of these realms of physics can be theoretically
described by mathematics developed centuries ago.1

Statistical physics is one domain in which simple mathematical principles
enable amazing predictive capabilities. Initially developed in the nineteenth cen-
tury, statistical physics remains a central pillar of modern physics, and will retain
this position in years to come. The foundations of statistical physics lie in the
use of probability theory to mathematically describe experimental observations
and corresponding laws of nature that involve stochastic randomness rather than
being perfectly predictable.

The lack of perfect predictability in statistical physics is a matter of practi-
cality rather than one of principle. It results from working with a large number of
degrees of freedom — that is, a large number of independent objects such as
atoms. For illustration, Avogadro’s number NA ≈ 6.022 × 1023 is the large num-
ber of molecules in everyday amounts of familiar substances — about 18 grams
of water or about 22 litres of air at sea-level atmospheric pressure (≈101 kPa).
Specifying the positions and velocities of ∼1023 objects would require far more
information than could be stored even in the memory of the biggest existing su-
percomputers. Statistical physics instead produces simple mathematical descrip-
tions of large-scale properties such as temperature, pressure and diffusion, which
are generally of such outstanding quality that the underlying ‘randomness’ is ef-
fectively invisible.

Historically, the difficulty of detecting the stochastic processes underlying
such thermodynamic properties made it challenging to convince skeptics that
atoms and molecules really exist. Ludwig Boltzmann, a prominent early devel-
oper of statistical physics, endured a constant struggle to defend his ideas, which
likely contributed to his deteriorating mental health and eventual suicide in 1906.
A significant step to convincingly establish the existence of atoms was Albert

1Eugene Wigner’s famous article, “The Unreasonable Effectiveness of Mathematics in the Nat-
ural Sciences” (1960), and subsequent work in the philosophy of physics, elaborates on why this
may be considered ‘amazing’. This module will not comment extensively on philosophy.
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Einstein’s use of statistical physics to explain the observed “Brownian motion” of
particles suspended in fluids — this work was part of Einstein’s “miracle year”
in 1905, along with special relativity and early contributions to quantum physics.
Jean Perrin soon verified Einstein’s predictions and used them to determine Avo-
gadro’s number; he was awarded the 1926 Nobel Prize in Physics for helping to
demonstrate “the discontinuous structure of matter”. More recently, applications
of statistical physics to advance our “understanding of complex physical systems”
were recognized by the 2021 Nobel Prize in Physics shared between Syukuro
Manabe, Klaus Hasselmann and Giorgio Parisi. Other modern topics we will
encounter in this module include explaining why stars don’t collapse under the
‘weight’ of their own gravity, and identifying effects of dark matter in temperature
fluctuations observable in the cosmic microwave background lingering from the
early years of the universe.

In this unit we will focus on some of the foundational mathematics that will
underlie our later development and application of statistical ensembles. Look-
ing back to Boltzmann’s times, we can consider the following question one of
his critics might have asked: If the pressure of a gas in a container results from
molecules stochastically colliding with the walls of that container, then how can
the pressure be so stable and reproducible, rather than itself fluctuating stochasti-
cally? The mathematical answer lies in the law of large numbers and the central
limit theorem, which we will review and apply to the physics of diffusion in one
dimension.

1.1 Probability foundations

We begin by building a more formal mathematical framework around the
concept of probability, through a sequence of definitions.

First, a random experiment E involves setting up, manipulating and/or ob-
serving some (physical or hypothetical) system with some element of random-
ness. Flipping a coin is a simple random experiment. In the context of the statis-
tical ensembles that will be the focus of this module, a typical experiment will be
to allow a collection of particles to evolve in time, subject to certain constraints.

Each time an experiment is performed, the world comes out in some state
ω. The specification of the experiment and the state must include all objects of
interest, and may include more besides. When flipping a coin, for example, the
full state could contain information not only about the final orientation of the coin,
but also about its position — did it land on the ground or was it caught?

The set of all states Ω collects all possible states ω that the given experi-
ment E can produce, and is therefore intricately tied to E itself.

We are generally not interested in all aspects of the full state ω. For example,
we won’t care where a flipped coin lands. Instead we’re typically only interested
in whether it lands heads up or tails up — and we may want to set aside any state
that doesn’t cleanly reflect those options. The measurement X(ω) extracts and
quantifies this information, acting as a function that maps the state ω to a number
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that we can mathematically manipulate. If we repeat the given experiment E many
times and carry out the measurement X on each resulting state ωi, we will obtain
a sequence of numbers X(ωi) that behave as a random variable.

Acting with the measurement X on all of the possible states in the set Ω
defines the set of all outcomes (or outcome space) A:

X : Ω→ A.

That is, A collects all possible measurement results that the given experiment E
and measurement X can produce. A can be finite, countably infinite, or uncount-
ably infinite (i.e., continuous).

Let’s consider some examples to clarify these definitions. With an experi-
ment of rolling a six-sided die and measuring the number (1–6) that comes out
on top, what is the set of all outcomes A? What additional information could be
included in a corresponding state ω?

What is the outcome space A if we toss a coin four times and measure whether it
lands heads up (H) or tails up (T ) each time?

What information could characterize a state ω for a gas of 1023 argon atoms in a
container? What might be interesting to measure?
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For convenience, we can introduce a unique number as a label to char-
acterize each state ω in the set Ω. Generalizing the concept of measurement,
this provides a label function L(ω) that also behaves as a random variable. Our
condition of uniqueness makes L(ω) isomorphic, so that the label can be used
interchangeably with the full state, ω ←→ L(ω).

While the measurements X(ω) we consider generally will not produce a
unique number for each ω, we will design them precisely to remove irrelevant
information that doesn’t interest us. Ignoring that irrelevant information leaves
us free to interchange the set of outcomes A for the set of states Ω. (Some
textbooks may never distinguish between A vs Ω in the first place, though this
can be a source of confusion.)

Only a couple of definitions remain. The next is to define an event to be
any subset of the set of all outcomes A. For example, events resulting from
rolling a die could include (i) rolling a 6, (ii) rolling anything but a 6, (iii) rolling any
even number, and many more. Collecting all events of interest defines the set of
events (or event space) F .

We are now prepared for the final foundational definition in this section, the
probability P of an event in the set F . Mathematically, P is a measure function,

P : F → [0, 1],

which must satisfy the following two requirements:

1. The probability of a countable union of mutually exclusive events must equal
the sum of the probabilities of each of these events.

2. The probability of the outcome space (F = A) must equal 1, even if A is un-
countable. This simply means that the experiment E must produce a mea-
surable outcome. We discard any experiment that doesn’t produce such an
outcome.

Combining the outcome space, event space and probability measure gives us a
probability space (A,F , P ).

For example, consider an experiment that can only produce N possible
states, so that

Ω = {ω1, ω2, · · · , ωN} .
As described above, it is possible for two different states ωi ̸= ωj to produce the
same measurement outcome X(ωi) = X(ωj). This means that the size n of the
outcome space A may be smaller than the size of Ω, n ≤ N . We can write

A = {X1, X2, · · · , Xn} ,

where each Xα is distinct and its index does not necessarily correspond to that
on ωi. We can take the individual Xα themselves to be the events we’re interested
in, choosing the event space

F = {X1, X2, · · · , Xn} = A. (1)
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These events are all mutually exclusive by construction, so if we assign them
probabilities

P (Xα) ≡ pα for α = 1, · · · , n,

then the above requirements on probabilities demand that for any α ̸= β we have

P (Xα or Xβ) = pα + pβ

P (A) = P (X1 or X2 or · · · or Xn) =
n∑

α=1

pα = 1.

Similarly choosing an event space F = A for the six-sided die considered in
an earlier gap, what are the probabilities p1 through p6 that result from assuming
the die is fair?

Again taking F = A for the case of tossing a coin four times, what are the prob-
abilities pα that result from assuming the coin is fair? If we instead consider the
event space

F = {equal number of H and T, different numbers of H and T} ,

what are the probabilities pequal and pdiff for the two events in this F?
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The standard European roulette wheel
shown to the left (source) has 37 pock-
ets labelled “0” through “36”. 18 of
these pockets are coloured red, 18 are
coloured black and 1 (pocket “0”) is
coloured green. Note that measuring the
label automatically provides the colour.

What is the outcome space A for a spin of the roulette wheel? With F = A, what
are the probabilities pα for a fair wheel? With

F = {ball in a red pocket, ball in a black pocket, ball in the green pocket} ,

what are the corresponding probabilities pred, pblack and pgreen?

The process of assigning probabilities to events is called modelling. In the
gaps above we saw above that symmetries are a powerful way to constrain prob-
abilities. The symmetry between the six sides of a fair die, the two sides of a fair
coin, and the 37 pockets of a fair roulette wheel each sufficed to completely fix
the corresponding probabilities pα.

Modelling can also be guided by empirical data obtained by repeating an
experiment many times. For example, if we don’t know whether a set of dice are
fair, we will be able to infer their probabilities pα (with a certain confidence level)
by rolling them enough times. The need to repeat the experiment many times
comes from the law of large numbers, to which we now turn.

1.2 Law of large numbers

Let’s return to the setup leading to Eq. 1 above, with

F = A = {X1, X2, · · · , Xn}

for finite n, and probabilities pα = P (Xα) that obey

pα ∈ [0, 1]
n∑

α=1

pα = 1.
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We can generalize this notation by writing instead∑
X∈A

P (X) = 1,

which provides simple expressions for the mean µ and variance σ2 of the proba-
bility space,

µ = ⟨X⟩ =
∑
X∈A

X P (X) (2)

σ2 =
〈
(X − µ)2

〉
=
∑
X∈A

(X − µ)2 P (X). (3)

The angle bracket notation indicates the expected (or expectation) value with
general definition

⟨f(X)⟩ =
∑
X∈A

f(X)P (X), (4)

which is a linear operation,

⟨c · f(X) + g(X)⟩ = c ⟨f(X)⟩+ ⟨g(X)⟩ .

The square root of the variance,
√
σ2 = σ, is the standard deviation. What is σ

expressed in terms of ⟨X2⟩ and ⟨X⟩2?

We now define a new experiment that consists of repeating the original ex-
periment R times, with each repetition independent of all the others. Using the
same measurement as before for each repetition, we obtain a new outcome space
that we can call B. For R = 4, what are some representative outcomes in the set
B? What is the total size of B?
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Each outcome in B contains R different X(r) ∈ A, one for each repetition
r = 1, · · · , R, and each with mean

〈
X(r)

〉
= µ and variance

〈
(X(r) − µ)2

〉
= σ2.

Considering the case R = 4 for simplicity, any element of B can be written as
X

(1)
i X

(2)
j X

(3)
k X

(4)
l ∈ B with corresponding probability

PB

(
X

(1)
i X

(2)
j X

(3)
k X

(4)
l

)
= PA

(
X

(1)
i

)
PA

(
X

(2)
j

)
PA

(
X

(3)
k

)
PA

(
X

(4)
l

)
,

using subscripts to distinguish between the single-experiment (A) and repeated-
experiment (B) probability spaces.

Averaging over all R repetitions defines the arithmetic mean

XR =
1

R

R∑
r=1

X(r). (5)

Unlike the true mean µ, the arithmetic mean XR is a random variable — a number
that may be different for each element of B. That said, XR and µ are certainly
related, and so long as the standard deviation exists — that is, so long as σ2 is
finite — this relation can be proved rigorously in the limit R→∞.2

Here we will not be fully rigorous, and take it as given that

〈(
X(i) − µ

) (
X(j) − µ

)〉
= σ2δij =

{
σ2 for i = j
0 for i ̸= j

,

where the Kronecker delta δij = 1 for i = j and vanishes for i ̸= j. This is a
consequence of the assumed independence of the different repetitions. Using
this result and the relation

(∑
i ai
)(∑

j bj
)
=
∑

i,j (aibj), express the following
quantity in terms of σ and R:〈(

1

R

R∑
r=1

X(r) − µ

)2〉
=

You should find that your result vanishes in the limit R→∞, so long as σ2 is finite.
Since the square makes this expectation value a sum of non-negative terms, it
can vanish only if every one of those terms is individually zero.

2In the computer project we will numerically investigate a situation where σ2 diverges.
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This establishes the law of large numbers:

lim
R→∞

1

R

R∑
r=1

X(r) = µ, (6)

where we have assumed
〈
X(r)

〉
= µ and

〈
(X(r) − µ)2

〉
= σ2 are finite.

1.3 Probability distributions

It is not necessary to make the assumption (Eq. 1) that our outcome space
contains only a countable number of possible outcomes. The considerations
above continue to hold even if the random variable X is a continuous real number.
In this case, however, the identification of probabilities with outcomes is slightly
more complicated, which will be relevant when we consider the central limit theo-
rem in the next section.

When the outcome can be any number on the real line, the fundamental
object is a probability distribution (or density function) p(x) defined for all
x ∈ R. Starting from this density, a probability is determined by integrating over
a given interval. Calling this interval [a, b], the integration produces the probability
that the outcome X lies within the interval,

P (a ≤ X ≤ b) =

∫ b

a

p(x) dx .

We similarly generalize the definition of an expectation value (Eq. 4) to an
integral over the entire domain of the probability distribution,

⟨f(x)⟩ =
∫

f(x) p(x) dx .

We will omit the limits on integrals over the entire domain, so for x ∈ R we im-
plicitly have

∫
dx =

∫∞
−∞ dx, with

∫
p(x) dx = 1. An important set of expectation

values is 〈
xℓ
〉
=

∫
xℓ p(x) dx, (7)

which provides the mean and variance of the probability distribution p(x), through
generalizations of Eqs. 2–3:

µ = ⟨x⟩ =
∫

x p(x) dx σ2 =
〈
x2
〉
− ⟨x⟩2 . (8)

The expression for the variance should be familiar from your determination of the
standard deviation in an earlier gap. Unless stated otherwise, we will assume the
mean and variance are both finite for the probability distributions we consider.
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1.4 Central limit theorem

The central limit theorem is a central result of probability theory (hence its
name). Over the years it has been expressed in several equivalent ways, and
there are also many distinct variants of the theorem accommodating different
conditions and assumptions. In this module we are interested in applying rather
than proving the central limit theorem; you can find proofs in many textbooks.

The version of the theorem we use in this module assumes we have N inde-
pendent random variables x1, · · · , xN , each of which has the same (finite) mean
µ and variance σ2. Such random variables are said to be identically distributed,
and a common way to obtain them is to repeat an experiment N times, as we
considered in Section 1.2. Just as in Eq. 5, the sum

s =
N∑
i=1

xi (9)

is itself a random variable.

The central limit theorem states that for large N ≫ 1 the probability distri-
bution for s is

p(s) ≈ 1√
2πNσ2

exp

[
−(s−Nµ)2

2Nσ2

]
, (10)

with the approximation becoming exact in the N →∞ limit.

In addition to asserting that the collective behaviour of many independent
and identically distributed random variables xi is governed by a normal (or gaus-
sian) distribution, the central limit theorem further specifies the precise form of
this distribution in terms of the mean and variance of each individual xi.

In practice, N often doesn’t
need to be very large in or-
der for the central limit the-
orem to provide a reason-
able approximation. This
is illustrated by the figure
to the left, from Wikimedia
Commons, which shows the
probabilities for the sum of
n ≤ 5 rolls of a six-sided die
rapidly approaching a gaus-
sian distribution.
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1.5 Diffusion and the central limit theorem

1.5.1 Random walk on a line

As a more powerful application and illustration of the central limit theorem,
let’s consider the behaviour of a randomly moving object. Such random walks
appear frequently in mathematical modelling of stochastic phenomena (including
Brownian motion), and can be applied to movement through either physical space
or more abstract vector spaces. They are examples of Markov processes, in
which the state of the system (in this case the position of the ‘walker’) at any time
probabilistically depends only on the system’s prior state at the previous point
in time — there is no ‘memory’ of any earlier states. The resulting sequence of
system states is known as a Markov chain, since each state is produced from the
one before, like links in a chain.

Let’s consider the simple example of a random walker that moves only in a
single spatial dimension — to the left or to the right on a line — and can only take
‘steps’ of a fixed length, which we can set to ℓ = 1 without loss of generality. At
each point in time, the walker takes either a step to the right (R) with probability
p or a step to the left (L) with probability q = 1 − p. We will further assume that
each step takes a constant amount of time ∆t, so a walk of N steps will last for
total time

t = N∆t. (11)

As an example, for N = 6 a representative walk can be written as LRLRRR,
which leaves the walker x = 2 steps to the right of its starting point (x = 0). The
opposite walk RLRLLL would leave the walker at x = −2, with negative numbers
indicating positions to the left of the starting point. How many possible walks
are there for N = 6, and what is the probability (in terms of p and q) for these
particular walks LRLRRR and RLRLLL to occur? How many possible walks are
there for general N , and what is the probability for any particular walk involving r
steps to the right to occur?

We will be interested in the walker’s final position x at time t after it has
taken N steps. Just as for the sum of n rolls of a die considered in Section 1.4,
there are a range of possible final positions x, each of which has some probability
P (x) of being realized. The key pieces of information we want to determine are
the expectation value ⟨x⟩ and the variance ⟨x2⟩ − ⟨x⟩2 that indicates the scale
of fluctuations we can expect around ⟨x⟩ as the N -step walk is repeated many
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times from the same starting point. (We reserve the variables µ and σ2 for the
respective mean and variance of the single-step process, which will appear when
we apply the central limit theorem in Section 1.5.3.)

Suppose the N total steps involve r steps to the right. What is the final
position x of the walker in terms of N and r? Check your general answer for the
cases N = 6 and r = 4, 2 considered above.

This relation makes it equivalent to consider either the probability Pr of taking r
steps to the right, or the probability P (x) of ending up at final position x. This
equivalence will not hold for more general random walks in which the step length
is no longer fixed and ℓi can vary from one step to the next.

Because the order in which steps are taken does not affect the final position
x, to determine the probability P (x) we have to count all possible ways of walking
to x. For N = 6, what are all the possible walks that produce x = 4, and what is
the corresponding probability P (4)?

Your answer should have a factor of 6 that corresponds to the binomial coefficient(
N
r

)
=
(
6
5

)
= 6. In terms of this binomial coefficient, what is the general probability

Pr that an N -step walk will include r steps to the right in any order?
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Given this probability Pr, we can apply Eqs. 2–3 to find the expectation value
⟨x⟩ and the variance ⟨x2⟩ − ⟨x⟩2. As a first step, what are ⟨x⟩ and ⟨x2⟩ in terms of

the expectation values ⟨rn⟩ =
N∑
r=0

rn Pr?

⟨x⟩ =

⟨x2⟩ =

Now we need to calculate the necessary ⟨rn⟩. An efficient way to do so is to
define the generating function

T (θ) =
N∑
r=0

erθ Pr. (12)

This approach introduces a parameter θ that we subsequently remove by setting
θ = 0. For example, T (0) =

∑N
r=0 Pr = 1. What do you obtain upon taking

derivatives of the generating function and then setting θ = 0?

d

dθ
T (θ)

∣∣∣∣
θ=0

=

dn

dθn
T (θ)

∣∣∣∣
θ=0

=

For the current case of a fixed-step-length random walk in one dimension,
the probabilities Pr produce a simple closed-form expression for the generating
functional:

T (θ) =
N∑
r=0

erθ Pr =
N∑
r=0

erθ
(
N

r

)
prqN−r =

(
eθp+ q

)N
, (13)

making use of the binomial formula (a+ b)N =
∑N

i=0

(
N
i

)
aibN−i.
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It’s straightforward to take the necessary derivatives of Eq. 13, which simplify
pleasantly since

(
eθp+ q

)∣∣
θ=0

= p+ q = 1:

d

dθ

(
eθp+ q

)N ∣∣∣∣
θ=0

=

d2

dθ2
(
eθp+ q

)N ∣∣∣∣
θ=0

=

Insert the resulting ⟨r⟩ and ⟨r2⟩ into the relations derived above:

⟨x⟩ =

⟨x2⟩ − ⟨x⟩2 =

In the end, you should obtain

⟨x⟩ = N(2p− 1)
〈
x2
〉
− ⟨x⟩2 = 4Npq. (14)

We can check that this ⟨x⟩ produces the expected results in the special cases
p = 0, 1/2 and 1, while the variance also behaves appropriately by vanishing for
both p = 0 and 1.

1.5.2 Law of diffusion

It’s possible to gain a more intuitive interpretation of the results in Eq. 14 by
expressing them in terms of the total time t taken by the random walk (Eq. 11).
Inserting N = t/∆t into Eq. 14,

⟨x⟩ = t

∆t
(2p− 1) =

2p− 1

∆t
t ≡ vdrt,
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we see that the expected final position of the walker depends linearly on time,
with drift velocity

vdr =
2p− 1

∆t
=

N(2p− 1)

t
=
⟨x⟩
t
. (15)

The sign of the drift velocity indicates whether the walker is drifting to the right
(p > 1

2
) or to the left (p < 1

2
). The scale of fluctuations (or the ‘uncertainty’) around

the expected final position of the walker also depends on time:

∆x =

√
⟨x2⟩ − ⟨x⟩2 = 2

√
Npq = 2

√
pq

∆t

√
t,

where the constant factor is non-negative. This
√
t dependence is a very general

result.

The law of diffusion states that

∆x = D
√
t, (16)

where D is the diffusion constant and ∆x is sometimes called the diffusion
length.

The diffusion constant D = 2
√

pq
∆t

that we computed above is specific to
the current case of a fixed-step-length random walk in one dimension. The be-
haviour it describes is illustrated by the figure below, which plots the t-dependent
probability distribution p(x) that we’ll soon derive using the central limit theorem
(Eq. 17). What we can see already, even before completing that derivation, is that
the probability distribution steadily spreads out — or diffuses — as time passes:

-4 -2 0 2 4
x

0

0.1

0.2

0.3

0.4

p
(x

)

t=1
t=2
t=3
t=4
t=5
t=6
t=7
t=8
t=9
t=10

no drift velocity (p=0.5 q=0.5)

Here we are considering the special case p = q = 1
2
, for which the drift velocity

vdr = 0 and the expectation value is always ⟨x⟩ = 0 for any walk time t. However,
as time goes on, there is a steady decrease in the probability that the walker will
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end up around its starting point x ≈ 0. (As in Section 1.3, we can extract this prob-
ability by integrating the distribution p(x) over an appropriate interval.) Instead,
the interval within which we can expect to find the walker (with a constant ‘one-
sigma’ or 68% probability) steadily grows, −D

√
t ≤ x ≤ D

√
t, with characteristic

dependence on the square root of the time the diffusive process lasts.

Except in the trivial cases p = 0 or q = 0, diffusion also occurs when the drift
velocity is non-zero. This is shown in the two figures below, considering a low but
non-zero drift velocity vdr = 0.2 on the left, and a high vdr = 0.98 on the right.
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low drift velocity (p=0.6, q=0.4)
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t=2
t=3
t=4
t=5
t=6
t=7
t=8
t=9
t=10

high drift velocity (p=0.99, q=0.01)

In the figure on the left, the large diffusion constant D ≈ 0.98 causes each individ-
ual probability distribution to look similar to the corresponding one for vdr = 0, but
now their central peaks (and expectation values ⟨x⟩) drift steadily to the right. The
lower D ≈ 0.199 for the figure on the right causes the distributions to look a bit
different, but they still diffuse to exhibit lower and broader peaks as time passes.

When p ̸= 1
2

so that ⟨x⟩ ̸= 0, it is interesting to compare the drift in the
expectation value against the growth in fluctuations around ⟨x⟩ due to diffusion.
We can do this by considering the following relative uncertainty:

∆x
⟨x⟩ =

You should find that at large times this ratio vanishes proportionally to 1/
√
t ∝

1/
√
N . Although the absolute uncertainty grows by diffusion, ∆x = D

√
t, for

vdr ̸= 0 the linear drift in the expectation value becomes increasingly dominant as
time goes on.
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1.5.3 Applying the central limit theorem

Based on our work in Section 1.4, we can see how to apply the central
limit theorem to analyze this fixed-step-length random walk in one dimension, for
large numbers of steps N or equivalently large times t = N∆t. Each step in the
random walk can be considered an independent and identically distributed ran-
dom variable xi. The corresponding probability space involves only two possible
outcomes: a step of length ℓ = 1 to the right or to the left with probability p or
q, respectively. From this we can easily compute the mean and variance of the
single-step process:

µ = ⟨xi⟩ =

⟨x2
i ⟩ =

σ2 = ⟨x2
i ⟩ − ⟨xi⟩2 =

The final position x of the walker after N steps is exactly the sum over these
xi given in Eq. 9. Its probability distribution p(x) from the central limit theorem is
therefore obtained directly from these single-step µ and σ2, which we can also
express in terms of the drift velocity and diffusion constant:

p(x) =
1√

2π(4Npq)
exp

[
−(x−N(2p− 1))2

8Npq

]
=

1√
2πD2t

exp

[
−(x− vdrt)

2

2D2t

]
, (17)

which was used to produce the three figures above. We could have jumped
straight to the final line by considering Eq. 10 and noting

vdrt = N(2p− 1) = Nµ D2t = 4pq
t

∆t
= Nσ2. (18)

While this dependence on p and q is specific to the particular fixed-step-length
random walk we’re currently considering, the results vdrt = Nµ and D2t = Nσ2

in Eq. 18 turn out to be generic. This is remarkable, because it means that the
diffusive process as a whole is determined entirely by the single-step mean and
variance. So long as µ and σ2 are finite, we end up with Eq. 17 as the large-t
probability distribution for any markovian random walk in a single variable x.

This result is related to the generality of the law of diffusion (Eq. 16), which
we can recognize in the structure of Eq. 17. Since t > 0, the exponential in the
gaussian distribution p(x) peaks at the drifting expectation value x = vdrt = ⟨x⟩.
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The factor (x−vdrt)2 simply quantifies the distance from this peak. As t increases,
so does the factor 2D2t dividing this (x − vdrt)

2, meaning that a larger distance
from the peak is needed for the overall argument of the exponential to reach a
given value — in other words, the peak becomes broader. This in turn requires a
lower peak, reflected in the 1√

t
in the overall coefficient, which is set by requiring∫

p(x) dx = 1. In other words, the law of diffusion holds whenever the central limit
theorem is applicable. This requires that the mean and variance of the single-step
process are finite, and in the computer project we will numerically investigate the
anomalous diffusion that occurs when this condition is not satisfied.
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Unit 2: Micro-canonical ensemble

2.1 Statistical ensembles and thermodynamic equilibrium

We begin this unit by formalizing the concept of statistical ensembles, intro-
duced by J. Willard Gibbs in the early 1900s. Building on the probability founda-
tions laid above, we will be interested in ‘experiments’ that simply allow a collec-
tion of degrees of freedom to evolve in time, subject to certain constraints. At a
given time t1, the arrangement of these degrees of freedom defines the state ω1

of the system.

As a concrete example, consider a system of spins — arrows that can point
either ‘up’ or ‘down’ — arranged in a line. Such spin systems will appear several
times in the remainder of this module, since in addition to obeying simple mathe-
matics analogous to flipping coins, spins also serve as good models of physical
systems such as magnetic molecules. What would be a representative state (or
configuration) for a system of N = 8 spins? How many distinct states are there
for this system?

At a different time t2, the system’s state ω2 is generally different from ω1.
However, there are some measurements we can perform that always produce
the same outcome even as the system’s state changes over time. These mea-
surements define conserved quantities, such as the number of spins considered
in the example above.

Another important conserved quantity is the internal energy E of an isolated
(or ‘closed’) system,

E(ω1) = E(ω2).

The conservation of energy is presumably a familiar concept, and you may also
know that it can be rigorously proven through Emmy Noether’s first theorem.3

Because statistical physics was first developed when conservation of energy was
primarily an empirical observation rather than a proven result, it was given a more
grandiose name: the first law of thermodynamics. Another way of stating the
first law is that any change in the internal energy of one particular system Ω
must be matched by an equal and opposite change in the energy of some other
system with which Ω is in contact. This will be important when we consider ther-
modynamic cycles later in the term.

3There are complications when considering the dynamical space-time of general relativity, but
that’s beyond the scope of this module.
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For now, let’s return to the example above, and endow the spin system with
an internal energy by placing it in a ‘magnetic field’ of strength H. That is, if
a spin is parallel to the field, it contributes energy −H to the total energy E of
the system. If a spin is anti-parallel to the field, it instead contributes energy
H. For later convenience, we define a positive magnetic field H > 0 to point
upward, and also define n+ to be the number of spins pointing upward — parallel
to the field and therefore contributing negative energy. Similarly, the remaining
n− = N − n+ downward-pointing spins are anti-parallel to the field and contribute
positive energy. What is the total energy E of the system in terms of n+ and
n−? What is E for the representative 8-spin state you wrote down above? What
fraction of the states of the spin system have this energy?

If instead we consider N ∼ 1023 hydrogen (H2) molecules in a container, we
can write a simple expression for the internal energy E by treating each molecule
as a point-like particle, with no size or structure. In this case each molecule
contributes only its kinetic energy, and

E =
m

2

N∑
n=1

v⃗ 2
n =

1

2m

N∑
n=1

p⃗ 2
n ,

where v⃗n is the velocity of the nth molecule, p⃗n = mv⃗n is its momentum, and all
molecules have the same mass m.

As forecast at the start of the module, we treat the time evolution of any
given system as a stochastic process in which the system probabilistically adopts
a sequence of states ωi ∈ Ω:

ω1 −→ ω2 −→ ω3 −→ ω4 −→ · · ·

This approach is a matter of practicality rather than one of principle. In principle,
Newton’s laws would allow us to predict the exact time evolution of (say) 1023

hydrogen molecules, but only by specifying 1023 initial conditions and solving 1023

differential equations. Since we cannot hope to record so much information or
carry out so many computations, we instead apply probability theory in order to
analyze these systems.

This leads us to the following core definition: A statistical ensemble is the
set of all states Ω = {ω1, ω2, · · · } that a system can possibly adopt through its time
evolution. Each state ωi has some probability pi of being adopted by the system,
so we can recognize a statistical ensemble as a probability space.
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Because these states ωi depend on the ‘microscopic’ degrees of freedom
that compose the overall system, we will refer to them as micro-states from now
on. From the definition of probability in Section 1.1, we have the requirement∑

i pi = 1, which simply means that the system must be in some micro-state
at any point in time. The fact that time evolution cannot change any conserved
quantities, as discussed above, means that such conserved quantities charac-
terize statistical ensembles. Throughout the next seven units we will consider
different statistical ensembles with different sets of conserved quantities.

First we define the micro-canonical ensemble to be a statistical ensemble
characterized by conserved internal energy E and conserved number of degrees
of freedom N — which we will call particle number for short.

According to the discussion above, this means that a system governed by
the micro-canonical ensemble is isolated in the sense that it cannot exchange
energy or particles with any other system.

Now that the micro-canonical ensemble is defined, we can connect it to our
intuition from everyday physical systems. Let’s consider a collection of particles
moving around and bouncing (or ‘scattering’) off each other in a sealed container.
To a first approximation, this should describe the behaviour of air in a room, which
our lived experience indicates is spread quite uniformly throughout the room in a
way that is stable as time passes. We do not expect all the air in a room to be
concentrated in any one corner, nor do we expect strong collective gusts of wind
without some clear external influence.

These qualitative expectations illustrate the idea of thermodynamic equi-
librium, an axiomatic concept in statistical physics.4 We can mathematically de-
fine thermodynamic equilibrium through the probabilities pi that appear in the
micro-canonical ensemble.

A micro-canonical system Ω with M micro-states ωi is in thermodynamic
equilibrium if and only if all probabilities pi are equal. If M is finite, the requirement∑

i pi = 1 implies

pi =
1

M
. (19)

The full meaning and significance of this definition are not immediately obvi-
ous, and we will continue exploring them through consideration of derived quan-
tities such as entropy and temperature. First, it’s important to emphasize that this
equilibrium is dynamic: There is not a single ‘equilibrium state’ that the system
approaches. Instead, the equilibrium system continues probabilistically adopting
all possible micro-states as it evolves in time.

4Our expectation that physical systems generically evolve towards thermodynamic equilibrium
as time passes is more formally expressed as the ergodic hypothesis.
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2.2 Entropy and its properties

2.2.1 Definition of entropy

We can gain further insight into thermodynamic equilibrium by considering
a famous derived quantity.

The entropy of a statistical ensemble Ω with a countable number of micro-
states M is defined to be

S = −
M∑
i=1

pi log pi, (20)

where pi is the probability for micro-state ωi to occur. Unless otherwise specified,
“log” indicates the natural logarithm with base e.

When the system under consideration is in thermodynamic equilibrium, we
expect derived quantities such as the entropy to be stable over time, even as
different micro-states are probabilistically adopted. This implies that such de-
rived quantities are functions of the conserved quantities that are the same for
all micro-states. Therefore, for the micro-canonical ensemble, the equilibrium en-
tropy S(E,N) is a function of the conserved energy and particle number.

By inserting Eq. 19 into Eq. 20 you can quickly compute a simple expression
for the entropy of a micro-canonical ensemble in thermodynamic equilibrium:

Your result should depend only on the number of micro-states M , and diverge
as M → ∞. While the energy E and particle number N are not explicit in this
expression, {E,N,M} are inter-related and might be expressed in terms of each
other depending on the particular situation under consideration. For example,
what is the equilibrium entropy of the system of N spins considered above, if the
magnetic field is turned off, H = 0? What is the entropy if E = 0 with H > 0
(which requires n+ = n−)?
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2.2.2 Extensivity

The increase in entropy for an increasing number of micro-states M is a
reflection of entropy being an extensive quantity. Extensive quantities are formally
defined by considering how they behave if two isolated subsystems are analyzed
as a single system — while still remaining isolated from each other, exchanging
neither energy nor particles. This is clearest to consider through the specific
example shown below of two isolated spin subsystems, Ω1 & Ω2, respectively
characterized by the corresponding energies E1 & E2 and particle numbers N1 &
N2. To simplify the subsequent analysis, we can assume that both subsystems
are placed in magnetic fields with the same H, so that ES = −H

(
n
(S)
+ − n

(S)
−

)
for

S ∈ {1, 2}.

We can take system Ω1 to have M1 micro-states with probabilities pi while
system Ω2 has M2 micro-states with probabilities qk. As discussed above, each
MS is determined by ES and NS. Then the entropies of the two systems are

S1 = −
M1∑
i=1

pi log pi S2 = −
M2∑
k=1

qk log qk.

Now we keep these two subsystems isolated from each other, but consider
them as a combined system Ω1+2, as illustrated above. In order to compute the
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entropy S1+2, we need to figure out the number of micro-states M1+2 the com-
bined system could possibly adopt, and then determine the corresponding prob-
ability for each micro-state. Both steps are simplified by the subsystems being
isolated from each other, so that they are statistically independent. Specifically,
with subsystem Ω1 in any one of its M1 micro-states ω

(1)
i , subsystem Ω2 could

independently adopt any of its M2 micro-states, implying M1+2 = M1M2.

Similarly, statistical independence means that the combined probability of
subsystem Ω1 adopting micro-state ω

(1)
i while subsystem Ω2 adopts ω

(2)
k is the

product of the individual probabilities, piqk. We can check that this is a well-
defined probability, with∑

M1+2

piqk =

M1∑
i=1

M2∑
k=1

piqk =

[
M1∑
i=1

pi

]
·

[
M2∑
k=1

qk

]
= 1 · 1 = 1.

Inserting the probability piqk into Eq. 20, and recalling log(a · b) = log a + log b,
what is the combined entropy S1+2 of these two independent subsystems?

S1+2 =

You should find that the total entropy is the sum of the entropies of the two isolated
subsystems, which is also how the energies and particle numbers behave,

E1+2 = E1 + E2 N1+2 = N1 +N2.

This behaviour identifies the energy, particle number and entropy as exten-
sive quantities, which are defined to be those that add up across independent
subsystems. This can be contrasted with intensive quantities, which are de-
fined to be independent of the extent of the system, and hence the same (on
average) for subsystems as for the combined system. Temperature and density
are everyday examples of intensive quantities, though we will see below that the
micro-canonical approach introduces some subtleties. It is possible for quanti-
ties to be neither extensive nor intensive, for example the number of micro-states
M1+2 = M1M2.

Finally, suppose that each subsystem is independently in thermodynamic
equilibrium, with finite M1 and M2, implying

pi =
1

M1

qk =
1

M2

S1 = logM1 S2 = logM2.
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As a consequence we can show that Ω1+2 is also in thermodynamic equilibrium,
since the probabilities

piqk =
1

M1M2

=
1

M1+2

are identical every one of its micro-states. In this situation it’s even easier to see
S1+2 = log (M1M2) = logM1 + logM2 = S1 + S2.

2.2.3 Second law of thermodynamics

Let’s continue considering two subsystems, with one significant change:
Suppose the subsystems are now able to exchange energy (but not particles)
with each other. We’ll say they are in thermal contact with each other, rather than
being fully isolated. We’ll also wait long enough after establishing thermal contact
for the combined system Ω to reach equilibrium. This is illustrated below:

The total energy E = E1 + E2 remains conserved, so the overall system Ω is
still governed by the micro-canonical ensemble. However, the individual energies
E1 and E2 can now change as time passes, meaning that each subsystem is no
longer micro-canonical.

The overall Ω is not the same as the combined Ω1+2 considered above. We
need to reconsider the total number of micro-states M that Ω could adopt, which
is much more difficult than before because we can no longer apply statistical
independence. Our key remaining tool is the conservation of the total energy E.

Considering a micro-state in which the N1 spins contribute energy e1 to the
total, we know that the N2 spins must contribute the remaining E − e1. Our work
above implies there are Me1 = M

(1)
e1 M

(2)
E−e1

micro-states providing this particular
distribution of energies, where M

(1)
e1 is the number of micro-states of the formerly

isolated subsystem Ω1 with energy e1, and M
(2)
E−e1

similarly corresponds to Ω2 with
energy E − e1. We also know that it’s possible to have e1 = E1, since that’s
the initial energy of Ω1 before it was brought into thermal contact with Ω2. When
e1 = E1, we have ME1 = M1M2, covering all the micro-states of the combined
Ω1+2 when the two subsystems were isolated. In addition, we also have to count
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any other micro-states for which e1 ̸= E1:

M =
∑
e1

M (1)
e1

M
(2)
E−e1

= M1M2 +
∑
e1 ̸=E1

M (1)
e1

M
(2)
E−e1

≥M1M2. (21)

Equality holds when e1 = E1 is the only possibility, which is an extremely special
case (in which the two subsystems remain individually micro-canonical, with fixed
E1 and E2). This is all we can say in full generality, without specifying more
details of a particular example, but it allows us to obtain a famous result for the
total entropy S of Ω in thermodynamic equilibrium:

S = logM ≥ log (M1M2) = S1+2.

This is a form of the second law of thermodynamics,

S ≥ S1+2 = S1 + S2.

In words, whenever initially isolated (sub)systems in thermodynamic equilibrium
are brought into thermal contact with each other and allowed to exchange energy,
the total entropy of the overall system can never decrease. Indeed, it generically
increases except in extremely special cases.

Though we won’t go through a more general derivation here, it turns out that
the total entropy never decreases (and generically increases) as time passes,
under any circumstances. This has many far-reaching consequences, the first
of which is a more general definition of thermodynamic equilibrium that (unlike
Eq. 19) will also apply when we consider statistical ensembles other than the
micro-canonical ensemble. For simplicity we assume that any system under con-
sideration has a finite number of micro-states, which means that its entropy is
bounded from above. To motivate the definition below, note that the overall sys-
tem Ω may have undergone an equilibration process to reach its thermodynamic
equilibrium after any independently equilibrated subsystems were brought into
thermal contact — and in this process the entropy was non-decreasing.

A system is defined to be in thermodynamic equilibrium if its entropy is
maximal.

We can derive Eq. 19 from this definition. All we need to do is maximize
the entropy S = −

∑
i pi log pi subject to the three micro-canonical constraints

of conserved energy, conserved particle number, and well-defined probabilities∑
i pi = 1. It turns out that only the final constraint needs to be incorporated into

the maximization, through the method of Lagrange multipliers. As a reminder,
this method involves maximizing the modified entropy

S(λ) = S + λ

(
M∑
i=1

pi − 1

)
= −

M∑
i=1

pi log pi + λ

(
M∑
i=1

pi − 1

)
,
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and subsequently imposing
∑

i pi = 1. Here λ is a parameter called the ‘multi-

plier’. In short, this procedure is valid because
∂S

∂λ
= 0 once we impose

∑
i pi = 1,

so that any extremum of S corresponds to an extremum of S = S(λ = 0).

Recalling
∂

∂xk

∑
i

f(xi) =
∂f(xk)

∂xk

, what is the probability pk that maximizes

the modified entropy S?

0 =
∂S

∂pk
=

You should find that pk is some constant that depends on λ. We don’t care about
λ; so long as we know pk is constant, then we must have pk = 1

M
in order to

satisfy
∑

k pk = 1. As advertised, we recover Eq. 19 from our new definition of
thermodynamic equilibrium based on the second law.

2.3 Temperature

In the micro-canonical ensemble, the conserved internal energy and particle
number are fundamental, while the temperature (like the entropy) is a derived
quantity. As discussed below Eq. 20, in thermodynamic equilibrium such derived
quantities are functions of the conserved {E,N}. In this section we will state
the definition of temperature for the micro-canonical ensemble and apply this to a
spin system. In the next section we will check that our definition reproduces our
expectations from everyday experiences.

In thermodynamic equilibrium, the temperature T (E,N) in the micro-
canonical ensemble is defined by

1

T
=

∂S

∂E

∣∣∣∣
N

. (22)

In words, the (inverse) temperature is set by the dependence of the entropy on
the internal energy for a fixed number of degrees of freedom.

Since this definition is not terribly intuitive, we will again gain insight by con-
sidering N spins in a line, in a magnetic field of strength H. We saw above
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that E = −H(n+ − n−) for n+ and n− = N − n+ spins respectively pointing up
and down. With N fixed, each (conserved) value of E defines a different micro-
canonical system, which we can expect to have a different number of micro-states
M(E), different entropy S(E) and different temperature T (E). We will compute
the functional forms of each of these three quantities, starting with M(E).

Even though the total energy E remains fixed as time passes, individual
spins can ‘flip’ between pointing up or down. Such spin flips simply have to come
in pairs so that the overall n± both remain the same. As illustration, what are
representative spin configurations that produce the minimal energy Emin ≡ E0

and the next-to-minimal E1? What are E0 and E1 in terms of {N,H}, and how
many distinct micro-states are there for each of E0 and E1?

Your results should generalize to

M(En−) =

(
N

n−

)
=

N !

n−! (N − n−)!
=

(
N

n+

)
. (23)

To take the derivative in Eq. 22, we need to express n− in terms of {E,N}.
It will also be useful to avoid the factorial operation, which is inconvenient to dif-
ferentiate. For N ≫ 1, we can accomplish both these goals by treating the spin
system as a random walk in the space of its possible energies E and applying the
central limit theorem:5

• Each spin adds to x ≡ E
−H

= 2n+ −N a ‘step’ of fixed ‘length’ ±1. Our task
therefore coincides with the special case we considered in Section 1.5.

• We don’t impose any preference for positive vs. negative energies, meaning
p = q = 1

2
in the terminology of Section 1.5.

• With p = q = 1
2
, every one of the 2N possible configurations of N spins is

equally probable. Therefore the probability Pn+ that our overall ‘walk’ ends
up producing a configuration with n+ = 1

2
(x+N) is simply the fraction of

those 2N states with this n+, in which we can recognize Eq. 23:

Pn+ =
1

2N

(
N

n+

)
=

M(En−)

2N
=⇒ M(En−) = 2NPn+ .

5Applying Stirling’s formula, log(N !) ≈ N logN −N , is another possible approach.
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• To estimate Pn+ for N ≫ 1, we apply the central limit theorem just as in
Section 1.5.3. In particular, we can re-use our computation that µ = 2p−1 =
0 and σ2 = 4pq = 1, to find

p(x) ≈ 1√
2πN

exp

[
− x2

2N

]
for the probability distribution from which we want to extract Pn+.

• We saw in a tutorial that Pconst(n+) = p(2n+ −N)∆n+ is a good approxima-
tion, and ∆n+ = 1. With 2n+ −N = E

−H
, we therefore find

M(E) ≈ 2Np(2n+ −N) =
2N√
2πN

exp

[
− E2

2NH2

]
. (24)

What is the derivative of the log of Eq. 24 with N fixed?

∂

∂E
logM

∣∣∣∣
N

=

You should find the temperature

T ≈ −NH2

E
N ≫ 1, (25)

which in several ways does not seem to match our expectations from everyday
experiences: This T diverges as E → 0 for n+ ≈ n−, and it is negative whenever
n+ < n− to produce E > 0. You can check that this T < 0 corresponds to the
number of micro-states decreasing for larger internal energies, ∂M

∂E
< 0. In natural

systems, larger energies make more micro-states accessible, producing ∂M
∂E

> 0
and a positive temperature. If H = 0, we also have E = 0 and T is ill-defined.

Restricting our attention to H > 0 and n+ > n−, we also see that the result-
ing non-negative temperature cannot vanish. It is minimized by the most-negative
energy you found above, Tmin = H > 0 for Emin = −NH. The non-zero minimum
temperature is specific to spin systems, while some of the other oddities result
from the micro-canonical approach more generally. This will motivate turning to
the canonical ensemble in Unit 3, but first we can check that some aspects of the
micro-canonical temperature defined in Eq. 22 do match our everyday expecta-
tions, at least in the ‘natural’ positive-temperature regime.
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2.4 Heat exchange

From Eq. 25 for the temperature of a micro-canonical spin system, we can
see that ‘natural’ positive temperatures correspond to negative energies, and
therefore increase as the energy increases by becoming less negative (with a
smaller magnitude). Such a direct relation between energy and temperature is
very generic, and we will study it in more detail when considering thermodynamic
cycles in a few weeks. For now, considering unspecified systems that exhibit this
natural behaviour, let’s ask what would happen if we take two initially isolated
micro-canonical systems — ΩA and ΩB with temperatures TA and TB in thermo-
dynamic equilibrium — and bring them into thermal contact.

In micro-canonical terms, the temperatures TA and TB are derived from the
corresponding energies EA and EB, while thermal contact allows the two systems
to exchange energy (but not particles) as non-isolated subsystems of a combined
micro-canonical system ΩC . Once the two subsystems have been in thermal con-
tact long enough for the combined system to have reached thermodynamic equi-
librium, it will have temperature TC . We can then re-isolate the two subsystems,
which will remain in thermodynamic equilibrium with energies {E ′

A, E
′
B} and tem-

peratures {T ′
A, T

′
B}. This three-step procedure is illustrated below.
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From everyday experience, we expect that this energy exchange will result
in a net flow of energy from the hotter system to the colder system, cooling the
former by heating the latter. We will now check that the micro-canonical definition
of temperature in Eq. 22 predicts this expected behaviour. We define

E ′
S = ES +∆ES

∣∣∣∣∆ES

ES

∣∣∣∣≪ 1 S ∈ {A,B} ,

for simplicity considering the case where the change in energy is relatively small.
We also know ∆EB = −∆EA thanks to conservation of energy.

Equation 22 tells us that we need to consider the entropies as functions of
ES and E ′

S in order to connect the temperatures to any flow of energy. Because
we don’t change the number of particles in each system, we only need to consider
the energy dependence of the entropy. We assume S(E) is continuous and in-
finitely differentiable,6 which allows us to expand each of the final entropies S(E ′

S)
in a Taylor series,

S(E ′
S) = S(ES +∆ES) ≈ S(ES) +

∂S

∂E

∣∣∣∣
ES

∆ES,

neglecting all O (∆E2
S) terms because we consider relatively small changes in

energy. What is the expression above in terms of the initial temperatures TS?

From the second law of thermodynamics, we know that the total entropy of
these systems can never decrease as time passes:

S(EA) + S(EB) ≤ S(EA + EB) = S(E ′
A) + S(E ′

B). (26)

The final equality means that re-isolating the two subsystems doesn’t change the
entropy. This is because E ′

A is not fixed and could take any value from zero to
EA + EB at the moment when the subsystems are re-isolated. Computing the
final entropy S(E ′

A) + S(E ′
B) therefore requires summing over all possible values

of E ′
A, producing exactly the sum in Eq. 21 for the overall system. We will see

something similar when we consider the ‘Gibbs paradox’ in Unit 4.

6This assumption breaks down at a first-order phase transition, where we would need to be
more careful. We will learn about phase transitions towards the end of the term.
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What do you find when you insert your linearized Taylor series into Eq. 26?

Applying conservation of energy should produce(
1

TA

− 1

TB

)
∆EA ≥ 0.

Recalling from Section 2.2.3 that equality holds only in extremely special cases,
we can identify three possibilities consistent with this result. If TA > TB, then(

1
TA
− 1

TB

)
is negative and we will generically have ∆EA < 0, so that energy

flows out of the hotter system ΩA and into the colder one. Our restriction to natural
systems means this flow of energy reduces the higher temperature, and increases
the lower temperature, bringing the temperatures of the two subsystems closer to
each other. Similarly, if TA < TB, we will generically have ∆EA > 0, meaning that
energy still flows from the hotter system ΩB into the colder one, again reducing the
difference in their temperatures. We can finally conclude that TA = TB is the very
special case where there is no energy flow, ∆ES = 0, keeping the temperatures
the same. All of this is exactly what we would expect based on our everyday
experience of temperature as an intensive quantity.
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Unit 3: Canonical ensemble

3.1 The thermal reservoir

3.1.1 Replicas and occupation numbers

While it is relatively easy to prevent particle exchange, for example by seal-
ing gases inside airtight containers, it is not practical to forbid energy exchange
as would be needed to fully isolate statistical systems. Any thermal insulator is
imperfect, and any observation of the system would require exchanging energy
with the external observer. In practice it is more convenient to work with physical
systems that are characterized by their (intensive) temperatures rather than their
(extensive) internal energies.

This leads us to define the canonical ensemble to be a statistical ensemble
characterized by its fixed temperature T and conserved particle number N , with
the temperature held fixed through contact with a thermal reservoir.

The second part of this definition connects the fixed temperature to the fun-
damental fact of energy conservation (the first law of thermodynamics). This is
done by proposing that our system of interest Ω is in thermal contact with a much
larger external system Ωres — the thermal reservoir, sometimes called a “heat
bath”. The overall combined system Ωtot = Ωres ⊗ Ω is governed by the micro-
canonical ensemble, with conserved total energy Etot = Eres +E ≈ Eres, while the
energy E of Ω is allowed to fluctuate. The key qualitative idea is that, in thermo-
dynamic equilibrium, Ω has a negligible effect on the overall system. In particular,
the temperature of that overall system — and therefore the temperature of Ω, by
intensivity — is set by the reservoir and remains fixed even as E fluctuates. This
effectively generalizes the setup we used to analyze heat exchange in the previ-
ous section, where we saw that thermal contact causes a net flow of energy from
hotter systems to colder systems. When these systems are ‘natural’, this cools
the hotter one by heating the colder one.

The mathematical implementation of this argument, as developed by Gibbs,
proceeds by considering a well-motivated ansatz for the form of the thermal reser-
voir Ωres. The goal, which will be useful to keep in mind as we go through the
lengthy analysis, is to show that the specific form of Ωres is ultimately irrelevant.
This will allow us to work directly with the system of interest, Ω, independent of
the details of the thermal reservoir that fixes its temperature.

Without further ado, we take Ωtot to consist of many (R ≫ 1) identical repli-
cas of the system Ω that we’re interested in. All of these replicas are in thermal
contact with each other, and in thermodynamic equilibrium.7 Choosing any one

7The thermal contact between any two replicas can be indirect, mediated by a sequence of in-
termediate replicas. This transitivity of thermodynamic equilibrium is sometimes called the zeroth
law of thermodynamics. It declares that if systems ΩA & ΩB are in thermodynamic equilibrium
while systems ΩB & ΩC are in thermodynamic equilibrium, then ΩA & ΩC must also be in ther-
modynamic equilibrium.
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of the replicas to be the system of interest, Ω, the other R − 1 ≫ 1 replicas col-
lectively form the thermal reservoir Ωres. Assuming we want to study reasonable
systems Ω, this ansatz ensures that Ωres is also reasonable, simply much larger.

An extremely small example of this setup is illustrated by the figures below,
where the system of interest is just N = 2 spins. For now we assume the spins
are distinguishable, so that ↓↑ and ↑↓ are both distinct micro-states. This means
that each individual replica has the M = 4 micro-states ωi defined below.

To form the overall system Ωtot we now bring together the R = 9 replicas shown
below. We draw boxes around each replica to remind us that they are allowed
to exchange only energy with each other, while the N = 2 spins are conserved
in each replica. We pick out one of these replicas (coloured red) to serve as the
system Ω we will consider. The other 8 are the thermal reservoir Ωres that fixes
the temperature of Ω.
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A convenient way to analyze the overall system of R replicas, Ωtot, is to
define the occupation number ni to be the number of replicas that adopt the
micro-state ωi ∈ Ω in any given micro-state of Ωtot. The index i ∈ {1, 2, · · · ,M}
runs over all M micro-states of Ω. In the example above, three of the replicas
have the micro-state ω1 =↓↓, meaning n1 = 3. What are the occupation num-
bers {n2, n3, n4} for the other three ωi in the figures above? Are all replicas are
accounted for,

∑
i ni = R?

Normalizing the occupation number by R gives us a well-defined occupation prob-
ability, pi = ni/R with

∑
i pi = 1. This pi is the probability that if we choose a

replica at random it will be in micro-state ωi.

Now let us consider conservation of energy, which continues to apply to
the total energy Etot of the overall system Ωtot. We assume that each replica’s
energy Er is independent of all the other replicas. This is guaranteed for the non-
interacting systems we will focus on until Unit 9, and also holds when interactions
are allowed within each replica but not between different replicas. The thermal
contact between replicas allows Er to fluctuate subject to conservation of Etot,
but there are at most M possible values Ei it can have, corresponding to the M
micro-states ωi ∈ Ω. Some distinct micro-states ωi ̸= ωj may have the same
energy Ei = Ej, which doesn’t affect the analysis. This allows us to rearrange a
sum over replicas into a sum over the micro-states of Ω:

Etot =
R∑

r=1

Er =
M∑
i=1

niEi, (27)

with the occupation number ni counting how many times micro-state ωi appears
among the R replicas. We can assume that R and M are both finite, so we don’t
need to worry about rearranging infinite sums.

3.1.2 Partition function

Following Gibbs, we have already taken the thermal reservoir Ωres to consist
of R − 1 replicas of the system of interest, Ω. The next step is to further simplify
the mathematics by assuming that the overall R-replica system Ωtot is fully speci-
fied by a fixed set of M occupation numbers {ni}. This is equivalent to assuming
that the occupation probabilities {pi} are constant in time, as a reflection of ther-
modynamic equilibrium. From Eq. 27, we see that this ensures conservation of
the total energy Etot, and we can apply the micro-canonical tools we developed
in the previous unit. Recall our ultimate goal of showing that such details of the
thermal reservoir are irrelevant to the system Ω.
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Based on the conservation of Etot, we want to determine the (intensive)
temperature of Ωtot, which fixes the temperature of the system of interest, Ω.
According to our previous work, to do this we first need to compute the overall
number of micro-states Mtot as a function of Etot, from which we can derive the
micro-canonical entropy and temperature since the system is in thermodynamic
equilibrium. From the fixed occupation numbers ni, we already know how many
times each micro-state ωi appears among the R replicas. To determine Mtot we
just need to count how many possible ways there are of distributing the {ni}
micro-states among the R replicas.

If we consider first the micro-state ω1, the number of possible ways of dis-
tributing n1 copies of this micro-states among the R replicas is just the binomial
coefficient (

R

n1

)
=

R!

n1! (R− n1)!
.

Moving on to ω2, we need to keep in mind that n1 replicas have already been as-
signed micro-state ω1, so there are only R−n1 replicas left to choose from. What
is the resulting number of possible ways of distributing these n2 micro-states?

Repeating this process for all micro-states {ω1, ω2, · · · , ωM}, and recalling that
(R−

∑
i ni)! = 0! = 1, you should obtain a product that ‘telescopes’ to

Mtot =
R!

n1! n2! · · · nM !
. (28)

From this we can see that the order in which we assign micro-states to replicas is
irrelevant, since integer multiplication is commutative.

Thanks to thermodynamic equilibrium, the entropy of the micro-canonical
overall system Ωtot is

S(Etot) = logMtot = log(R!)−
M∑
i=1

log(ni!),

where the dependence on Etot enters through the occupation numbers via Eq. 27.
With R ≫ 1 and ni ≫ 1 for all i = 1, · · · ,M , we can approximate each of these
logarithms using the first two terms in Stirling’s formula,

log(N !) = N logN −N +O(logN) ≈ N logN −N for N ≫ 1.

In order for every occupation number to be large, ni ≫ 1, the number of replicas
must be much larger than the number of micro-states of Ω. As we have discussed
before, the number of micro-states M is typically a very large number, so with
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R ≫ M we are formally considering truly enormous thermal reservoirs! This
enormity helps ensure that the detailed form of the reservoir will be irrelevant.

Applying the approximation above, what do you find for S(Etot) in terms of R
and ni? What is the entropy in terms of the occupation probabilities pi = ni/R?

S(Etot) = log(R!)−
M∑
i=1

log(ni!) ≈

In your result, the dependence on Etot now enters through the occupation
probabilities pi. In order to determine the temperature, we have to express S(Etot)
directly in terms of Etot. We do this by applying our knowledge that thermody-
namic equilibrium implies maximal entropy.

Following the same steps as in Section 2.2.3, we maximize the entropy, now
with two Lagrange multipliers to account for two constraints on the occupation
probabilities:

M∑
i=1

pi = 1
M∑
i=1

niEi = R
M∑
i=1

piEi = Etot.

Writing everything in terms of occupation probabilities, we therefore need to max-
imize the modified entropy

S = −R
M∑
i=1

pi log pi + α

(
M∑
i=1

pi − 1

)
− β

(
R

M∑
i=1

piEi − Etot

)
.

Here we’ve chosen the sign of β for later convenience. What is the occupation
probability pk that maximizes S?

0 =
∂S

∂pk
=
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By defining a new parameter Z in terms of α, you should find

pk =
1

Z
e−βEk . (29)

As before, we need to fix the parameters {Z, β} by demanding that the two con-
straints above are satisfied. The first of these constraints is straightforward and
produces an important result:

1 =
M∑
i=1

pi =
1

Z

M∑
i=1

e−βEi =⇒ Z(β) =
M∑
i=1

e−βEi . (30)

Equation 30 defines the canonical partition function Z(β), a fundamental
quantity in the canonical ensemble, from which many other derived quantities can
be obtained.

Z(β) still depends on the other as-yet-unknown parameter β(Etot). Applying
our second constraint, Eq. 27, relates β to Etot:

Etot = R
M∑
i=1

piEi =
R

Z(β)

M∑
i=1

Ei e
−βEi = R

∑M
i=1Ei e

−βEi∑M
i=1 e

−βEi

. (31)

This relation is a bit complicated, but will suffice for our goal of expressing the
entropy in terms of Etot. Inserting Eq. 29 for pi into your earlier result for the
entropy, what do you obtain upon applying Eqs. 30 and 31?

S(Etot) = −R
M∑
i=1

pi log pi =

There is a pleasant simplification when we take the derivative to determine the
temperature. Defining β′ ≡ ∂

∂Etot
β(Etot), we have

1

T
=

∂

∂Etot
S(Etot) =

∂

∂Etot
[Etotβ +R logZ(β)] = β + Etotβ

′ +R
1

Z

∂Z(β)

∂β
β′.

Using Eq. 31 we can compute

1

Z

∂Z(β)

∂β
=

1

Z

∂

∂β

M∑
i=1

e−βEi = − 1

Z

M∑
i=1

Ei e
−βEi = −

M∑
i=1

piEi = −
Etot

R
,
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so that we don’t need to figure out the explicit form of β′:

1

T
= β + Etotβ

′ − Etotβ
′ = β. (32)

What’s truly remarkable about Eqs. 29, 30 and 32 is that they make no
reference to the R replicas or any extensive quantity such as Etot — all information
about the thermal reservoir has vanished. This is the goal we have been pursuing
since the start of this unit! The large thermal reservoir is still present to fix the
temperature T characterizing the canonical system Ω, but beyond that nothing
about it is relevant (or even knowable) in the canonical approach. Every aspect of
Ω can now be specified in terms of its fixed temperature T and conserved particle
number N , starting with the parameter β = 1/T .

In particular, the partition function from Eq. 30 is simply

Z(T ) =
M∑
i=1

e−Ei/T . (33)

and together with β specifies the probabilities

pi =
1

Z
e−Ei/T (34)

from Eq. 29. This pi is now the thermodynamic equilibrium probability that Ω
adopts micro-state ωi with (non-conserved) internal energy Ei. This probability
distribution is called either the Boltzmann distribution or the Gibbs distribu-
tion, while e−Ei/T itself is known as a Boltzmann factor. All micro-states with the
same energy have the same probability in thermodynamic equilibrium, which is
consistent with the micro-canonical behaviour we saw in Unit 2.

3.2 Internal energy, heat capacity, and entropy

In addition to fixing the temperature of the system Ω, the thermal reservoir
also allows the internal energy of Ω to fluctuate. The system simply exchanges
energy with the reservoir, satisfying the first law of thermodynamics. Although
the internal energy fluctuates, its expectation value ⟨E⟩ is an important derived
quantity in thermodynamic equilibrium. Applying the general definition from Eq. 4
to the probability space of the canonical ensemble,

⟨E⟩(T ) =
M∑
i=1

Ei pi =
1

Z

M∑
i=1

Ei e
−βEi .

Here we highlight the dependence of ⟨E⟩ on the temperature, and also freely
interchange β = 1/T .
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The expression above may look familiar from our work in the previous section:

∂

∂β
logZ =

In this case it is easier to take the derivative with respect to β as opposed to

∂

∂β
=

∂T

∂β

∂

∂T
= − 1

β2

∂

∂T
= −T 2 ∂

∂T
. (35)

In Section 2.3, we saw that ‘natural’ micro-canonical systems exhibit higher
(derived) temperatures for larger (conserved) internal energies. Here, in the
canonical approach, the average internal energy ⟨E⟩ is the derived quantity while
the temperature is fixed. From our everyday experience, we expect a similar direct
relation between temperature and energy, which the following result confirms.

The heat capacity is defined to be

cv =
∂

∂T
⟨E⟩ , (36)

and is always non-negative, cv ≥ 0.

The subscript indicates that the volume of the system is kept fixed; we’ll
consider the role of the volume more carefully starting in Unit 4. In a homework
assignment you will confirm cv ≥ 0 by deriving a fluctuation–dissipation (or
fluctuation–response) relation. That relation will be a special case of a more
general theorem, and will connect the fluctuations of the internal energy around
its expectation value, (Ei − ⟨E⟩)2, to the energy’s response to a change in tem-
perature, ∂

∂T
⟨E⟩. Equality will hold only in extremely special cases, meaning that

the heat capacity is generically positive, in agreement with our intuition that higher
temperatures produce larger internal energies.
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We finally need to compute the entropy of Ω with no reference to the thermal
reservoir, apart from its role fixing the temperature in thermodynamic equilibrium.
Since the general definition of the entropy in Eq. 20 continues to hold for the
canonical ensemble, we just need to insert the probabilities pi from Eq. 34:

S(T ) = −
M∑
i=1

pi log pi =

You should find that the entropy depends on logZ.

3.3 Helmholtz free energy

This dependence of the entropy on logZ is in accordance with our earlier
claim that the partition function is a fundamental quantity in the canonical ensem-
ble. Recalling from Eq. 33 that Z is a sum over all micro-states, we can view this
result as the canonical counterpart to the micro-canonical entropy being the log-
arithm of the number of micro-states. (Thermodynamic equilibrium is required in
both cases.) This motivates the following definition of a quantity with the dimen-
sions of energy that is related to logZ, which provides simpler and more elegant
expressions for the derived quantities we considered above.

The Helmholtz free energy of a system in the canonical ensemble is

F (T ) = −T logZ(T ) F (β) = − logZ(β)

β
, (37)

where Z is the partition function of the system. In terms of this free energy,
Eqs. 33 and 34 are

Z = e−F/T pi = e(F−Ei)/T .
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The Helmholtz free energy is named after Hermann von Helmholtz and re-
veals its usefulness when we take its derivative. The derivative involves ∂

∂T
logZ,

which is worth collecting in advance based on Eq. 35:

− ∂

∂T

(
F (T )

T

)
=

∂

∂T
logZ(T ) =

∂

∂T
F (T ) =

From these results we can read off the more elegant expressions promised above:

S(T ) = − ∂

∂T
F (T ) (38)

⟨E⟩(T ) = −T 2 ∂

∂T

(
F (T )

T

)
=

∂

∂β
[βF (β)] = TS(T ) + F (T ). (39)

3.4 The physics of information

As a first application of the canonical ensemble, we will explore physically
observable effects that depend on the pure information content of a statistical sys-
tem. You may be aware of the importance of information through the famous black
hole information paradox, but that topic is well beyond the scope of this module
since it involves quantum mechanics and general relativity in addition to statistical
physics. Here we will consider simple spin systems as introduced in Section 2.1,
contrasting the behaviour of their average internal energy ⟨E⟩ and entropy S de-
pending on whether or not the spins can (in principle) be distinguished from each
other. It’s important to appreciate that the “information” discussed here is an in-
trinsic property of the system — what is knowable about it in principle. It does not
matter whether or not any observer actually knows this information; so long as it
can possibly be known it will have an effect.

3.4.1 Distinguishable spins in a solid

We begin with the setup from Section 2.1: A system of N spins arranged in
a line, placed in an external magnetic field of strength H, and in thermodynamic
equilibrium. We further specify that the spins are embedded in a solid material
that fixes their positions and prevents them from moving. This allows them to be
distinguished from one another: An observer can target an appropriate position
in the solid to measure the corresponding spin. The spins distinguished in this
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way will be aligned either anti-parallel or parallel to the magnetic field. The canon-
ical system therefore has M = 2N distinct micro-states ωi with energies Ei and
probabilities pi =

1
Z
e−Ei/T , each defined by the orientations of all N spins.

To streamline our notation, we can represent the orientation of the nth spin
as sn ∈ {1,−1}, where sn = 1 indicates alignment parallel to the field and sn = −1
indicates alignment anti-parallel to the field. Since the spins don’t interact with
each other, the internal energy of the system in micro-state ωi specified by the N
spins {s} is therefore

Ei = −H
N∑

n=1

sn. (40)

To compute the canonical partition function ZD, where the subscript reminds us
of the spins’ distinguishability, we have to sum over all 2N possible spin configura-
tions {s}. In this process we can save some space by defining the dimensionless
variable x = βH = H

T
:

ZD =
∑

s1=±1

· · ·
∑

sN=±1

e−βEi =
∑

s1=±1

· · ·
∑

sN=±1

exp

[
x

N∑
n=1

sn

]

=
∑

s1=±1

· · ·
∑

sN=±1

exs1 · · · exsN =

( ∑
s1=±1

exs1

)
· · ·

( ∑
sN=±1

exsN

)

=

(∑
s=±1

exs

)N

=
(
ex + e−x

)N
= [2 cosh (βH)]N , (41)

distributing the summations since all the spins are independent of each other.

The corresponding Helmholtz free energy

FD(β) = −
logZ(β)

β
= −N log [2 cosh (βH)]

β
(42)

is all we need to compute the average internal energy:

⟨E⟩D =
∂

∂β
[βFD(β)] =

From this we immediately obtain the entropy

SD = β (⟨E⟩D − FD) = −NβH tanh (βH) +N log [2 cosh (βH)] . (43)

These results for ⟨E⟩D and SD are plotted below as functions of T
H

= 1
βH

, using
this Python code. Since both these quantities are extensive, we normalize them
by showing ⟨E⟩D

NH
and SD

N
.
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Let’s check the asymptotic behaviour of these functions, starting with low
temperatures. In contrast to the micro-canonical Eq. 25, in the canonical en-
semble there is no issue with taking the independent variable T → 0. This corre-
sponds to βH → ∞ and tanh (βH) → 1, approaching the “ground-state” energy
Emin = E0 = −NH you computed in Section 2.3. This energy is only produced
by the single micro-state in which all the spins are aligned with the magnetic
field, sn = 1 for all n (or n+ = N and n− = 0 in the notation from Section 2.3).
Correspondingly, log [2 cosh (βH)] → log eβH = βH and the two terms in Eq. 43
cancel out, so that SD → 0. This vanishing entropy is a generic consequence of
temperatures approaching absolute zero.

For low but non-zero temperatures, ⟨E⟩D and SD will be affected by the non-
zero probability for the system to adopt micro-states ωi with higher energies Ei >
E0. These higher-energy configurations are often referred to as “excited states”.
Note that each energy Ei > E0 may correspond to many different micro-states.
For example, in Section 2.3 you also computed the energy E1 = −(N − 2)H of
the first excited state, which is realized by the N distinct micro-states with n− = 1.
In the case of spin systems, we can instead refer to energy levels that are all
separated by a constant energy gap ∆E ≡ En−+1 − En− = 2H.
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We can compute the effects of the higher energy levels at low temperatures
βH ≫ 1 by expanding ⟨E⟩D in powers of e−βH ≪ 1. What is the first temperature-
dependent term in this expansion?

⟨E⟩D
NH

=

You should find that the excited-state effects are exponentially suppressed by the
energy gap ∆E at low temperatures,

⟨E⟩D
NH

= −1 + 2e−β∆E +O
(
e−2β∆E

)
.

This is a generic feature of canonical systems with a non-zero energy gap, and
is due to the exponentially suppressed probability for the system to adopt any of
the micro-states with the higher energy,

1
Z
e−βEn−+1

1
Z
e−βEn−

= e−β∆E.

The low-temperature expansion of Eq. 43 for the entropy SD in powers of
e−βH ≪ 1 is similar:

SD

N
=

Here the leading term includes a linear factor of β∆E ≫ 1, but this can’t overcome
the now-expected exponential suppression:

SD

N
= β∆Ee−β∆E + e−β∆E +O

(
β∆Ee−2β∆E

)
.
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In the limit of high temperatures we should instead expand in powers of
the small factor βH ≪ 1. This is straightforward for ⟨E⟩D:

⟨E⟩D
NH

= − tanh (βH) = −βH +
(βH)3

3
+O

(
[βH]5

)
,

which vanishes ∼ 1
T

as T → ∞. This matches the micro-canonical behaviour we
saw for this system from Eq. 25, where the derived temperature diverged as the
conserved energy approached zero.

For the entropy, there is a similar connection to micro-canonical behaviour
at high temperatures:

SD

N
=

As T
H
→∞, the result

SD

N
= log 2− (βH)2

2
+O

(
[βH]4

)
approaches the asymptotic value SD → N log 2 = logM for the M = 2N micro-
states (with different energies). Qualitatively, in this limit the energy of each spin is
negligible compared to the temperature, and the system approximately behaves
as though the energy were zero for all micro-states (and hence conserved).

3.4.2 Indistinguishable spins in a gas

Next, let’s consider nearly the same setup, with N spins in thermodynamic
equilibrium, in an external magnetic field of strength H. The only difference is
that now the spins are allowed to move, like particles in a one-dimensional gas.
We demand that they move slowly so that we can ignore their kinetic energy and
the total energy of the system continues to be given by Eq. 40. Since the spins
don’t interact with each other, they can freely move past each other, and even
occupy the same space, making it impossible for them to be distinguished from
one another in any way.

To compute the fundamental canonical partition function (Eq. 33), we have
to sum over the micro-states of the system. These micro-states are no longer in
one-to-one correspondence with the full configurations {s} of the N spins. Be-
cause the spins are now indistinguishable, certain spin configurations also cannot
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be distinguished from each other. The simplest example comes from the two-spin
system considered in Section 3.1.1, where the configurations ↓↑ and ↑↓ now both
map onto a single micro-state. In this micro-state, we know only that one spin is
si = 1 while the other is sk = −1; it’s not possible to distinguish which is which.

Generalizing, we can conclude that a single distinct micro-state corresponds
to all possible permutations of spins with fixed {n+, n−}. This means that each
micro-state is now in one-to-one correspondence with the energy E = −H(n+ −
n−), which we can organize as energy levels separated by a constant energy gap
∆E = 2H. As a quick example, enumerate the energy levels when N = 4 and
list the spin configurations associated with the corresponding micro-states. How
many micro-states are there for N spins?

A convenient way to label these micro-states and energy levels is to define

Ek = −NH + 2Hk = −H(N − 2k)

for micro-state ωk with k = n− = 0, · · ·N . To compute the partition function ZI ,
with the subscript reminding us about the spins’ indistinguishability, we now have

ZI =
N∑
k=0

e−βEk =
N∑
k=0

eβH(N−2k) = eNβH

N∑
k=0

(
e−2βH

)k
= eNβH 1− e−2(N+1)βH

1− e−2βH
. (44)

The geometric series in the last step can be reconstructed by considering

N∑
k=0

xk =
∞∑
k=0

xk −
∞∑

k=N+1

xk =
1

1− x
− xN+1

∞∑
ℓ=0

xℓ =
1

1− x
− xN+1

1− x
.

The corresponding Helmholtz free energy is

FI(β) = −
logZ(β)

β
= −NH −

log
[
1− e−2(N+1)βH

]
β

+
log
[
1− e−2βH

]
β

. (45)

In contrast to Eq. 42, FI(β) is no longer proportional to N . In a homework assign-
ment you will use FI to determine the average internal energy ⟨E⟩I and entropy
SI shown in the figures below, and also check the low- and high-temperature ex-
pansions like we did for the distinguishable case above. Unlike our results for the
distinguishable case, you will find that ⟨E⟩I

NH
and SI

N
depend on N , which requires

us to fix N = 4 in the plots below.
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The solid blue lines in these figures are exactly the distinguishable-spin re-
sults we previously discussed. The red dash-dotted lines are the new results for
indistinguishable spins. We see that the same T → 0 limits are approached in
both cases: E → −NH and S → 0. At low temperatures, the indistinguishable
results approach these limits more quickly — they still feature exponential sup-
pression of excited-state effects by the energy gap, ∝e−β∆E, but this now comes
with additional factors of N .

At high temperatures there is an even more striking difference. While the
average internal energy ⟨E⟩I continues to vanish ∼ 1

T
as T →∞ (with different N

dependence), the entropy approaches the asymptotic value SI → log (N + 1) =
logM for the M = N + 1 micro-states. This logarithmic dependence on N is
very different from the SD → N log 2 limit we found for distinguishable spins, and
reflects the exponentially smaller number of micro-states that exist for indistin-
guishable spins, N + 1 vs. 2N .

Finally, away from those low- and high-temperature limits, the left figure
above shows a significant difference in the internal energies of the spin systems,
depending only on whether or not the spins can be distinguished from each other
in principle. This is a physically measurable effect caused by the intrinsic infor-
mation content of a statistical system, and a simple illustration of phenomena that
remain at the leading edge of ongoing research. The conclusion was memorably
stated by Rolf Landauer in 1991: “Information is physical.”
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Unit 4: Ideal gases

4.1 Volume, energy levels, and partition function

We now apply the canonical ensemble to investigate non-relativistic, classi-
cal, ideal gases. Using statistical physics we will explore how the large-scale be-
haviours of such gases emerge from the properties of the particles that compose
them. The key particle properties are specified by the adjectives listed above:

• Classical systems are those for which we can ignore the effects of quantum
mechanics. Among other things, this allows us to simultaneously define
both the position (x, y, z) and the momentum p⃗ = (px, py, pz) of each particle
with arbitrary precision.

• Non-relativistic particles move with speeds small compared to the speed
of light, which allows us to ignore small effects due to special relativity. The
particles are therefore governed by the laws Isaac Newton published all the
way back in 1687. In particular, the energy of each particle of mass m is

En =
1

2m
p2n,

where p2n = p⃗n · p⃗n = (px)
2
n +(py)

2
n +(pz)

2
n is the inner (or ‘dot’) product of the

momentum vector for the nth particle in the micro-state of interest.

• Ideal gases are those whose constituent particles don’t interact with each
other. As a result, the total energy of the gas is simply the sum of the
energies of the N individual particles,

E =
1

2m

N∑
n=1

p2n. (46)

As usual for the canonical ensemble, we consider the gas to be in thermody-
namic equilibrium, and in thermal contact with a large external thermal reservoir
with which it can exchange energy but not particles. To prevent particle exchange,
we can specify that the gas is enclosed in a cubic box with volume V = L3. The
thermal reservoir fixes the temperature T of the gas.

The starting point for our analysis is to compute the partition function

Z =
∑
i

e−Ei/T .

Unfortunately there is a challenge confronting this sum over all possible micro-
states ωi of the N -particle system. These micro-states depend on the momenta p⃗n
for all N particles, and it’s intuitive to suppose that each component of (px, py, pz)n
is a continuously varying real number that can (in principle) be distinguished with
arbitrary precision. This implies an uncountably infinite set of distinct momenta
and hence an uncountably infinite set of micro-states, making the summation
above ill-defined.
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To proceed, we need to regulate the system so that there are a countable
number of micro-states we can sum over to define the partition function. We do
this by positing that the particles’ momentum components can take only discrete
(or ‘quantized’) values that depend on the volume of the box. Specifically, we
declare that the possible momenta are

p⃗ = (px, py, pz) = ℏ
π

L
(kx, ky, kz) kx,y,z = 0, 1, 2, · · · . (47)

Each component of the non-negative-integer vector k⃗ = (kx, ky, kz) is indepen-
dent. The constant factor ℏ (“h-bar”), known as the (reduced) Planck constant
(named after Max Planck), simply converts units from inverse-length ( 1

L
) to mo-

mentum (p). Very similar discrete momenta turn out to be realized in nature,
thanks to quantum mechanics — if you have previously studied quantum physics,
you may recognize the momenta for a particle in a box, but for the purposes of
this module we can just adopt this result as an ansatz.

What are the energies that correspond to these discretized momenta?

You should find energies that fall into discrete energy levels, somewhat similar to
the spin system considered in Section 3.4. Unlike the spin system, in this case
the energy gaps between subsequent energy levels are not constant.

Even though there are still an infinite number of possible momenta and en-
ergy levels for each particle in the gas, these are now countable, making our
partition function well-defined. Let’s start by considering the partition function Z1

for a single particle in the box. The micro-states for this single-particle system are
completely specified by that particle’s momentum p⃗,

Z1 =
∑
i

exp

[
−Ei

T

]
=
∑
p⃗

exp

[
− p2

2mT

]
=

∞∑
kx,y,z=0

exp

[
− ℏ2π2

2mTL2

(
k2
x + k2

y + k2
z

)]
.

We can separately sum over each of the independent (kx, ky, kz), and recognize
that all three summations are identical:

Z1 =
∞∑

kx=0

exp

[
− ℏ2π2

2mTL2
k2
x

] ∞∑
ky=0

exp

[
− ℏ2π2

2mTL2
k2
y

] ∞∑
kz=0

exp

[
− ℏ2π2

2mTL2
k2
z

]

=

(
∞∑

ki=0

exp

[
− ℏ2π2

2mTL2
k2
i

])3

.

MATH327 Unit 4 57 Last modified 1 Mar. 2024

https://en.wikipedia.org/wiki/Max_Planck
https://en.wikipedia.org/wiki/Particle_in_a_box


For non-relativistic classical gases we can assume that Planck’s constant ℏ
is extremely small compared to L

√
mT ,8 so that

ℏ2π2

2mTL2
≪ 1.

This means that the function being summed varies very smoothly as the integer ki
increases, for any ki small enough to leave the exponential factor non-negligible.
We can therefore accurately approximate each sum by an integral over continu-
ous real k̂i, so that

∞∑
ki=0

exp

[
− ℏ2π2k2

i

2mTL2

]
≈
∫ ∞

0

dk̂i exp

[
− ℏ2π2k̂2

i

2mTL2

]
=

1

2

∫ ∞

−∞
dk̂i exp

[
− ℏ2π2k̂2

i

2mTL2

]
.

The final equality simply notes that the integrand is an even function of k̂i, as it
depends only on k̂2

i .

Since we’re back to working with continuous real variables, we may as well
use Eq. 47 to return to the original momenta dpi = ℏ π

L
dk̂i,

∞∑
ki=0

exp

[
− ℏ2π2

2mTL2
k2
i

]
=

1

2

∫ (
L

πℏ
dpi

)
exp

[
− p2i
2mT

]
.

So we end up with the single-particle partition function

Z1 =

(
L

2πℏ

)3 ∫
d3p exp

[
− p2

2mT

]
,

again with p2 = p2x + p2y + p2z. We can now account for all N particles in the
ideal gas, which are completely independent and don’t interact with each other.
Assuming we can distinguish these particles from each other, then each of them
simply contributes an independent factor of Z1 to the overall partition function

ZD =

(
L

2πℏ

)3N ∫
d3Np exp

[
−

N∑
n=1

p2n
2mT

]
, (48)

where the subscript reminds us of the particles’ distinguishability. We will consider
the indistinguishable case below.

We can recognize that each of the 3N independent integrations in Eq. 48 is
a gaussian integral,

L

2πℏ

∫
dpi exp

[
− p2i
2mT

]
=

L

2πℏ
√
2πmT =

√
mTL2

2πℏ2
≡ L

λth(T )
.

In the last step we have made the notation more compact by defining the thermal
de Broglie wavelength (named after Louis de Broglie),

λth(T ) =

√
2πℏ2
mT

. (49)

8If m is too small, effects due to special relativity become non-negligible. If T is too small, ef-
fects due to quantum physics become non-negligible. If L is too small, we don’t have a sufficiently
large-scale (macroscopic) system to justify analysis via statistical ensembles in the first place.
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Performing all 3N gaussian integrals,

ZD =

(
mTL2

2πℏ2

)3N/2

=

(
L

λth

)3N

=

(
V

λ3
th

)N

, (50)

since the volume of the box is V = L3. It is worth emphasizing here that the
partition function depends on the volume of the gas, in addition to the fixed tem-
perature T and conserved particle number N . This dependence may persist in
other quantities derived from the partition function, which we will consider in the
next section.

First, let’s determine what we would have with indistinguishable particles.
For a classical gas, distinguishability means that we can label the particles and
use those labels to tell them apart as they bounce around inside the box. In
the simple two-particle example illustrated below, these labels mean we have a
different micro-state ω1 when particle A has momentum p⃗1 while particle B has
momentum p⃗2, compared to micro-state ω2 in which particle A has momentum p⃗2
while particle B has momentum p⃗1.

If the particles are indistinguishable, no such labeling is possible, and there is
only one micro-state for these {p⃗1, p⃗2}, rather than two. This factor of 2 is not
accidental, as you can explore by counting how many micro-states there are for
three distinguishable particles with momenta {p⃗1, p⃗2, p⃗3}, compared to the single
micro-state for the indistinguishable case:
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Generalizing to N particles, we find that ideal gases with distinguishable
particles have N ! times more micro-states compared to otherwise-identical ideal
gases with indistinguishable particles: There are N possible ways to label the par-
ticle with momentum p⃗1, then N−1 possible labels for p⃗2, and so on.9 The partition
function sums over these micro-states, but depends only on their energies, which
are independent of any labeling. Therefore this factor of N ! is the only difference
between Eq. 50 and the partition function for indistinguishable particles,

ZI =
1

N !

(
mTL2

2πℏ2

)3N/2

=
1

N !

(
L

λth

)3N

=
1

N !

(
V

λ3
th

)N

. (51)

4.2 Internal energy, and entropy

Now that we have the canonical partition function, let’s apply our work from
Unit 3 to predict the large-scale behaviour of the ideal gas it describes. Our first
targets are the average internal energy ⟨E⟩ and entropy S for the gas, as functions
of its fixed temperature T , conserved particle number N , and the volume V = L3

of the box in which it is contained. Let’s begin with the slightly more complicated
case of indistinguishable particles, Eq. 51. Recalling the derivatives in Eqs. 38–
39, we should keep the temperature dependence explicit in our workings, rather
than hidden inside the thermal de Broglie wavelength λth(T ).

Starting by writing down the Helmholtz free energy,

FI = −T logZI = −
3NT

2
log

(
mTL2

2πℏ2

)
+ T log (N !) ,

we can quickly extract the internal energy,

⟨E⟩I = −T
2 ∂

∂T

(
FI

T

)
= −T 2 ∂

∂T

(
−3N

2
log T + T -independent

)
=

3

2
NT.

This in turn provides the entropy

SI =
⟨E⟩I − FI

T
=

3

2
N +

3N

2
log

(
mTL2

2πℏ2

)
− log (N !) .

We can clean this up by reintroducing the thermal de Broglie wavelength,

3N

2
log

(
mTL2

2πℏ2

)
=

3N

2
log

(
L2

λ2
th

)
= N log

(
V

λ3
th

)
,

and by applying Stirling’s formula to find

SI =
3

2
N +N log

(
V

λ3
th

)
−N logN +N =

5

2
N +N log

(
V

Nλ3
th

)
.

We can interpret Nλ3
th as the volume ‘occupied’ by the N particles.

9This argument assumes the momenta themselves are distinguishable, p⃗i ̸= p⃗k for any i ̸= k.
This is a reliable assumption for classical gases with L

√
mT ≫ ℏ, but will need to be revisited

when we consider quantum statistics.
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What are the corresponding results for the case of distinguishable particles,
where the partition function ZD is given by Eq. 50?

FD =

⟨E⟩D =

SD =

You should find that the energy is insensitive to whether or not we can label the
particles:

⟨E⟩D = ⟨E⟩I =
3

2
NT. (52)

This is in contrast to the spin system we considered in Section 3.4.10 The entropy,
however, does reflect the extra information that distinguishability provides:

SD =
3

2
N +N log

(
V

λ3
th

)
SI =

5

2
N +N log

(
V

Nλ3
th

)
. (53)

The difference SI − SD = N − N logN → − log(N !) < 0 means SI < SD, as
expected. We can also note that λth → ∞ as the temperature approaches ab-
solute zero, T → 0, apparently producing negative entropies for fixed V . This is
a warning sign that our classical assumptions are breaking down in this regime,
and quantum effects would need to be taken into account.

4.3 The mixing entropy and the ‘Gibbs paradox’

Back in Section 2.4 we considered what would happen if we allowed two
micro-canonical systems to exchange energy, and then re-isolated them. We
saw that this procedure obeys the second law of thermodynamics — the entropy
never decreases, though we have to be careful to account for all of the entropy
after re-isolating the two systems.

We can now carry out a similar thought experiment of allowing two canon-
ical systems to exchange particles, and then re-separating them. We demand

10The ultimate origin of this contrast is that each ideal gas micro-state ωi in the indistinguishable
case corresponds to N ! micro-states in the distinguishable case, independent of the energy Ei.
For the spin system this factor is

(
N
n+

)
and varies with the energy En+

.
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that both canonical ensembles are in thermodynamic equilibrium with each other,
for instance by sharing the same thermal reservoir with temperature T . This
procedure is illustrated below, where we simplify the setup by taking the two ini-
tial systems to have equal volumes, VA = VB = V , and numbers of particles,
NA = NB = N .

We can represent the process of combining and then re-separating these
systems by writing

ΩA + ΩB −→ ΩC −→ Ω′
A + Ω′

B.

What is the entropy for each of these three stages? Since the entropies depend
on whether or not the particles in the gas are distinguishable from each other,
let’s first consider the case of indistinguishable particles.
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The initial entropy is the sum of the contributions from the two canonical
systems, SA + SB, both of which are the same thanks to our simplification above,
and are given by Eq. 53:

SA + SB =

To find the entropy SC of the combined system, we just need to consider what
happens when we double the volume and also double the number of particles:

SC =

You should find SC = SA +SB, which is consistent with the second law of thermo-
dynamics.

Things are more complicated when we re-separate the systems. Analo-
gously to our considerations in Section 2.4, we need to sum over all the possible
ways of dividing the 2N indistinguishable particles between the two re-separated
boxes. In particular, we need to perform this sum at the stage of computing the
partition function Z ′ for Ω′

A+Ω′
B, since this is the fundamental quantity from which

the entropy is then derived as S ′ = ∂
∂T

(T logZ ′). In other words, we have to con-
sider a logarithm of a sum rather than a sum of logarithms.

If ν particles end up in system Ω′
A, then the other system Ω′

B must contain
the remaining 2N − ν particles, giving us

Zν =
1

ν!

(
V

λ3
th

)ν

× 1

(2N − ν)!

(
V

λ3
th

)2N−ν

=
1

ν! (2N − ν)!

(
V

λ3
th

)2N

.

Summing over all possible values of 0 ≤ ν ≤ 2N ,

Z ′ =
2N∑
ν=0

Zν =

(
V

λ3
th

)2N 2N∑
ν=0

1

ν! (2N − ν)!
=

(
V

λ3
th

)2N
1

(2N)!

2N∑
ν=0

(
2N

ν

)

=⇒ S ′
A + S ′

B = 2N
∂

∂T

(
T log

[
V

λ3
th

])
− log[(2N)!] + log

[
2N∑
ν=0

(
2N

ν

)]
.

This is a complicated expression. We can simplify it with an approximation con-
sidered by J. Willard Gibbs in the 1870s, which is motivated by some of our tutorial
activities. For large N ≫ 1, we saw that the entropy of two subsystems in ther-
mal contact is nearly saturated by the case in which the energy is divided roughly
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evenly between the two subsystems, rather than being mostly in one of them.
The same thing happens for two systems that are allowed to exchange particles:
there are far more micro-states with particles divided roughly evenly between the
two subsystems, N ′

A ≈ N ′
B ≈ N , compared to the particles being mostly in one of

them.

So we declare N ′
A = N ′

B = N , as drawn in the illustration above. This
suffices to establish Ω′

A = ΩA and Ω′
B = ΩB, producing a final entropy of S ′

A+S ′
B =

SA + SB that satisfies the second law of thermodynamics:

S ′
A + S ′

B = SC = SA + SB.

This is just what we would expect from everyday experience: opening a door
between two identical rooms doesn’t produce any dramatic effects, nor does re-
versing that process by closing the door.

Something interesting happens when we repeat this analysis for the case of
distinguishable particles, using our result for SD(N, V ) in Eq. 53. If we consider
the difference between the combined entropy SC and the initial entropy SA + SB,

∆Smix = SC − (SA + SB) = SD(2N, 2V )− 2SD(N, V )

= 3N + 2N log

(
2V

λ3
th

)
−
[
3N + 2N log

(
V

λ3
th

)]
= 2N log 2 > 0, (54)

we find that the entropy increases upon combining the two initial systems. This
∆Smix > 0 is known as the mixing entropy.

This result SC > SA + SB is what we would expect from the second law
of thermodynamics. However, repeating the argument above — that we should
have N ′

A ≈ N ′
B ≈ N leading to S ′

A+S ′
B = SA+SB after re-separating the systems

— would imply S ′
A + S ′

B < SC , indicating a decrease in the entropy by ∆Smix and
an apparent violation of the second law. This is known as the ‘Gibbs paradox’,
though Gibbs himself explained how a paradox is avoided.

The explanation is that because the particles are now distinguishable, N ′
A =

NA no longer suffices to establish Ω′
A = ΩA and S ′

A = SA. Recovering ΩA would
additionally require that the N ′

A particles in the re-separated system are the same
distinguishable particles that were initially in ΩA. While we can still expect N ′

A ≈
N ′

B ≈ N , the vast majority of the resulting micro-states will not correspond to
micro-states of ΩA and ΩB. Summing over these additional possibilities ensures
S ′
A + S ′

B > SA + SB, and it turns out S ′
A + S ′

B ≥ SC as well, obeying the second
law of thermodynamics.

These thought experiments provide another example of behaviour that dif-
fers depending only on the intrinsic information content of the system — whether
or not the particles in an ideal gas can be distinguished from each other in prin-
ciple. Mixing gases of distinguishable particles introduces a positive mixing en-
tropy, Eq. 54, but for gases of indistinguishable particles there is no change in
entropy when we let two subsystems mix, or when we reverse that process and
re-separate them. Due to the second law of thermodynamics, processes that
produce an increase in entropy are irreversible.
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4.4 Pressure, ideal gas law, and equations of state

Below Eq. 50 we emphasized that the ideal gas partition function depends
on the volume of the gas, V , in addition to the fixed temperature T and conserved
particle number N that always characterize systems governed by the canoni-
cal ensemble. Parameters like V that appear in the partition function are called
control parameters, with the idea that they can (in principle) be controlled in
experiments. Control parameters generally enter the partition function through
the definition of the energies Ei for the micro-states ωi. Another example is the
magnetic field strength H for the spin systems we considered earlier.

Focusing on ideal gases for now, we see that all dependence on V drops
out in our results for the average internal energy, Eq. 52. On the other hand, the
entropies in Eq. 53 do depend on the volume. For both cases of distinguishable
and indistinguishable particles, the entropy S depends on the same combination
of volume and temperature: V λ−3

th ∝ V T 3/2. If we keep N fixed and consider
using our experimental control to change the volume and the temperature of the
system, the entropy will typically change as a consequence, unless the following
relation is satisfied:

V T 3/2 = constant =⇒ S = constant.

Such constant-entropy (or isentropic) processes will be important in our
upcoming analyses of thermodynamic cycles.11 These cycles will involve mak-
ing changes to control parameters, which is a topic we have already started to
consider through the micro-canonical temperature (Eq. 22) and the canonical
heat capacity (Eq. 36). The pressure of an ideal gas is similarly connected to
a change in its volume, which we can motivate by thinking about squeezing an
inflated balloon into a small box.

The pressure is defined to be

P = − ∂

∂V
⟨E⟩
∣∣∣∣
S

, (55)

with constant entropy S. In words, the pressure is the isentropic response of the
system’s internal energy to a change in its volume.

In Unit 5 we will look in detail at processes that change some or all of the
pressure, volume, temperature, or internal energy of an ideal gas, with N fixed.
Although changing the temperature departs from the assumptions of the canon-
ical ensemble, we will be able to understand such a process as a change from
one canonical system (in thermodynamic equilibrium with a thermal reservoir that
fixes the initial temperature T0) into another (in thermodynamic equilibrium with a
different thermal reservoir that fixes the final temperature Tf ).

11The term isentropic is based on the Greek word ισoς (“isos”), meaning “equal”.
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If we consider an isentropic process with N fixed, then the temperature and
volume are related,

V T 3/2 = c3/2 −→ T = cV −2/3,

with c a constant. By inserting this into Eq. 52, we can relate the average internal
energy to the volume,

⟨E⟩ = 3

2
NT =

3c

2
NV −2/3 for constant entropy.

Using this constant-entropy expression, what is the pressure for the ideal gas?

P = − ∂

∂V
⟨E⟩
∣∣∣∣
S

=

You should find the ideal gas law,

PV = NT, (56)

which is an example of an equation of state.

The “state” being referred to by this terminology is different from the micro-
states that we have mostly discussed up until now. Whereas each micro-state
is defined by detailed information about the microscopic degrees of freedom that
constitute the system, this thermodynamic state or macro-state concerns only
the large-scale (macroscopic) properties of the system, such as its pressure,
volume, temperature, or internal energy. Equations of state are relations between
these large-scale properties.

Historically, equations of state were observed empirically and studied exper-
imentally well before the mathematical development of statistical physics. In the
1660s, for instance, Robert Boyle experimented with changing the pressure of a
gas while holding its temperature fixed, finding a special case of the ideal gas law,

PV = constant for constant N and T,

which became known as “Boyle’s law”. (I include the quotation marks to acknowl-
edge the limitations of assigning individuals full credit for advances arising from
the work of broad scientific communities.)
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Other equations of state reflecting different aspects of the ideal gas law were
uncovered during the Industrial Revolution:

•
V

T
= constant for constant N and P (1787, “Charles’s law”)

•
P

T
= constant for constant N and V (1802, “Gay-Lussac’s law”)

•
V

N
= constant for constant P and T (1812, “Avogadro’s law”)

In the 1830s Émile Clapeyron combined these empirical results into the ideal gas
law itself, which August Krönig and Rudolf Clausius independently derived on
the basis of statistical physics in the 1850s. These historical data are useful to
illustrate how progress in scientific and mathematical understanding went hand-
in-hand with industrial developments, including the design of engines and related
machines, which are connected to our next topic of thermodynamic cycles.
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Unit 5: Thermodynamic cycles

5.1 Work, pressure and force

In the previous section we defined the pressure of a canonical ideal gas as
the thermodynamic response of the internal energy to an isentropic change in
the volume (Eq. 55). At the same time, we motivated this definition by thinking
about ‘squeezing’ the system — exerting a force on it — which suggests a con-
nection between pressure and force. Here we make this connection explicit by
considering how the energy of an object changes when a force acts on it.

Let’s begin by considering a single object at position r⃗ = (x, y, z), and sup-
pose it is displaced by a vector dr⃗ due to a force F⃗ (r⃗). The work done by this force
is defined to be the resulting change in the energy of the object. Infinitesimally,
W = dE = F⃗ · dr⃗, which generalizes to the line integral W = ∆E =

∫
F⃗ (r) · dr⃗.

A famous example is an object falling due to the force of the Earth’s gravity.
That force is F⃗ = (0, 0,−mg), where m is the mass of the object, g ≈ 9.8 m/s2

(metres per second per second) is the strength of gravity near the surface of
the Earth, and the negative sign indicates that the gravitational force is directed
downward. Suppose the object starts from rest, with initial kinetic energy E0 = 0,
and falls downward, parallel to F⃗ , from a height h. Its final energy Ef upon hitting
the ground comes from the work done by the Earth’s gravity:

W =

∫
F⃗ (r) · dr⃗ = −mg

∫ 0

h

dz = mgh > 0

Ef = E0 +∆E = 0 +W = mgh =
p2z
2m

−→ pz = −m
√

2gh,

where p⃗ = (px, py, pz) is the momentum introduced in Eq. 46.

Generalizing to N ≫ 1 objects in a statistical system governed by the canon-
ical ensemble, we define the work done by a force to be the resulting change in
the system’s average internal energy due to that force, W = ∆⟨E⟩force. In practice,
the volume is the control parameter that such a force will change.

This change in ⟨E⟩ due to a change in volume suggests that the work is re-
lated to the pressure defined by Eq. 55. We can formalize this relation by consid-
ering the setup shown below (from Schroeder’s Introduction to Thermal Physics).
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Here we have an ideal gas in a container of volume V , with one wall of
that container being a piston that we can move by applying a force F . Let’s
demand that this process is isentropic, leaving the entropy of the gas constant.
The displacement ∆x shown in the figure reduces the volume of the gas, by
∆V = −A∆x < 0 where A is the surface area of the piston. Since the force F
is parallel to the piston’s displacement ∆x, it does positive work W = F∆x > 0.
Therefore the internal energy of the gas increases by ∆⟨E⟩ = W , at the same
time as its volume decreases isentropically, so from Eq. 55 we have

P = − ∂

∂V
⟨E⟩
∣∣∣∣
S

= − W

∆V
=

F∆x

A∆x
=

F

A
. (57)

This identifies the pressure of an ideal gas in a container as the force per unit
area that the gas exerts on the container wall, reassuringly consistent with our
everyday experiences.

Rearranging the expressions above, we can obtain an expression for the
work put into the gas by its surroundings — that is, by the external force applied
to move the piston and change the volume. Still assuming an isentropic process,
this input work must match the increase in the gas’s average internal energy,

W = ∆⟨E⟩ = −P∆V for constant entropy.

If the entropy is allowed to change, this relation between work and pressure will
still hold. However, as we will see in the next section, the non-constant entropy
will introduce an additional change in the average internal energy unrelated to a
force, leading to W ̸= ∆⟨E⟩ and leaving only the relation

W = −P∆V more generally. (58)

Later we will be interested in using the gas as a thermodynamic engine that does
work on its surroundings. This removes energy from the gas, corresponding to a
negative W < 0, and we will need to be careful to keep track of the negative signs
and their physical meaning.

Of course, as we change the volume of the gas, the pressure itself may
change as described by the gas’s equation of state — such as the ideal gas law,
Eq. 56. Recall that we are fixing the particle number N in order to work with the
canonical ensemble. With the equation of state providing an expression P (V ) for
the pressure as a function of the volume, Eq. 58 generalizes to

W = −
∫ Vf

V0

P (V ) dV. (59)

5.2 Heat and entropy

Now let’s switch things up by changing the temperature T of an ideal gas
while keeping its volume V and particle number N constant. Since the volume is
constant, Eq. 59 indicates that no work is done, W = 0. Even so, from Eq. 52 we
have ⟨E⟩ = 3

2
NT and can see that the average internal energy still changes,

d⟨E⟩ = 3

2
NdT. (60)
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In order to remain consistent with our discussion in the previous section, we
should expect a change in the entropy to accompany this change in the internal
energy that occurs with no work done. Indeed, for both cases of distinguishable
and indistinguishable particles, the temperature dependence of the entropy in
Eq. 53 is the same:

S = N log
(
λ−3
th

)
+ T -independent = N log

(
T 3/2

)
+ T -independent.

What is the change in entropy that results from changing the temperature by dT?

dS =

Looking back to Eq. 60, you should find d⟨E⟩ = TdS, which leads us to another
important definition.

The heat added to or removed from a statistical system is defined to be

Q = T dS, (61)

and corresponds to the change in the average internal energy of the system when
the volume and particle number are kept constant.

As for the work W considered in the previous section, we can generalize
this infinitesimal definition to

Q =

∫ Sf

S0

T (S) dS, (62)

with Q = ∆⟨E⟩ when the volume is constant. Here we assume it will be possible
to invert the usual canonical relation that expresses the entropy as a function of
the temperature, S(T ). (Some textbooks refer to infinitesimal heat and work as
“dQ” and “dW ”, but this is easy to misread as a ‘change’ in heat or work, while the
heat and work are themselves changes in the internal energy.)

Also like the work, the heat Q is positive when energy is added to the sys-
tem to increase ⟨E⟩, and negative when energy is removed. Recalling that the
canonical ensemble involves placing the system in thermal contact with a large
external thermal reservoir, we can recognize that this energy is not being created
or destroyed, but is instead flowing back and forth between the system and the
reservoir. When considering heat, we will also demand that no entropy is created
or destroyed — a positive dS will indicate entropy flowing into the system from the
reservoir, while a negative change reflects entropy moving from the system to the
reservoir. Because the total entropy of the system plus its reservoir is constant,
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these processes are reversible, making it possible for the system to return to its
starting macro-state.12

We have already considered isentropic processes with dS = 0, for example
in the definition of pressure in Eq. 55. With our assumption of reversibility, the
definition of heat provides a new perspective on such processes:

We define an adiabatic process to be a change in the control parameters
of a system that occurs without transferring heat, Q = 0. When this process is
reversible, Eq. 61 guarantees that it also does not change the system’s entropy.

Since the canonical ensemble requires thermal contact between the system
and its surroundings, the practical way to avoid heat exchange is to change the
control parameters quickly. That is, adiabatic processes are fast enough that
the system does not have time to exchange heat (and hence entropy) with its
surroundings. The opposite extreme would be a process slow enough that any
and all possible heat exchange can be completed while it is underway. Based
on our work in Section 2.4, we can see that such heat exchange will keep the
system’s temperature equal to the temperature of its surroundings. Taking that
surrounding temperature to be constant, we reach the conclusion that constant-
temperature (or isothermal) processes are slow. Real processes generally
exist in between these two extremes, usually closer to the adiabatic limit.

5.3 Thermodynamic cycles

Now we can generalize our considerations in the previous two sections to
address simultaneous changes in the temperature T and the volume V of an
ideal gas, still with fixed particle number N . We are used to working with the
internal energy ⟨E⟩(T, V ) and entropy S(T, V ) as functions of the temperature and
volume. Inverting the latter relation allows us to instead express the temperature
T (S, V ) as a function of the entropy and volume, which carries through to the
internal energy ⟨E⟩ = 3

2
NT ,

⟨E⟩(T, V ) → ⟨E⟩(S, V ).

Expanding the internal energy to first order in a multi-variable Taylor expansion,
we have

⟨E⟩(S, V ) ≈ ⟨E⟩(S0, V0) + (S − S0)
∂ ⟨E⟩
∂S

∣∣∣∣
V

+ (V − V0)
∂ ⟨E⟩
∂V

∣∣∣∣
S

.

This approximation becomes exact in the limit of infinitesimal changes

⟨E⟩(S, V )− ⟨E⟩(S0, V0)→ d⟨E⟩ S − S0 → dS V − V0 → dV.

12In the case of irreversible processes, there must be sources of entropy creation. Adding these
to the heat, Eq. 61 generalizes to the “Clausius inequality” Q < T dS.
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At the same time, we can recognize the temperature from Eq. 22 and the (nega-
tive) pressure from Eq. 55, to obtain

d⟨E⟩ = T dS − P dV = Q+W. (63)

This is a generalized form of the first law of thermodynamics: Any change in
the internal energy of a statistical system must be matched by (either or both)
heat exchange with its surroundings or work done by or on those surroundings.

We now have all the concepts and key equations needed to consider a
variety of ways to manipulate an ideal gas in a container:

• Eq. 52 for the internal energy: ⟨E⟩ = 3
2
NT

• Eq. 53 for the condition of constant entropy: V T 3/2 = constant

• Eq. 56 for the equation of state (ideal gas law): PV = NT

• Eq. 63 for the first law of thermodynamics: d⟨E⟩ = T dS − P dV = Q+W

As examples of manipulations we can carry out by changing the system’s
control parameters, the piston we considered in Section 5.1 allows us to com-
press or expand the gas. This change in volume could be fast to keep the entropy
constant (adiabatic), or slow to keep the temperature constant (isothermal). Al-
ternately, we can clamp the piston in place to keep the volume constant, and add
heat to the gas to increase its temperature — according to the ideal gas law, this
will also increase the pressure of the gas. Or we can add heat while keeping the
pressure constant by applying a constant force to the piston. The ideal gas law
then implies the volume will increase, pushing out the piston — which could be
used as a way for the system to do work on its surroundings.

It’s possible to carry out a sequence of such manipulations that cause the
system to end up in the same thermodynamic (macro-)state in which it started,
with the same pressure, volume, temperature and internal energy. This sequence
can then be repeated over and over again, always returning to the same starting
point. Such a repeatable process is known as a thermodynamic cycle. As we
will see in the next section, such cycles can make use of heat to have the system
do work on its surroundings (providing an engine), or make use of work to remove
heat from the system (providing a refrigerator ), among other applications.

Thanks to the key equations above, we can specify the full macro-state for
an ideal gas solely in terms of the pressure P and the volume V . With fixed
N , the ideal gas law fixes the temperature T = PV

N
, which then determines the

internal energy ⟨E⟩ ∝ NT . This makes it convenient to represent the system’s
macro-state as a point in a pressure–volume (or PV) diagram — a graph with
the volume on the horizontal axis and the pressure on the vertical axis. The
manipulations discussed above correspond to lines in PV diagrams. In the case
of a thermodynamic cycle, the lines must meet up to form a closed path for the
system to go around as the cycle is repeated.
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As a first example, the figure below shows the PV diagram for isothermal
expansion of the gas, which is slow enough for heat to enter the system to keep
the temperature fixed despite the expansion.

The line in a PV diagram for an isothermal process is known as an isotherm.
As the volume expands from V0 to Vf , the temperature (and therefore PV ) is
constant. What is the change in pressure ∆P = Pf − P0 in terms of P0, V0 and
Vf? What would it mean if two isotherms were to cross in a PV diagram?

Similarly, we can consider the PV diagram below for adiabatic compression
of the gas, which occurs too quickly for heat to be exchanged.
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In this case both the pressure and temperature change, while the entropy (and
therefore V T 3/2) is constant. What are ∆P and the change in the temperature
∆T = Tf − T0 in terms of P0, V0, Vf and the fixed number of particles N?

5.4 The Carnot cycle

A famous thermodynamic cycle was proposed by Sadi Carnot in 1824, and
laid the groundwork for subsequent development of engines and refrigerators
later in the nineteenth century. The key idea is to propose that the ideal gas in
its container can exchange energy with either of two different thermal reservoirs:
a ‘hot’ reservoir with temperature TH and a ‘cold’ reservoir with temperature TL.
The Carnot cycle consists of four stages, which are first shown below in the form
of a PV diagram, then illustrated in a sketch (adapted from Schroeder’s Intro-
duction to Thermal Physics) that provides a more concrete picture of the physical
processes, and finally summarized in words.

MATH327 Unit 5 74 Last modified 7 Mar. 2024

https://en.wikipedia.org/wiki/Nicolas_Leonard_Sadi_Carnot


The illustration above supposes that the hot reservoir is located to the right
of the system, while the cold reservoir is located to its left. In words, the four
stages are the following:

• From point A to point B the system undergoes slow isothermal expansion,
bringing in heat Qin from the hot reservoir in order to keep its temperature
fixed at TH .

• From point B to point C the system undergoes fast adiabatic expansion,
with no heat exchange, until its temperature falls from TH down to TL.

• From point C to point D the system undergoes slow isothermal compres-
sion, expelling heat Qout into the cold reservoir in order to keep its tempera-
ture fixed at TL.

• From point D to point A the system undergoes fast adiabatic compression,
with no heat exchange, until its temperature rises from TL back up to TH .

We need to make sure that these four processes really do produce a self-
consistent closed cycle that our system could repeatedly follow. In a real experi-
ment, we would have full control over the four variables {PA, VA, VB, VC} coloured
red in the PV diagram above. Specifically, we can prepare our N -particle sys-
tem in initial macro-state A with our choice of pressure PA and volume VA, which
through the ideal gas law specifies the temperature TH = PAVA

N
of the hot reser-

voir. We can then freely choose the volume VB > VA at which to switch from
isothermal expansion to adiabatic expansion, and similarly choose the volume
VC > VB at which we stop expanding and start compressing. These choices of
VB and VC are equivalent to choosing the temperature TL of the cold reservoir.

At this point, however, we are no longer free to choose an arbitrary volume
VD < VC at which to switch from isothermal compression to adiabatic compres-
sion — this switch needs to happen at precisely the correct point in order for the
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final stage to bring the system back to its initial macro-state A. While we can
expect that this will be possible for the Carnot cycle, a priori there is no guarantee
that a given sequence of processes will close to form a self-consistent thermody-
namic cycle.

In order to confirm the self-consistency of the Carnot cycle, we need to
express the unknown quantities {PB, PC , TL, PD, VD} in terms of the four (red)
inputs described above, along with the fixed number of particles N . At point B,
we know the system’s temperature remains TH = PAVA/N . What is the pressure
PB in terms of {PA, VA, VB, VC , N}?

At point C, we know the system’s entropy is the same as at point B. What
are the temperature TL and pressure PC in terms of {PA, VA, VB, VC , N}?

At point D, we know the system’s temperature remains TL. We have to
demand that its entropy is the same as at point A, in order for the final adiabatic
stage to connect points D and A. What are the resulting pressure PD and volume
VD in terms of {PA, VA, VB, VC , N}?

You should find that all of {PB, PC , TL, PD, VD} can be consistently specified
by the (red) inputs under our control, which establishes that the Carnot cycle is a
valid thermodynamic cycle. This is not a surprising result, but does give us the
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ingredients to address the question of how much net work (if any) this cycle can
do on its surroundings, compared to the amount of heat it would transfer from the
hot reservoir to the cold reservoir. It will simplify this calculation to use the fol-
lowing positive quantities, with subscripts (rather than negative signs) indicating
whether energy is flowing into or out of the gas:

• When work is done on the system by its surroundings, Win = W > 0 from
Eq. 59

• When work is done by the system on its surroundings, Wout = −W > 0

• When heat enters the system, Qin = Q > 0 from Eq. 61

• When heat leaves the system, Qout = −Q > 0

We can now define a convenient combination of heat and work to consider.

The efficiency η of a thermodynamic engine is defined to be

η =
Wdone

Qin
=

Wout −Win

Qin
, (64)

where Wdone = Wout −Win is the net amount of work done by each repetition of
the cycle, while Qin is the total amount of heat that enters the system in each
repetition.

By specifying a thermodynamic engine, we assume Wout > Win, so that
the overall cycle does more work on its surroundings than it requires as input to
operate. This corresponds to η > 0, and we can also put an upper bound on the
efficiency, due to the first law of thermodynamics, Eq. 63. Because the system
returns to its initial macro-state after each repetition of the cycle, we have

∆⟨E⟩ = 0 = Qin −Qout +Win −Wout

=⇒ Wout −Win = Qin −Qout ≤ Qin, (65)

or η ≤ 1, with equality occurring when no ‘waste’ heat is expelled by the system
throughout the entire cycle, Qout = 0. All together, 0 < η ≤ 1 lets us interpret the
efficiency as the fraction of the input heat that the engine is able to use to do work
on its surroundings.

Let’s illustrate these ideas by computing the efficiency of the Carnot cycle.
We can divide this calculation into smaller pieces by considering the contributions
to Wdone and Qin from each of the cycle’s four stages.
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First, in the isothermal expansion from point A to point B, the ideal gas law
provides P (V ) to insert into Eq. 59:

WAB = −
∫ VB

VA

P (V ) dV =

You should find WAB < 0, meaning the system does work on its surroundings
during this stage. At the same time, the constant temperature means ∆⟨E⟩ ∝
∆T = 0 from Eq. 52, so that QAB = −WAB > 0, in agreement with our earlier
observation of heat flowing into the system during this stage.

Next, in the adiabatic expansion from point B to point C, we know QBC = 0,
which lets us use the first law of thermodynamics to compute the work:

WBC =

You should find that the system continues doing work on its surroundings during
this stage, WBC < 0.

Finally, the computations for the two compression stages are directly analo-
gous to those for the two expansion stages considered above. For the isothermal
compression from point C to point D, the ideal gas law again provides P (V ):

WCD = −
∫ VD

VC

P (V ) dV =

Now you should find WCD > 0, meaning this compressions requires work to be
done on the system by its surroundings, while QCD = −WCD < 0 means heat
flows out of the system. For the adiabatic compression from point D to point A,
we know QDA = 0 while the change in temperature is exactly opposite the ∆T of
the B → C adiabatic expansion. Therefore WDA = −WBC > 0 and more work
has to be done on the system to complete the cycle.
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Putting everything together,

Wout = −WAB −WBC

Win = WCD +WDA = WCD −WBC

Qin = QAB = −WAB

η =
−WAB −WBC −WCD +WBC

−WAB

= 1 +
WCD

WAB

= 1− TL

TH

. (66)

We can check that our result η = 1 − TL

TH
for the efficiency of the Carnot cycle

makes sense. Since TL < TH , we have η > 0. If the temperatures of the hot
and cold reservoirs approach each other, TL

TH
→ 1, then the cycle would collapse

to a single isotherm with Wout = Win and vanishing efficiency η → 0. In the
opposite limit of a large difference in the temperatures TL ≪ TH , the efficiency
would improve, with η → 1 as TL

TH
→ 0.

It turns out to be generic for heat engines to operate more efficiently as
the temperature difference between their hot and cold reservoirs increases, and
they always cease performing net work as TL

TH
→ 1. The Carnot cycle is special

because its efficiency η = 1 − TL

TH
is the theoretical maximum allowed by the

second law of thermodynamics. We can show this by using Eq. 65 to rewrite

η =
Qin −Qout

Qin
= 1− Qout

Qin
= 1− TL∆Sout

TH∆Sin
,

where the last equality uses Eq. 62 and the fact that the input heat Qin = TH∆Sin

enters the engine from the hot reservoir with temperature TH , while the waste
heat Qout = TL∆Sout is expelled to the cold reservoir with temperature TL. After
each repetition of the cycle, the gas returns to its original macro-state, with its
original entropy, after absorbing entropy ∆Sin from its surroundings and expelling
∆Sout back out again. The second law therefore demands ∆Sout ≥ ∆Sin, so that

η = 1− TL

TH

∆Sout

∆Sin
≤ 1− TL

TH

in principle, for any thermodynamic engine.

Finally, if we were to operate the Carnot cycle in reverse, with isothermal
expansion at temperature TL and compression at TH , we would do work on the
system in order to bring heat in from the cold reservoir (i.e., Qin ∼ TL) and expel
it to the hot reservoir (Qout ∼ TH). In other words, we would have a refrigerator
rather than an engine. The ‘efficiency’ of a refrigerator is called its coefficient of
performance, and defined as

COP =
Qin

Win −Wout
=

Qin

Qout −Qin
=

1

Qout/Qin − 1
≤ 1

TH/TL − 1
=

TL

TH − TL

,

which can be greater than one. The reversed Carnot cycle provides the best pos-
sible COP for a refrigerator. Despite its efficiency, the Carnot cycle does not pro-
vide a practical engine or refrigerator, simply because its slow isothermal stages
take too long! Real engines and refrigerators sacrifice efficiency for functionality.
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Unit 6: Grand-canonical ensemble

6.1 The particle reservoir and chemical potential

Now that we have had some fun with applications of the canonical ensemble,
we will complete our more formal development of statistical ensembles by consid-
ering the grand-canonical ensemble. Recall that statistical ensembles are proba-
bility spaces describing the micro-states that a system can adopt as it evolves in
time, subject to certain constraints. Back in Unit 2 we first considered the micro-
canonical ensemble, for which these constraints are conservation of the internal
energy E and particle number N . We then introduced the canonical ensemble in
Unit 3 by allowing the system’s internal energy to fluctuate, while keeping its tem-
perature T fixed through thermal contact with a large external thermal reservoir.

Building on this pattern, the next step is to allow both the system’s energy
and its particle number to fluctuate. Generalizing our earlier work on the canonical
ensemble, these fluctuations occur through contact between the system and a
large external reservoir. This is now a particle reservoir, with which the system
can exchange both energy and particles.

In the same way that energy exchange leads to a fixed temperature, we ex-
pect there to be some quantity that will be fixed due to particle exchange. Recall
that we initially defined the temperature in the context of the micro-canonical en-
semble in thermodynamic equilibrium (Eq. 22), as the dependence of the entropy
on the internal energy for a fixed number of degrees of freedom:

1

T
=

∂S

∂E

∣∣∣∣
N

.

The quantity we are now interested in comes from the complementary analysis
interchanging the roles of E and N .

In thermodynamic equilibrium, the chemical potential in the micro-
canonical ensemble is defined by

µ = −T ∂S

∂N

∣∣∣∣
E

. (67)

This definition is not terribly intuitive, and unlike the temperature the chem-
ical potential is not a familiar concept from everyday experiences. To gain some
insight into the chemical potential, we can first note that µ has dimensions of en-
ergy. It is also an intensive quantity, like the temperature — it is independent of
the extent of the system, and remains the same if we consider only a part of a
larger system. Finally, we can expect the chemical potential to be negative, at
least for ‘natural’ systems with positive temperatures. This is because the partial
derivative ∂S

∂N
is generally positive, since systems with more degrees of freedom

typically have more entropy, reflecting the greater amount of information they can
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contain even with the energy fixed. This can be checked explicitly from Eq. 24 for
the micro-canonical spin system we considered in Section 2.3.

The presence of the negative sign in Eq. 67 is really a choice we have made.
The motivation for this choice comes from considering a net flow of particles be-
tween two systems ΩA and ΩB with the same temperature T > 0 but different

∂SA

∂NA

>
∂SB

∂NB

> 0 =⇒ µA < µB < 0.

Due to the negative sign in Eq. 67, the system with the larger partial derivative
has the smaller (more-negative) chemical potential. Particle exchange between
these two systems, ∆NA = −∆NB, causes the (extensive) entropy to change by

∆S = ∆SA +∆SB =

(
∂SA

∂NA

)
∆NA +

(
∂SB

∂NB

)
∆NB =

[
∂SA

∂NA

− ∂SB

∂NB

]
∆NA.

According to the second law of thermodynamics, ∆S ≥ 0, and since the term in
square brackets is positive we must also have ∆NA ≥ 0. We can also appreciate
this by noting that more entropy is gained by adding each particle to system ΩA

than is lost by removing it from system ΩB, ensuring that the total entropy of the
universe doesn’t decrease.

In other words, the choice of sign in Eq. 67 ensures that particles flow from
systems with larger chemical potentials to systems with smaller chemical poten-
tial. This provides a useful analogy to heat flowing from hotter systems with larger
temperatures to colder systems with smaller temperatures, allowing us to reuse
our intuition based on the temperature. Had we instead chosen to make µ pos-
itive for natural systems, we would have ended up with counter-intuitive flow of
particles from small to large chemical potential.

We are now able to define the grand-canonical ensemble to be a statistical
ensemble characterized by its fixed temperature T and fixed chemical potential
µ, with the temperature and chemical potential held fixed through contact with a
particle reservoir.

6.2 The grand-canonical partition function

Let’s now place the grand-canonical ensemble on a more concrete mathe-
matical foundation, by following the same procedure we used for the canonical
ensemble. That is, we introduce a well-motivated ansatz for the form of the parti-
cle reservoir Ωres, then show that the form of the reservoir is ultimately irrelevant.
This will allow us to work directly with the system of interest, Ω, independent of the
details of the particle reservoir that fixes its temperature and chemical potential.

As before, our ansatz is to take Ωtot = Ωres ⊗ Ω to consist of many (R ≫ 1)
identical replicas of the system Ω that we’re interested in. All of these replicas are
in thermodynamic equilibrium, and can exchange both energy and particles with
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each other. The overall system Ωtot is governed by the micro-canonical ensemble,
with conserved total energy Etot and conserved total particle number Ntot. An
extremely small example of this setup is illustrated by the figure below, where the
system of interest is an ideal gas in a volume V . In this unit we will consider only
indistinguishable particles, so that we don’t need to keep track of which particular
particles are exchanged between the replicas, only the overall number.

Although we draw a box around each replica (and colour one red to pick out
the system Ω we will consider), these boxes are now merely mental constructions,
and don’t interfere with particles moving from one replica to another. For example,
we could take our system to be a cubic centimetre of air in a room, with the rest
of the room forming its reservoir. As in Section 3.1.1, we assume that this system
Ω = {ω1, ω2, · · · , ωM} has a finite number of M possible micro-states, where now
different micro-states may involve different numbers of particles.

This again allows us to analyze the overall system of R replicas in terms of
occupation numbers ni and the corresponding occupation probabilities pi. Recall
that ni is the number of replicas that adopt the micro-state ωi ∈ Ω in any given
micro-state of the overall system Ωtot, so that

∑
i ni = R. Similarly, pi = ni/R is the

probability that a randomly chosen replica will be in micro-state ωi, with
∑

i pi = 1
as usual. In terms of ni and pi, the total number of micro-states of Ωtot, and the
corresponding entropy, are the same as we derived in Section 3.1.2,

Mtot =
R!

n1! n2! · · · nM !
−→ S(Etot, Ntot) = −R

M∑
i=1

pi log pi,
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assuming R ≫ 1 and ni ≫ 1 for all i = 1, · · · ,M . In this expression, the depen-
dence on both Etot and Ntot now enters through the occupation probabilities pi,
since the micro-states ωi may involve different numbers of particles in addition to
different energies.

Continuing as before, we want to determine the (intensive) temperature and
chemical potential of Ωtot through Eqs. 22 and 67, which requires expressing
S(Etot, Ntot) directly in terms of Etot and Ntot. We again do this by maximizing
the entropy subject to the constraints on the conserved quantities of the micro-
canonical overall system Ωtot. Labelling the energy and particle number of each
replica Er and Nr, respectively, as in Eq. 27 we can again rearrange sums over
replicas into sums over the micro-states of Ω:

1 =
M∑
i=1

pi Etot =
R∑

r=1

Er =
M∑
i=1

niEi = R

M∑
i=1

piEi

Ntot =
R∑

r=1

Nr =
M∑
i=1

niNi = R
M∑
i=1

piNi, (68)

where Ei and Ni are the energies and particle numbers of the M micro-states
ωi ∈ Ω. The first two constraints, on the occupation probabilities and the total
energy, are the same as we had in Section 3.1.2. The third constraint, on the total
particle number, is the new ingredient for us to incorporate.

Writing everything in terms of occupation probabilities, we see that we need
to maximize the modified entropy

S = −R
M∑
i=1

pi log pi + α

(
M∑
i=1

pi − 1

)

− β

(
R

M∑
i=1

piEi − Etot

)
+ γ

(
R

M∑
i=1

piNi −Ntot

)
,

adding the Lagrange multiplier γ to the α and (negative) β we previously had in
Section 3.1.2. What is the occupation probability pk that maximizes S?

0 =
∂S

∂pk
=
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You should find a probability of the form

pk =
1

Zg

e−βEk+γNk , (69)

defining Zg = exp
[
1− α

R

]
to work in terms of the parameters {Zg, β, γ}. As usual,

we fix these three parameters by demanding that the three constraints above are
satisfied. Using the first constraint, what is Zg in terms of β and γ?

1 =
M∑
i=1

pi =

Analogously to Eq. 31 in Section 3.1.2, the other two constraints

Etot = R
∑
i

piEi Ntot = R
∑
i

piNi

now produce complicated relations between {β, γ} and {Etot, Ntot}:

Etot = R

∑M
i=1Ei e

−βEi+γNi∑M
j=1 e

−βEj+γNj

= − R

Zg

∂

∂β

M∑
i=1

e−βEi+γNi = −R ∂

∂β
logZg(β, γ) (70)

Ntot = R

∑M
i=1Ni e

−βEi+γNi∑M
j=1 e

−βEj+γNj

=
R

Zg

∂

∂γ

M∑
i=1

e−βEi+γNi = R
∂

∂γ
logZg(β, γ). (71)

These relations between {Etot, Ntot} and partial derivatives of logZg will be use-
ful when we consider the partial derivatives of the entropy that define the tem-
perature and chemical potential. Of course, in order to consider those partial
derivatives, we need to express the entropy itself in terms of Etot, Ntot and the
parameters

{Zg(β, γ), β(Etot, Ntot), γ(Etot, Ntot)}

that we have now related to Etot and Ntot. What do you obtain upon inserting
Eq. 69 for pi into the formula for the entropy?

S(Etot, Ntot) = −R
M∑
i=1

pi log pi =
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Taking the derivative of the resulting entropy with respect to Etot, keeping
Ntot fixed, gives the temperature from Eq. 22. Thanks to Eqs. 70 and 71, the
result should simplify in a pleasant way:

1

T
=

∂S

∂Etot

∣∣∣∣
Ntot

=

In the same way, the derivative with respect to Ntot, keeping Etot fixed, gives the
chemical potential with similar simplifications:

µ = −T ∂S

∂Ntot

∣∣∣∣
Etot

=

In the end you should find

β =
1

T
γ = βµ =

µ

T
(72)

and the desired result that all information about the particle reservoir has dropped
out, with no remaining reference to R, Etot or Ntot. This large external reservoir is
still present to fix the temperature T and chemical potential µ that characterize the
grand-canonical system Ω, but beyond that nothing about it is relevant (or even
knowable) in the grand-canonical approach.

Every aspect of Ω can now be specified in terms of its fixed temperature T
and chemical potential µ, starting with the parameters β = 1/T and γ = µ/T . In
particular, the thermodynamic equilibrium probability that Ω adopts micro-state ωi

with (non-conserved) internal energy Ei and particle number Ni is

pi =
1

Zg

e−β(Ei−µNi) =
1

Zg

e−(Ei−µNi)/T . (73)

Since the particle number Ni is dimensionless, the combination Ei − µNi that
appears here reflects our observation below Eq. 67 that the chemical potential µ
has dimensions of energy.
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These micro-state probabilities are normalized by the grand-canonical par-
tition function

Zg(T, µ) =
M∑
i=1

e−β(Ei−µNi) =
M∑
i=1

e−(Ei−µNi)/T . (74)

Analogously to the canonical partition function, this Zg is a fundamental quantity
in the grand-canonical ensemble, from which many other derived quantities can
be obtained.

6.3 The grand-canonical potential, internal energy, entropy,
and particle number

The development of the grand-canonical ensemble we have seen so far
closely resembles our earlier work setting up the canonical ensemble. We have
generalized the thermal reservoir to a particle reservoir that fixes both the tem-
perature T and chemical potential µ, while allowing the system’s internal energy
and particle number to vary between different micro-states ωi. By adapting the
replica ansatz to this setup, we determined the micro-state probabilities pi and
the grand-canonical partition function Zg, confirming that they are independent of
the details of the particle reservoir.

We now continue by considering a similar set of derived quantities for the
grand-canonical ensemble in thermodynamic equilibrium. In addition to the ex-
pectation value of the internal energy introduced in Section 3.2, the fluctuations
of the particle number mean that we also need to consider its expectation value,

⟨E⟩(T, µ) =
M∑
i=1

Ei pi =
1

Zg

M∑
i=1

Ei e
−β(Ei−µNi)

⟨N⟩(T, µ) =
M∑
i=1

Ni pi =
1

Zg

M∑
i=1

Ni e
−β(Ei−µNi).

Looking back to Eqs. 70 and 71, we can expect both of these derived quantities to
be related to derivatives of the logarithm of the grand-canonical partition function.
In Section 3.3, similar relations led us to define the Helmholtz free energy for the
canonical ensemble, which we can also generalize to the grand-canonical case.

We define grand-canonical potential of a grand-canonical ensemble to be

Φ(T, µ) = −T logZg(T, µ) = −
logZg(β, µ)

β
, (75)

where Zg is the grand-canonical partition function of the ensemble. In terms of
this free energy, Eqs. 73 and 74 are

Zg = e−Φ/T pi = e(Φ−Ei+µNi)/T .
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The grand-canonical potential is sometimes called the Landau free energy,
named after Lev Landau, to highlight its similarity with the Helmholtz free energy.
As mentioned above, we want to consider derivatives of the grand-canonical po-
tential, the simplest of which is with respect to the chemical potential,

∂

∂µ
Φ(β, µ) =

The derivative with respect to the temperature is a little messier, but can be simpli-
fied by recalling ∂

∂T
= −β2 ∂

∂β
from Eq. 35. As in Section 3.3, it involves ∂

∂T
logZg,

which is again worth collecting in advance,

− ∂

∂T

[
Φ(T, µ)

T

]
=

∂

∂T
logZg(T, µ) =

∂

∂T
Φ(T, µ) =
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You should find

∂Φ

∂T
=

Φ− ⟨E⟩+ µ ⟨N⟩
T

= − logZg − β ⟨E⟩+ βµ ⟨N⟩ ,

which we can connect to the entropy by inserting the probabilities pi from Eq. 73
into the general definition of the entropy from Eq. 20:

S(T, µ) = −
M∑
i=1

pi log pi =

From this work we can read off the following relations involving the grand-
canonical potential Φ(T, µ):

⟨N⟩(T, µ) = − ∂

∂µ
Φ (76)

S(T, µ) = − ∂

∂T
Φ (77)

⟨E⟩(T, µ) = −T 2 ∂

∂T

[
Φ

T

]
+ µ ⟨N⟩ (78)

Φ(T, µ) = −T S + ⟨E⟩ − µ ⟨N⟩ (79)

Finally, the connections between the energy, entropy and particle number
provided by these relations motivate a further extension of the general first law of
thermodynamics we derived in Eq. 63. To make the notation less cumbersome
here, we write ⟨E⟩ and ⟨N⟩ as E and N , keeping in mind that these are properties
of the system’s thermodynamic macro-state rather than its fluctuating micro-state.
In this notation, Eq. 63 reads dE = T dS − P dV = Q + W , and relates any
changes in the internal energy of a canonical system to changes in its entropy
(heat) or volume (work).

Extending this to the grand-canonical ensemble, we can express the entropy
as a function of the internal energy, volume and particle number, S(E, V,N), and
consider the change in entropy due to changes in each of these three parameters,

dS =
∂S

∂E

∣∣∣∣
V,N

dE +
∂S

∂V

∣∣∣∣
E,N

dV +
∂S

∂N

∣∣∣∣
V,E

dN =
1

T
dE +

∂S

∂V

∣∣∣∣
E,N

dV − µ

T
dN.

We can interpret the remaining partial derivative by considering Eq. 63 in the case
of fixed internal energy E. This equation already incorporates the fixed particle
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number N , since it was derived in the framework of the canonical ensemble:

dE = 0 = T dS − P dV =⇒ ∂S

∂V

∣∣∣∣
E,N

=
P

T
.

Putting things together, we obtain the generalized thermodynamic identity

dE = T dS − P dV + µ dN. (80)

Due to this result, the term µ dN is sometimes referred to as “chemical work”,
in analogy to the mechanical work W = −P dV done on a system by changing
its volume. This thermodynamic identity provides a convenient way to remember
(or derive) relations between the internal energy, entropy, volume and particle
number in thermodynamic equilibrium, by considering processes in which any
two of these are fixed. For example, fixing N and V gets us back to Eq. 22 for the
temperature,

dE = T dS =⇒ 1

T
=

∂S

∂E

∣∣∣∣
N,V

,

while fixing N and S gives Eq. 55 for the pressure,

dE = −P dV =⇒ P = − ∂E

∂V

∣∣∣∣
N,S

.

If we fix the entropy S and volume V , we end up with another way of under-
standing the chemical potential,

dE = µ dN =⇒ µ =
∂E

∂N

∣∣∣∣
S,V

. (81)

That is, the chemical potential is the change in the internal energy when we
change the number of particles in the system, without changing its entropy or
volume. If we consider adding particles to the system, ∆N > 0, we argued below
Eq. 67 that we should generically expect an increase in the entropy. In order to
keep the entropy fixed in this process, we therefore need the change in the energy
to decrease the entropy by the corresponding amount. For natural systems with
positive temperatures, this requires decreasing the energy, ∆E < 0. Similarly,
keeping the entropy fixed as we decrease N would require increasing E, so that
Eq. 81 confirms our earlier finding that for natural systems the chemical potential
is negative in general.
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Unit 7: Quantum statistics

7.1 Quantized energy levels and their micro-states

Now that we have defined the grand-canonical ensemble, we will apply it to
investigate quantum statistical systems. The first step is to introduce quantum
statistics itself, building on the initial glimpse that we got in Section 4.1. It is
worth reiterating that no prior knowledge of quantum physics is assumed, nor
will this module attempt to teach quantum mechanics. We will simply consider
quantum behaviour as an ansatz (that turns out to be realized in nature), and
analyze the resulting systems by making use of the statistical physics tools we
have developed.

Looking back to our derivation of the canonical partition function for a classi-
cal (that is, non-quantum) ideal gas in Section 4.1, we can recall that we engaged
in slightly circular argumentation. First, because the partition function is defined
as a sum over micro-states ωi,

Z =
∑
i

e−E(p⃗i)/T ,

we had to conjecture that the gas particles’ momenta p⃗i are quantized and can
take only particular discrete values, rather than varying continuously. These quan-
tized momenta produce a countable number of discrete energy levels, leading to
a countable number of micro-states and hence a well-defined partition function
that takes the form of a sum over all possible discrete momenta for each par-
ticle. Second, we then argued that when L

√
mT ≫ ℏ, any energy levels with

non-negligible Boltzmann factors are spaced very close to each other. Therefore
the function being summed varies very smoothly, allowing us to approximate that
sum as a multi-dimensional integral. That is, we went right back to working with
continuously varying momenta, despite the formal need to regulate the system by
quantization.

Two changes are required to define quantum statistics. First, not surpris-
ingly, we need to retain discrete energy levels rather than approximating these as
continuous. This will allow our calculations to remain valid even in the quantum
regime where L

√
mT ∼ ℏ. The second change is more subtle, and is connected

to the fundamental indistinguishability of identical particles governed by quantum
mechanics — a fact about nature that we will take as given. The issue is how to
handle micro-states in which multiple indistinguishable particles occupy the same
energy level.

To build up to this issue, we will first see what happens when we ignore it
and apply our usual classical approach to compute the grand-canonical partition
function for a system with discrete energy levels. Despite the quantized energy
levels, this calculation will still produce a non-quantum result known as Maxwell–
Boltzmann (MB) statistics, named after James Clerk Maxwell and Ludwig Boltz-
mann. We will then consider how this approach can break down, and use this
insight to develop true quantum statistics in the following sections. Finally, we
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will wrap up this unit by confirming that Maxwell–Boltzmann statistics remains an
excellent approximation to quantum statistics in the classical limit.

7.1.1 Maxwell–Boltzmann statistics

Let’s begin our classical derivation of the grand-canonical partition function
for a system with discrete energy levels by defining some necessary notation. We
label the discrete energy levels Eℓ for ℓ = 0, 1, · · · , L, where L can be taken to
infinity while retaining a countable number of micro-states and hence well-defined
partition functions. The energy level Eℓ may be characterized by extra information
in addition to the actual value of its energy, Eℓ. As we saw in Section 4.1, it
is therefore possible for distinct energy levels {Em, En} to have the same energy
Em = En for m ̸= n. Such energy levels with the same value of the energy are
said to be degenerate. We will label energy levels so that Em ≤ En for m < n.
Without loss of generality, we can take Eℓ ≥ E0 ≥ 0.

Now starting from the general expression for the grand-canonical partition
function, Eq. 74,

Zg(β, µ) =
∑
i

e−β(Ei−µNi),

we just need to define the micro-states ωi with energy Ei and particle number
Ni. In the classical Maxwell–Boltzmann approach, we first sum over all possible
particle numbers,

ZMB
g (β, µ) =

∑
i,Ni=0

e−βEi +
∑

j,Nj=1

e−β(Ej−µ) +
∑

k,Nk=2

e−β(Ek−2µ) + · · · ,

where the micro-states labelled {ωi, ωj, ωk, · · · } are those that have N = 0, 1,
2, · · · particles, respectively. We can recognize N -particle canonical partition
functions ZN(β) in the expression above:

ZMB
g (β, µ) = Z0(β) + eβµZ1(β) + e2βµZ2(β) + · · · =

∞∑
N=0

[
eβµ
]N

ZN(β). (82)

This is a general result known as the fugacity expansion, where eβµ is called the
fugacity. Organizing the calculation in this way allows us to take advantage of our
experience with the canonical ensemble.

In particular, because we continue to consider only ‘ideal’ systems in which
the particles don’t interact with each other, each ZN(β) is simply the product of
the single-particle partition functions Z1(β) for all N independent particles,

ZN(β) =
1

N !
[Z1(β)]

N ,

with the factor of N ! included to correct for over-counting indistinguishable parti-
cles. This is exactly the derivation we performed in Section 4.1, to obtain Eq. 51
for the classical ideal gas. Inserting this ZN into Eq. 82, we have

ZMB
g (β, µ) =

∞∑
N=0

[
eβµ
]N 1

N !
[Z1(β)]

N =
∞∑

N=0

1

N !

[
eβµZ1(β)

]N
= exp

[
eβµZ1(β)

]
.
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In the case of a system with discrete energy levels Eℓ, the single-particle partition
function is simply

Z1(β) =
L∑

ℓ=0

e−βEℓ ,

where each micro-state corresponds to the particle being in a different energy
level. This gives us the Maxwell–Boltzmann grand-canonical partition function

ZMB
g (β, µ) = exp

[
eβµ

L∑
ℓ=0

e−βEℓ

]
= exp

[
L∑

ℓ=0

e−β(Eℓ−µ)

]
. (83)

7.1.2 Over-counting and quantum statistics

The problem with the derivation above was already mentioned in the foot-
note accompanying Eq. 51. In short, the factor of 1

N !
that we included to fix

the over-counting of micro-states for N indistinguishable particles is only correct
when each of these particles is in a different energy level. When the particles’
energies can vary continuously it is effectively impossible for two of them to have
exactly the same energy, making it safe to assume a different energy level for
each particle. More generally, this assumption can remain an excellent approx-
imation whenever there are many more energy levels than there are particles
to occupy them. However, the assumption breaks down when there is a non-
negligible chance of two particles occupying the same energy level, which is what
happens in the quantum regime.

We can illustrate the problem by considering a simple system with N = 2
particles that can occupy any of five energy levels, E0 through E4. For a further
simplification, let’s suppose that all five energy levels are degenerate, with Eℓ =
0 for ℓ = 0, · · · , 4. This means the canonical partition function simply counts
the (positive integer) number of micro-states. For example, the single-particle
partition function is

Z1 =
4∑

ℓ=0

e−βEℓ =
4∑

ℓ=0

1 = 5

for all β = 1/T .

Computing the canonical partition function for this system is therefore equiv-
alent to counting the number of ways N = 2 balls can be placed in L+1 = 5 boxes.
We can represent possible micro-states by drawing these balls and boxes, for ex-
ample • • • • • and • • •• • • . What is the two-particle partition function
if the balls are distinguishable?

ZD =

For indistinguishable particles, our derivation above would predict the partition
function ZI =

1
2
ZD, which is not an integer and therefore cannot be correct.

MATH327 Unit 7 92 Last modified 18 Mar. 2024



We can see where the over-counting correction goes wrong by explicitly writ-
ing down all micro-states in both cases of distinguishable and indistinguishable
particles. In the distinguishable case, we can suppose that the balls are red (•)
and blue (•), and compactly label micro-states by recording whether each box is
empty (“0”), contains the red ball (“R”), the blue ball (“B”) or both balls (“2”):

• • • • • = 00R0B • • •• • • = 00200.

The full set of micro-states is then

RB000 0R0B0 BR000 0B0R0 20000

R0B00 0R00B B0R00 0B00R 02000

R00B0 00RB0 B00R0 00BR0 00200

R000B 00R0B B000R 00B0R 00020

0RB00 000RB 0BR00 000BR 00002

If we now consider indistinguishable particles where we can only know the
number R = B = 1, we see that the third and fourth columns above duplicate
the first two columns. This is exactly the over-counting that the usual factor of
1
N !

= 1
2

corrects. On the other hand, the micro-states in the final column, with
both particles in the same energy level, were not over-counted, and must not be
divided by N !. This leaves us with 15 micro-states, rather than 25/2:

11000 01010 20000

10100 01001 02000

10010 00110 00200

10001 00101 00020

01100 00011 00002

We can generalize this simple exercise by systematically labeling the micro-
states for indistinguishable particles by occupation numbers nℓ, similar to those
that we encountered when using replicas to set up the canonical ensemble in
Section 3.1 and the grand-canonical ensemble in Section 6.2. In this case the
occupation number nℓ is simply the number of particles in energy level Eℓ. This
change of perspective is the final ingredient we need to define quantum statistics
as opposed to classical statistics.

In quantum statistics, the micro-states are defined by considering each
energy level Eℓ in turn, and summing over the possible occupation numbers nℓ

that it could have. This differs from the classical approach in which we define the
micro-states by considering each particle in turn, and summing over the possible
energies that it could have.

Because quantum mechanics requires all particles of the same type to be in-
distinguishable, the classical approach requires that we correct for over-counting,
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and we have now seen how this becomes non-trivial whenever multiple particles
can occupy the same energy level. The quantum approach of summing over the
occupation numbers of the quantized energy levels avoids this issue, and requires
no additional factors to correct over-counting.

7.2 Bosons and fermions

In Sections 7.3 and 7.4 we will carry out explicit computations to show how
the quantum statistics defined above work in practice. First, there is one more
fact about nature that we need to take into account. This concerns the occupation
numbers nℓ that are possible for each energy level Eℓ.

Using quantum mechanics and special relativity, it is possible to prove that
all particles in three spatial dimensions fall into two distinct classes. (More exotic
behaviour is possible for particles confined to two-dimensional surfaces.) This
result is known as the spin–statistics theorem, while the two types of particles it
describes are called bosons (named after Satyendra Nath Bose) and fermions
(named after Enrico Fermi). These two classes of particles obey different rules
for their possible occupation numbers, and therefore give rise to distinct quantum
statistics.

Any non-negative number of identical bosons can simultaneously occupy
the same energy level, corresponding to occupation numbers nℓ = 0, 1, 2, · · · .
Physical examples of bosons include photons (particles of light), pions, helium-4
atoms and the famous Higgs particle.

On the other hand, it is impossible for multiple identical fermions to occupy
the same energy level, meaning that their only possible occupation numbers are
nℓ = 0 and 1. This behaviour is known as the Pauli exclusion principle (named
after Wolfgang Pauli) and has extremely important consequences, including the
existence of chemistry and life. Physical examples of fermions include electrons,
protons, neutrons, neutrinos and helium-3 atoms.

The reason multiple identical fermions cannot occupy the same energy level
is due to a feature of quantum mechanics, and not because they physically re-
pel each other. This paragraph will imprecisely describe that aspect of quantum
physics for the curious, and can be skipped without any problem. Consider a
system of identical quantum particles occupying various energy levels. Loosely
speaking, all observable properties of this system depend on the square of the
quantum function that defines it. Interchanging any pair of indistinguishable parti-
cles must leave all these observable properties unchanged. Just as

√
1 = ±1,

there are two ways the underlying quantum function can behave to leave its
square unchanged: it can be completely symmetric or completely antisymmet-
ric under all possible interchanges. Bosons correspond to the symmetric case,
while fermions correspond to the antisymmetric case. At the same time, if two
identical particles are occupying the same energy level, then the quantum func-
tion itself must remain unchanged (i.e., symmetric) when they are interchanged.
In the fermionic case, the resulting quantum function must therefore be simulta-
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neously symmetric and antisymmetric, which is only possible if it is exactly zero.
In other words no systems with multiple identical fermions in the same energy
level can possibly exist.

Looking back at the example system of N = 2 particles with five energy
levels in the previous section, all 15 micro-states we wrote down are possible if
the particles are bosons. How many micro-states are allowed if the particles are
fermions?

This difference in the possible micro-states ensures that bosons and fermions
exhibit different quantum statistics. We will now consider each case in turn.

7.3 Bose–Einstein statistics

The quantum statistics of bosons is known as Bose–Einstein (BE) statis-
tics, named after Satyendra Nath Bose and Albert Einstein. As described above,
to carry out the sum over all micro-states in the grand-canonical partition function

Zg(β, µ) =
∑
i

e−β(Ei−µNi),

we first sum over all energy levels Eℓ, and then over all possible occupation num-
bers nℓ ∈ N0 for each energy level.

Consider first the simple case of a system that only has a single energy level
E0, with energy E0. In this case, each micro-state ωi is uniquely described by its
particle number Ni, which is just the occupation number of E0. What is the energy
Ei of micro-state ωi with occupation number n0 = Ni?

Ei =

Summing over all possible occupation numbers for this single energy level, the
Bose–Einstein grand-canonical partition function for this system is

ZBE
g (β, µ) =

∞∑
n0=0

e−β(E0−µ)n0 =
∞∑

n0=0

[
e−β(E0−µ)

]n0
=

1

1− e−β(E0−µ)
. (84)

In the last step we recognized the geometric series

1

1− x
= 1 + x+ x2 + · · · ,
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which only converges for x = e−β(E0−µ) < 1. For natural systems with β = 1/T >
0, this condition requires E0 − µ > 0 or equivalently µ < E0. Since we can take
all Eℓ ≥ 0 without loss of generality, this constraint is consistent with the negative
chemical potential µ < 0 that we discussed in Unit 6.

At this point, it is straightforward to generalize to multiple energy levels Eℓ
with ℓ = 0, 1, · · · , L. Because we consider only ideal systems with non-interacting
particles, the micro-state ωi defined by the set of occupation numbers {nℓ} has
total energy and particle number

Ei =
L∑

ℓ=0

Eℓ nℓ Ni =
L∑

ℓ=0

nℓ. (85)

The general Bose–Einstein grand-canonical partition function is therefore

ZBE
g (β, µ) =

∞∑
n0=0

∞∑
n1=0

· · ·
∞∑

nL=0

exp

[
−β

L∑
ℓ=0

(Eℓ − µ)nℓ

]
.

We can apply the identity e
∑

i xi =
∏

i e
xi to rewrite

exp

[
−β

L∑
ℓ=0

(Eℓ − µ)nℓ

]
=
(
e−β(E0−µ)n0

) (
e−β(E1−µ)n1

)
· · ·
(
e−β(EL−µ)nL

)
.

Recalling µ < Eℓ for all ℓ, by rearranging the terms we find

ZBE
g (β, µ) =

(
∞∑

n0=0

e−β(E0−µ)n0

)(
∞∑

n1=0

e−β(E1−µ)n1

)
· · ·

(
∞∑

nL=0

e−β(EL−µ)nL

)

=
L∏

ℓ=0

1

1− e−β(Eℓ−µ)
. (86)

This grand-canonical partition function defines the quantum Bose–Einstein
statistics of bosons. Its structure as the product of an independent contribution for
each energy level is reminiscent of the result ZN ∝ ZN

1 for the classical N -particle
canonical partition function discussed in Section 7.1. In such situations we say
that the calculation factorizes into a product of many simpler terms, allowing us
to build up the full result on the basis of much easier computations. Looking back
to Eq. 83, we can also observe factorization in the classical Maxwell–Boltzmann
grand-canonical partition function,

ZMB
g (β, µ) = exp

[
L∑

ℓ=0

e−β(Eℓ−µ)

]
=

L∏
ℓ=0

exp
[
e−β(Eℓ−µ)

]
. (87)

In all of these cases, factorization is possible because the particles are non-
interacting. Starting in Unit 9 we will consider non-ideal systems in which the par-
ticles can interact with each other, where the absence of factorization will make
analyses much more difficult.
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7.4 Fermi–Dirac statistics

The quantum statistics of fermions is known as Fermi–Dirac (FD) statis-
tics, named after Enrico Fermi and Paul Dirac. The derivation of the Fermi–Dirac
grand-canonical partition function is very similar to the Bose–Einstein case con-
sidered in the previous section. We again proceed by summing over all energy
levels Eℓ, and just have to account for the more limited possible occupation num-
bers nℓ ∈ {0, 1} for each energy level.

Taking the same approach of first considering a simple system with only a
single energy level, Eq. 84 would just change to

ZFD
g (β, µ) =

1∑
n0=0

e−β(E0−µ)n0 = 1 + e−β(E0−µ).

Generalizing to multiple energy levels Eℓ with ℓ = 0, 1, · · · , L, the micro-state
energies Ei =

∑
ℓ Eℓ nℓ and particle numbers Ni =

∑
ℓ nℓ remain the same as in

Eq. 85, and the computation again factorizes,

ZFD
g (β, µ) =

1∑
n0=0

1∑
n1=0

· · ·
1∑

nL=0

exp

[
−β

L∑
ℓ=0

(Eℓ − µ)nℓ

]

=

(
1∑

n0=0

e−β(E0−µ)n0

)(
1∑

n1=0

e−β(E1−µ)n1

)
· · ·

(
1∑

nL=0

e−β(EL−µ)nL

)

=
L∏

ℓ=0

[
1 + e−β(Eℓ−µ)

]
. (88)

This grand-canonical partition function defines the quantum Fermi–Dirac statis-
tics of fermions. In both this case and the case of classical Maxwell–Boltzmann
statistics there is no constraint on β(Eℓ − µ).

In Unit 8 we will take ZBE
g and ZFD

g as starting points to analyze quantum
gases of bosons and fermions, respectively. Before beginning those more de-
tailed analyses, let’s quickly compare the three types of statistics that we have
derived in this unit, while they are all close to hand.

7.5 The classical limit

In Section 7.1 we claimed that if the probability of multiple particles occu-
pying the same energy level is negligible, then the classical Maxwell–Boltzmann
statistics can be an excellent approximation to quantum statistics — both bosonic
and fermionic. We will wrap up this unit by demonstrating this result and clarifying
the conditions that correspond to this ‘classical limit’ of quantum statistics.

It is useful to start by asking when we should expect classical statistics to
predict a non-negligible probability for multiple particles to occupy the same en-
ergy level, leading to the over-counting problems that are solved by quantum
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statistics. This is actually a question we have already considered, back in Sec-
tion 3.4. There we used the canonical ensemble to analyze classical spin systems
with discrete energy levels, finding that at low temperatures the systems are dom-
inated by their lowest-energy micro-states, with only exponentially suppressed
corrections coming from any higher-energy micro-states. In the present context,
this corresponds to a classical prediction of exponentially small probabilities for
particles to occupy any energy levels with Eℓ > E0 — effectively guaranteeing
that the lowest energy level E0 will be occupied by multiple particles and classical
statistics will break down.

In short, the low-temperature regime is where quantum and classical statis-
tics disagree, while high temperatures correspond to the classical limit of
quantum statistics. If you are not convinced by the argument leading to this con-
clusion, you can find a more detailed derivation based on the equation of state
and thermal de Broglie wavelength in Section 3.5 of David Tong’s Lectures on
Statistical Physics (the first item in the list of further reading on page 6).

For now, we want to consider the grand-canonical ensemble at high tem-
peratures, to see whether the quantum and classical statistics we derived in the
previous sections become equivalent in this regime. However, it can be subtle to
work with the grand-canonical ensemble at high temperatures, due to the depen-
dence of the average number of particles on the temperature. To demonstrate
this subtlety, let’s compute the average particle number ⟨N⟩(T, µ) starting from
the grand-canonical partition function, for both classical and quantum statistics.

For convenience, let’s collect our earlier results for the grand-canonical par-
tition functions corresponding to classical Maxwell–Boltzmann statistics (Eq. 87),
the quantum Bose–Einstein statistics of bosons (Eq. 86) and the quantum Fermi–
Dirac statistics of fermions (Eq. 88):

ZMB
g =

L∏
ℓ=0

exp
[
e−β(Eℓ−µ)

]

ZBE
g =

L∏
ℓ=0

1

1− e−β(Eℓ−µ)
ZFD

g =
L∏

ℓ=0

[
1 + e−β(Eℓ−µ)

]
.

Recalling log [
∏

i xi] =
∑

i log xi, the corresponding grand-canonical potentials
Φ = −T logZg for these three cases are

ΦMB = −T
L∑

ℓ=0

e−β(Eℓ−µ)

ΦBE = T
L∑

ℓ=0

log
[
1− e−β(Eℓ−µ)

]
ΦFD = −T

L∑
ℓ=0

log
[
1 + e−β(Eℓ−µ)

]
.
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We are now ready to compute the average particle numbers. Using the
result we derived in Section 6.3,

⟨N⟩ = −∂Φ

∂µ
,

what are the average particle numbers resulting from the three grand-canonical
potentials above?

⟨N⟩MB = T

L∑
ℓ=0

∂

∂µ
e−β(Eℓ−µ) =

⟨N⟩BE = −T
L∑

ℓ=0

∂

∂µ
log
[
1− e−β(Eℓ−µ)

]
=

⟨N⟩FD = T

L∑
ℓ=0

∂

∂µ
log
[
1 + e−β(Eℓ−µ)

]
=

You should find that the average particle number in all three cases can be
expressed as a sum over the average occupation numbers,

⟨N⟩ =
L∑

ℓ=0

⟨nℓ⟩ ,
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where the average occupation numbers for Maxwell–Boltzmann statistics, Bose–
Einstein statistics and Fermi–Dirac statistics are

⟨nℓ⟩MB =
1

eβ(Eℓ−µ)

⟨nℓ⟩BE =
1

eβ(Eℓ−µ) − 1
⟨nℓ⟩FD =

1

eβ(Eℓ−µ) + 1
.

Note that ⟨nℓ⟩ ≥ 0 in all cases, and also ⟨nℓ⟩FD ≤ 1, as required for fermions.
From these results it is easy to see that the classical limit ⟨nℓ⟩BE ≈ ⟨nℓ⟩FD ≈ ⟨nℓ⟩MB
corresponds to

eβ(Eℓ−µ) ± 1 ≈ eβ(Eℓ−µ) =⇒ eβ(Eℓ−µ) ≫ 1.

We can also confirm that this limit corresponds to ⟨nℓ⟩ ≪ 1 for all energy levels
Eℓ and all three types of statistics, connecting to our starting point of very small
probabilities for multiple particles to occupy the same energy level.

Now we can appreciate the subtlety promised above, because

β(Eℓ − µ) =
Eℓ − µ

T
≫ 1. (89)

does not look like a high-temperature limit! Indeed, if we consider the naive high-
temperature limit β = 1/T → 0 with fixed (Eℓ − µ), we would find large average
occupation numbers,

⟨nℓ⟩MB ≈ 1 ⟨nℓ⟩BE →∞ ⟨nℓ⟩FD ≈
1

2
.

In addition to implying non-negligible classical probabilities for multiple particles
to occupy the same energy level, this result indicates that higher temperatures in
the grand-canonical ensemble lead to larger particle numbers in total — at least
when (Eℓ − µ) is fixed.

In order to balance this effect, we need to adjust the other parameter offered
by the grand-canonical ensemble: the chemical potential µ. Specifically, in order
to satisfy Eq. 89 in the high-temperature limit, we need Eℓ−µ≫ T , requiring that
µ → −∞ as T → ∞. Making the chemical potential more negative reduces the
probability of having large numbers of particles in the system, at the same time as
the smaller β increases the number of energy levels that these particles can oc-
cupy with non-negligible probability. Taken together, these two effects guarantee
that there are many more accessible energy levels than there are particles, allow-
ing us to conclude that the true high-temperature limit in which quantum statistics
becomes classical is

−µ≫ T ≫ Eℓ =⇒ Eℓ − µ

T
≫ 1. (90)

This corresponds to the right edge of the plot on the next page, where we can
confirm excellent agreement between all three predictions for the average occu-
pation number ⟨nℓ⟩.
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In the low-temperature regime Eℓ−µ
T
≪ 1 corresponding to the left portion of

the plot, we see dramatically different behaviour for the three cases. The classical
Maxwell–Boltzmann prediction for the average occupation number grows expo-
nentially, while the quantum Bose–Einstein prediction diverges as either Eℓ → µ
or β → 0 with (Eℓ−µ) fixed, and the Fermi–Dirac prediction slowly approaches its
maximum possible value ⟨nℓ⟩FD → 1. In the next unit we will study in more detail
the quantum gases of bosons and fermions that correspond to these results.
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Unit 8: Quantum gases

8.1 The photon gas

8.1.1 Massive bosons in a box

In Section 7.3 we derived the grand-canonical partition function (Eq. 86) that
defines quantum Bose–Einstein statistics for systems of non-interacting bosons,

ZBE
g (β, µ) =

L∏
ℓ=0

1

1− e−β(Eℓ−µ)
.

Following the quantum approach, we obtained this result by considering in turn
each energy level Eℓ with energy Eℓ, and summing over all possible occupation
numbers that it could have. For bosons, nℓ ∈ N0 produces sums that only con-
verge if µ < Eℓ for all ℓ. The corresponding grand-canonical potential is

ΦBE = −T logZBE
g = T

L∑
ℓ=0

log
[
1− e−β(Eℓ−µ)

]
,

from which we can determine the large-scale properties of the system, including
its average internal energy ⟨E⟩, average particle number ⟨N⟩, entropy S, and
pressure P .

To do so, we have to specify the energy levels of the particles that compose
the system of interest, taking care to note potentially degenerate energy levels
{Em, En} with the same energy Em = En for m ̸= n. One example of this that we
have already considered is the analysis of non-relativistic ideal gas particles in
Section 4.1. For a single particle with mass m in a volume V = L3, we adopted
an ansatz for the quantized energies,

E(kx, ky, kz) =
ℏ2π2

2mL2

(
k2
x + k2

y + k2
z

)
= ε

(
k2
x + k2

y + k2
z

)
ε ≡ ℏ2π2

2mL2
, (91)

where the integers kx,y,z specify the possible momenta of the particle,

p⃗ = (px, py, pz) = ℏ
π

L
(kx, ky, kz) kx,y,z = 1, 2, · · · .

Compared to Eq. 47, here we have adjusted our ansatz to require strictly
positive kx,y,z. This adjustment is required by another feature of quantum mechan-
ics, which this paragraph will imprecisely describe for the curious. This descrip-
tion can be skipped without any problem, with the adjusted ansatz simply taken
as input. The feature at play here is known as Heisenberg’s uncertainty princi-
ple (named after Werner Heisenberg), which relates the precision with which the
position and momentum of each particle can simultaneously be defined :

(∆x) (∆px) ≳ ℏ

and similarly for y and z. The ‘≳’ sign here hints that we’re ignoring irrelevant
factors of 2 and π, while ‘∆’ refers to the precision (or uncertainty) with which
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x and px are defined. Since the particle is within a volume V = L3, we know
∆x ≲ L. Therefore the uncertainty principle requires ∆px ≳ ℏ/L, which is only
possible if px is non-zero, corresponding to kx ≥ 1. Note that smaller lengths L
imply larger momenta and therefore larger energies.

With this adjusted ansatz, kx,y,z ≥ 1, we can adapt an exercise from Sec-
tion 4.1 and ask: What are the lowest energies and the degeneracies of the
corresponding energy levels?

8.1.2 Massless photons

Now we will build on our experience with massive bosons to consider a
gas of photons, massless bosonic quantum particles of light. For our purposes,
with no prior knowledge of particle physics, we can define photons simply by
specifying their energy levels. Clearly E ∝ 1/m from Eq. 91 is problematic for
massless particles with m = 0. Instead, a photon’s energy is proportional to the
magnitude of its momentum,

Eph(p) = c
√
p2x + p2y + p2z ≡ cp.

Here the speed of light c is really just a unit conversion factor (like the Boltzmann
constant) that we could set to c = 1 by working in appropriate units.

This relation is connected to the non-relativistic energy E = p2

2m
that we

considered in Section 4.1 through the general expression

E2 =
(
mc2

)2
+ (pc)2 ,

which is sometimes called Einstein’s triangle. When m = 0, or m ≪ p/c more
generally, this reproduces the ultra-relativistic relation above. For stationary par-
ticles with p = 0 it reduces to the famous ‘mass-energy’ E = mc2, while the
non-relativistic kinetic energy is recovered for m≫ p/c:
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Another feature of photons’ energy levels is that each momentum (px, py, pz)
corresponds to two degenerate energy levels with the same energy E(p). This
arises from photons’ connection to electric and magnetic fields, which allows each
photon to be polarized in two different ways. If there is interest we can discuss
this further in a tutorial, but it is not relevant to the statistical physics of photons,
for which we can take this double degeneracy as input. Note that this factor of two
multiplies all other degeneracies, for instance from permutations of (px, py, pz).

For photons in a volume V = L3, only the same discrete momenta as in the
massive case are allowed,

p = ℏ
π

L

√
k2
x + k2

y + k2
z ≡ ℏ

π

L
k kx,y,z = 1, 2, · · · ,

so that the quantized photon energies are

Eph(k) = ℏc
π

L
k. (92)

Because light is an electromagnetic wave, it is convenient to work in terms of
photons’ wavelength λ and angular frequency ω = 2πf (not to be confused with
generic micro-states ωi). Together, the wavelength and frequency determine the
speed of the wave’s propagation, in this case the speed of light

c =
λω

2π
.

In quantum physics, a particle’s momentum is related to its de Broglie wave-
length, implying that in a volume V = L3 the wavelengths are also quantized as il-
lustrated in the picture below (from Schroeder’s Introduction to Thermal Physics).
Specifically, the length L must be an integer multiple of half a wavelength,

L = k
λ

2
=⇒ c =

L

k

ω

π
=

ω
π
L
k
,

and we can rewrite Eq. 92 as
Eph(ω) = ℏω. (93)

With λ ∝ c/ω, this incorporates the relation between length and energy scales
that we noted above. Low (infrared) frequencies correspond to small energies
and long wavelengths, while high (ultraviolet) frequencies correspond to large
energies and short wavelengths.
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We are now ready to write down the grand-canonical potential for a photon
gas:

Φph = T
L∑

ℓ=0

log
[
1− e−β(Eℓ−µ)

]
= 2T

∑
k⃗

log
[
1− e−β(Eph(k)−µ)

]
,

where the factor of 2 in the final expression accounts for the doubly degenerate
energy levels. We can simplify this expression by appreciating that photons are
easy to create and absorb. Every time a light is switched on, it begins emitting
a constant flood of photons (with wavelengths of several hundred nanometres).
Food in a microwave oven gets hot by absorbing many lower-energy photons
(with longer wavelengths around 12 centimetres). In both cases an enormous
number of photons is required to make even a small change in energy, so that
Eq. 81 implies the chemical potential of a photon gas must be negligible,

µ =
∂E

∂N

∣∣∣∣
S

≈ 0 =⇒ Φph ≈ 2T
∑
k⃗

log
[
1− e−βEph(k)

]
.

Since we have kx,y,z ≥ 1, the strictly positive energies Eph(k) ∝ k/L > 0 ensure
Bose–Einstein statistics is still convergent even with µ = 0.

Another simplification comes from considering the photon gas in a large
volume, so that the energies Eph(k) ∝ k/L are very closely spaced and we can
approximate the sum over integer kx,y,z by integrals over continuous real k̂x,y,z,

Φph ≈ 2T

∫
log
[
1− e−βEph(k̂)

]
dk̂x dk̂y dk̂z .

Since the energy Eph(k̂) depends only on the magnitude k̂, we can profit from
converting to spherical coordinates. When we do so, we have to keep in mind
that kx,y,z > 0 corresponds only to the positive octant of the sphere,∫ ∞

0

dk̂x

∫ ∞

0

dk̂y

∫ ∞

0

dk̂z =

∫ ∞

0

k̂2 dk̂

∫ π/2

0

sin θ dθ

∫ π/2

0

dϕ =
π

2

∫ ∞

0

k̂2 dk̂,

so that
Φph ≈ πT

∫ ∞

0

k̂2 log
[
1− e−βEph(k̂)

]
dk̂ .

We can finally change variables to integrate over the photon angular frequency
ω = c π

L
k, with Eph = ℏω, to find

Φph ≈ πT

(
L

cπ

)3 ∫ ∞

0

ω2 log
[
1− e−βℏω] dω

=
V T

c3π2

∫ ∞

0

ω2 log
[
1− e−βℏω] dω, (94)

recognizing L3 = V . With this grand-canonical potential derived, we just need to
take the appropriate derivatives to determine the thermodynamics and equation
of state for the photon gas.
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8.2 The sun and the void

It will be very interesting to use the grand-canonical potential in Eq. 94 to
analyze the average internal energy for a photon gas. With µ = 0, Eq. 78 from
Section 6.3 becomes

⟨E⟩ph = −T 2 ∂

∂T

[
Φph

T

]
=

∂

∂β
[βΦph] .

To begin, we will consider the energy density expressed as an integral over photon
frequencies,

⟨E⟩ph

V
=

∫ ∞

0

P (ω) dω,

where the function P (ω) is known as the spectral density, or simply the spectrum.
(It’s not the pressure!) What is the spectrum for a photon gas?

⟨E⟩ph

V
=

1

c3π2

∫ ∞

0

ω2 ∂

∂β
log
[
1− e−βℏω] dω =

You should find

P (ω) =

(
ℏ

c3π2

)
ω3

eβℏω − 1
, (95)

which is known as the Planck spectrum, named after Max Planck. We can equally
well consider the Planck spectrum P (λ) as a function of the wavelength λ =
2πc/ω, by changing variables in the expression above:

⟨E⟩ph

V
=

ℏ
c3π2

∫ ∞

0

ω3

eβℏω − 1
dω =
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You should find

P (λ) =

(
16π2ℏc
λ5

)
1

e2πβℏc/λ − 1
, (96)

which is plotted for three temperatures T = 1/β in the figure below, which comes
from Wikimedia Commons. (The plot divides our P (λ) by 4π steradian and mul-
tiplies it by c to convert from a spectral density to a spectral power per unit area
per unit of solid angle. For our purposes only the functional form is significant.)

Considering first the high-energy ultraviolet (UV) limit of small wavelengths
λ, we can see from Eq. 96 that P (λ) is exponentially suppressed, which over-
whelms the diverging factor ∝ 1/λ5 in parentheses. In the low-energy infrared
limit, the large λ has the same effect that a large temperature (β ≪ 1) would
have: e2πβℏc/λ − 1 ≈ 2πβℏc/λ and

P (λ) ≈
(
16π2ℏc
λ5

)
λ

2πβℏc
=

8πT

λ4
.

The connection to large temperatures indicates that this is what classical statis-
tics would predict for the spectrum of light. It is known as the Rayleigh–Jeans
spectrum, named after the third Baron Rayleigh and James Jeans. Recall that
the classical approach sums over all possible energies for each degree of free-
dom, corresponding to a light-emitting object (historically known as a black body )
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emitting light of all wavelengths λ. According to the classical Rayleigh–Jeans
spectrum, in the limit λ → 0 this light would carry an infinite amount of energy, a
problem that became known as the ultraviolet catastrophe. Planck described his
1900 derivation of the UV-suppressed P (λ) as “an act of desperation” to avoid this
problem; it turned out to be one of the first steps towards the quantum physics.

Another noteworthy feature of the Planck spectrum shown above is that as
the temperature increases, the maximum of P (λ) moves to shorter wavelengths
and correspondingly larger energies. The fact that the peak of the spectrum for
T ≈ 5000 K falls within the wavelengths of visible light (roughly 400–700 nm) is not
a coincidence. As shown in the figure below, also from Wikimedia Commons, the
amount of sunlight that reaches the surface of the earth is also maximized around
visible wavelengths, which are visible to us because we have evolved to make the
most efficient use of this sunlight.

Taking into account the absorption of some sunlight by molecules in the at-
mosphere, we can see from the figure below that the energy spectrum of the
sunlight reaching the top of the atmosphere is quite close to a Planck (or ‘black-
body’) spectrum with temperature T ≈ 5778 K. The agreement isn’t perfect, which
is to be expected since the Planck spectrum relies on the non-trivial assump-
tion of an ideal gas of non-interacting particles. Despite that caveat, numerically
fitting the measured sunlight to the Planck spectrum is how this ‘effective’ sur-
face temperature of the sun is determined. This same fitting procedure can even
be done for distant stars, with red stars corresponding to relatively low temper-
atures T ≲ 3500 K and blue stars corresponding to relatively high temperatures
T ≳ 10,000 K.
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Even more remarkably, we can use the Planck spectrum to determine the
temperature of intergalactic space. Rather than being empty, these voids are
actually permeated by a very low-temperature photon gas left over from the Big
Bang roughly 14 billion years ago. This photon gas is known as the cosmic mi-
crowave background (CMB), and carries information about the early evolution of
the universe, including some of the strongest evidence for the existence of dark
matter.

The picture below is a famous visualization of the CMB, provided by the Eu-
ropean Space Agency and produced from measurements taken by their ‘Planck’
satellite. To produce this image, for each point in the sky the satellite measures
the photon spectrum reaching it from that direction. The contributions coming
from stars and galaxies are subtracted, and the remaining data is fit to the Planck
spectrum to find the temperature of the intergalactic CMB photon gas at that
point. From point to point, there are only small temperature fluctuations around
the average TCMB ≈ 2.725 K. That average temperature is subtracted and the
fluctuations themselves are shown below, with warmer red-coloured regions only
∆T ≈ 0.0002 K hotter than the cooler blue-coloured regions.

The final figure below illustrates such a fit of CMB data to the Planck spec-
trum, using measurements taken by the Cosmic Background Explorer (COBE)
satellite and published in 1990. (This version of the figure is adapted from that
publication, and copied from Schroeder’s Introduction to Thermal Physics.) The
squares are the measured data, and their size represents a cautious estimate
of uncertainties. They are plotted with the frequency f = ω/(2π) on the hori-
zontal axis, with f ≈ 3 × 10−11 s−1 corresponding to a low-energy wavelength
λ = c/f ≈ 1 mm, roughly 1000 times longer than the wavelengths of visible light.
The solid line is a fit to the data that produces TCMB = 2.735±0.060 K. While more
recent satellites have increased the precision with which we know TCMB, this first
result was awarded the 2006 Nobel Prize in Physics.
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Even though we derived the Planck spectrum by assuming an ideal gas of
non-interacting photons, we see that it provides an excellent mathematical model
for real physical systems, stretching from the hottest to the coldest places in the
universe.

8.3 Equation of state for the photon gas

Having looked in some detail at the integrand for the photon gas energy
density, Eq. 95, let’s complete the integration, which involves a famous integral
related to the Riemann zeta function:

I4 =

∫ ∞

0

x3

ex − 1
dx = Γ(4)ζ(4) =

π4

15
.

Using this result, what is the average energy density for an ideal photon gas?

⟨E⟩ph

V
=

ℏ
c3π2

∫ ∞

0

ω3

eβℏω − 1
dω =
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You should find a result proportional to T 4, which appears significantly more
complicated than Eq. 52 for the energy of an N -particle non-relativistic ideal gas
in the canonical ensemble. This is related to the fluctuating particle number now
that we are working in the grand-canonical ensemble. It’s possible to simplify the
current situation by computing the average photon number from Eq. 76,

⟨N⟩ph = − ∂

∂µ
Φph

∣∣∣∣
µ=0

= − V T

c3π2

∫ ∞

0

dω ω2 ∂

∂µ
log
[
1− e−βℏωeβµ

]∣∣∣∣
µ=0

,

recalling µ = 0 for photon gases. The calculation is quite similar to that for the
average internal energy density, now involving the integral

I3 =

∫ ∞

0

x2

ex − 1
dx = Γ(3)ζ(3) = 2ζ(3).

Using this result, what is the average particle number density ideal photon gas?

⟨N⟩ph

V
= − T

c3π2

∫ ∞

0

dω ω2 ∂

∂µ
log
[
1− e−βℏωeβµ

]∣∣∣∣
µ=0

=

You should find a result proportional to T 3 ∝ ⟨E⟩ph /T , so that

⟨E⟩ph =
π2

15ℏ3c3
V T 4 =

π4

30ζ(3)
⟨N⟩ph T. (97)

The functional form is the same as Eq. 52, with a larger numerical factor

π4

30ζ(3)
=

Γ(4)ζ(4)

Γ(3)ζ(3)
≈ 2.7

compared to the 3
2

for the classical non-relativistic case.

To get the rest of the way to the equation of state for the photon gas, we
need to compute the radiation pressure

Pph = − ∂

∂V
⟨E⟩ph

∣∣∣∣
Sph

,

which requires first figuring out the condition of constant entropy Sph for a photon
gas. From Eq. 79 with µ = 0, we have

Sph =
⟨E⟩ph − Φph

T
.
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Looking back to Eq. 94 for the grand-canonical potential, we see

Φph

T
=

V

c3π2

∫ ∞

0

ω2 log
[
1− e−βℏω] dω =

V T 3

ℏ3c3π2

∫ ∞

0

x2 log
[
1− e−x

]
dx,

changing variables to x = βℏω = ℏω/T . The final factor in this expression is yet
another delightful integral,∫ ∞

0

x2 log
[
1− e−x

]
dx = −2ζ(4) = −π4

45
.

Since this gives us S ∝ V T 3, we can conclude that the condition of constant
entropy for a photon gas is V T 3 = constant, in contrast to the V T 3/2 dependence
of Eq. 53 for classical non-relativistic particles.

At this point it is straightforward to take the derivative of the average inter-
nal energy if we express the constant-entropy condition as T = bV −1/3, with b a
constant:

Pph = − ∂

∂V
⟨E⟩ph

∣∣∣∣
Sph

= − ∂

∂V

π2

15ℏ3c3
V T 4

∣∣∣∣
Sph

=

For the resulting equation of state for the photon gas, you should find

PphV =
1

3
⟨E⟩ph =

π4

90ζ(3)
⟨N⟩ph T. (98)

The functional form is the same as the (classical, non-relativistic) ideal gas law,
with just an additional numerical factor of

π4

90ζ(3)
=

ζ(4)

ζ(3)
≈ 0.9004.
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8.4 Non-relativistic ideal fermion gas

For the remainder of this unit we will apply the grand-canonical ensemble to
investigate ideal gases of non-interacting fermions. We again take the approach
of quantum statistics, defining micro-states by summing over the possible occu-
pation numbers nℓ for each energy level Eℓ with (possibly not unique) energy Eℓ.
In contrast to the bosonic case considered above, the only possible occupation
numbers are now nℓ = 0 and 1, since the Pauli exclusion principle prevents multi-
ple identical fermions from occupying the same energy level.

In Section 7.4 we derived the grand-canonical partition function (Eq. 88) that
defines quantum Fermi–Dirac statistics for systems of non-interacting fermions,

ZFD
g (β, µ) =

L∏
ℓ=0

[
1 + e−β(Eℓ−µ)

]
,

in terms of the inverse temperature β = 1/T and chemical potential µ. Recall that
it is possible for systems of fermions to have any value for the chemical potential,
either positive or negative, in contrast to the systems of bosons we considered
above. From the corresponding grand-canonical potential,

ΦFD = −T logZFD
g = −T

L∑
ℓ=0

log
[
1 + e−β(Eℓ−µ)

]
we can determine the large-scale properties of the system, including its average
internal energy ⟨E⟩, average particle number ⟨N⟩, entropy S, and pressure P ,
along with the equation of state relating these quantities.

Concrete calculations require specifying the energy levels of the particles
that compose the gas, including the degeneracies of any distinct energy levels
{Em, En}, m ̸= n, with the same energy Em = En. In this section we’ll begin by
considering non-relativistic particles, expanding on our review of such systems in
Section 8.1. In a volume V = L3, the energy levels are defined by the non-zero
quantized energies

E(k) = ε
(
k2
x + k2

y + k2
z

)
ε ≡ ℏ2π2

2mL2
kx,y,z = 1, 2, · · · .

In addition to the usual degeneracies coming from permutations of (kx, ky, kz)

that we have already analyzed, for each distinct k⃗ typical fermions such as elec-
trons have two degenerate energy levels with the same energy E(k). This arises
from a quantum property called spin, rather than the two polarizations for pho-
tons discussed in Section 8.1: ‘spin-up’ and ‘spin-down’ electrons with the same
momenta and energies occupy distinct, degenerate energy levels. This property
of spin is related to the spin–statistics theorem mentioned in Section 7.2, and is
another topic we can discuss further in a tutorial if there is interest. For our statis-
tical physics purposes it will suffice simply to incorporate this information into our
ansatz as input.
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The grand-canonical potential for an ideal gas of non-relativistic fermions is
therefore

Φf = −T
L∑

ℓ=0

log
[
1 + e−β(Eℓ−µ)

]
= −2T

∑
k⃗

log

[
1 + exp

(
− ℏ2π2k2

2mL2T
+

µ

T

)]
.

We can again proceed by considering the gas in a large volume and approximat-
ing the sum over discrete integer kx,y,z by integrals over continuous real k̂x,y,z:

Φf ≈ −2T
∫

log

[
1 + exp

(
− ℏ2π2k̂2

2mL2T
+

µ

T

)]
dk̂x dk̂y dk̂z .

Converting to spherical coordinates and carrying out the angular integrations over
the π

2
solid angle of the octant of the sphere with kx,y,z > 0, we have

Φf ≈ −πT
∫ ∞

0

k̂2 log

[
1 + exp

(
− ℏ2π2k̂2

2mL2T
+

µ

T

)]
dk̂ .

In the same spirit as the change of variables we carried out to integrate over
photon frequencies ω = Eph/ℏ, we will now change variables to integrate over the

fermion energy E =
ℏ2π2

2mL2
k̂2:

Φf =

As for the case of a photon gas, Eq. 94, you should find Φf ∝ V T . It will
be convenient to keep this grand-canonical potential in the form of an integral
over the energy E, which we will evaluate after taking appropriate derivatives to
determine the thermodynamics and equation of state for non-relativistic fermions.

8.5 Low-temperature equation of state

In contrast to the photon gas, we need to retain the chemical potential in
our analyses of non-relativistic fermions, which makes these calculations more
complicated. To achieve a different simplification, we can focus on the low-
temperature regime where we expect quantum Fermi–Dirac statistics to differ
significantly from the classical case we considered back in Section 4.1. As we
saw in Section 7.5, it is only at high temperatures, with large negative chemical

MATH327 Unit 8 114 Last modified 31 Mar. 2024



potential, that the classical approach provides a good approximation to the true
quantum physics.

To see how low temperatures simplify the analysis of the non-relativistic
fermion gas, it will prove profitable to first consider the average particle number

⟨N⟩f = −
∂

∂µ
Φf,

using the grand-canonical potential we computed above. In analogy to the Planck
spectrum we derived for the photon gas in Section 8.2, we first express the aver-
age particle number density as an integral over energies,

⟨N⟩f
V

=

√
2m3

π2ℏ3

∫ ∞

0

F (E)
√
E dE, (99)

where the function F (E) is known as the Fermi function. In contrast to the Planck
spectrum, some constant factors are kept separate from F (E), so that it more
closely resembles the average occupation numbers ⟨nℓ⟩ we computed in Sec-
tion 7.5:

⟨N⟩f
V

= − ∂

∂µ

Φf

V
=

As usual in the grand-canonical approach, the average particle number den-
sity and Fermi function depend on the inverse temperature β and the chemical
potential µ. Expressing F (E) in terms of the dimensionless ratios E/µ and T/µ,

F (E) =
1

exp
[
E−µ
T

]
+ 1

=
1

exp
[
µ
T

(
E
µ
− 1
)]

+ 1
=

1(
exp

[
E
µ
− 1
])µ/T

+ 1

,

we can highlight the two main features of the figure below, which plots the Fermi
function against E/µ for various temperatures T/µ. Here we assume a positive
chemical potential, µ > 0, which we will soon show is required for low-temperature
non-relativistic fermion gases.

First, we can see that the point E = µ, where F (E) = 1/2 for any non-zero
temperature, is a threshold at which the behaviour of the Fermi function changes.
For larger energies E > µ, the factor exp

[
E
µ
− 1
]
> 1 and drives F (E) → 0 as
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the energy increases. For smaller energies E < µ, the factor exp
[
E
µ
− 1
]
< 1 and

becomes negligible if raised to a sufficiently large power µ
T

, leaving F (E) → 1.
These two asymptotic limits reflect the possible energy level occupation numbers
for fermions, nℓ = 0 and 1. Second, smaller temperatures cause much more
rapid approach to these two limits, with the exponential factor either enhanced (if
E > µ) or suppressed (if E < µ) by a power µ/T ≫ 1.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

F(E)

E/µ

T = µ
T = µ/2

T = µ/10

T = µ/100

Therefore, for small temperatures T ≪ µ, we can simplify our calculations
by approximating the Fermi function as a step function,

F (E) ≈
{

1 for E < µ
0 otherwise . (100)

Using this approximation, what is the resulting average particle number density?

⟨N⟩f
V

=

√
2m3

π2ℏ3

∫ ∞

0

F (E)
√
E dE =
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You should find a result proportional to µ3/2 but independent of T . The
temperature independence turns out to be the leading-order behaviour of a more
general result that can be organized in powers of the small temperature, T/µ ≪
1, through a method known as the Sommerfeld expansion (named after Arnold
Sommerfeld). The µ3/2 dependence on the chemical potential is something we
could have predicted before doing the explicit calculation. This is because the
step function in Eq. 100 corresponds to a single fermion occupying each and
every energy level with Eℓ < µ, while all energy levels with Eℓ > µ are unoccupied.
Since E(k) ∝ k2, summing over all kx,y,z for which E(k) < µ corresponds to
computing (a portion of) the volume of a sphere of radius rk =

√
µ. This volume is

proportional to r3k = µ3/2, in agreement with our result above. Inverting that result
defines the Fermi energy, the maximum fermion energy at zero temperature:

EF = µ =
ℏ2

2m

(
3π2 ⟨N⟩f

V

)2/3

. (101)

Like the step-function approximation to the Fermi function, this equality between
the Fermi energy and the chemical potential is only exact at zero temperature,
with 0 < T ≪ EF introducing small corrections discussed in Section 8.8.

Now we can consider the average energy density of the non-relativistic
fermion gas at low temperatures. Rather than taking another derivative of the
grand-canonical potential, we can note from Eq. 85 and from our work on the
photon gas in Section 8.3 that

⟨E⟩f
V

=

√
2m3

π2ℏ3

∫ ∞

0

E F (E)
√
E dE. (102)

That is, instead of simply counting the number of fermions in the system, we need
to add up their energies, introducing an extra factor of E compared to Eq. 99. Still
using the low-temperature step-function approximation for the Fermi function in
Eq. 100, what is the average energy density?

⟨E⟩f
V

=

√
2m3

π2ℏ3

∫ ∞

0

F (E) E3/2 dE =

You should find
⟨E⟩f =

3

5
µ ⟨N⟩f , (103)

which means that the average energy of each fermion in a low-temperature ideal
gas, ⟨E⟩f / ⟨N⟩f, is three-fifths of the Fermi energy EF = µ.
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In particular, we find that ideal gases of non-relativistic fermions have posi-
tive internal energy even as the temperature approaches absolute zero, T → 0.

This can be understood by recalling that the lowest-energy pair of degen-
erate energy levels can each hold only a single fermion, forcing any additional
fermions to ‘fill’ energy levels with larger energies Eℓ > 0, up to the Fermi energy.
It is a stark contrast to the ⟨E⟩ = 3

2
NT we found for classical ideal gases in the

canonical ensemble in Eq. 52, as well as the ⟨E⟩ph ≈ 2.7 ⟨N⟩ph T ∝ T 4 we more
recently computed in Eq. 97 for a grand-canonical quantum gas of photons. In
both of those cases the average energy vanishes in the zero-temperature limit.
This is because all the particles in those classical and bosonic systems are able to
occupy the lowest energy level at low temperatures, with only exponentially small
probabilities ∝ e−Eℓ/T for particles to occupy any energy levels with Eℓ > E0.

This picture of fermions filling energy levels up to the Fermi energy also
clarifies why the chemical potential for a fermion gas must be positive at low
temperatures. Recalling Eq. 81 for the chemical potential,

µ =
∂E

∂N

∣∣∣∣
S,V

,

which we derived from the generalized thermodynamic identity in Section 6.3, we
can consider what happens when we increase the number of particles in a zero-
temperature fermion gas. In this limit T → 0, there is only the single quantum
micro-state described above, with all energy levels filled below the Fermi energy
and empty above the Fermi energy. Adding particles, ∆N > 0, doesn’t increase
the number of accessible micro-states, and therefore doesn’t increase the entropy
Sf = −

∑M
i=1 pi log pi = 0, satisfying the constant-entropy condition required by this

equation. However, this does necessarily increase the energy, because the added
particles must fill the first available energy levels, just above the Fermi energy.
That is, ∆E = EF∆N > 0, and we find µ = EF > E0 ≥ 0 as claimed earlier in
this section. It is an interesting but lengthy exercise (discussed in Section 8.8) to
show that the chemical potential becomes negative as the temperature increases
and we approach the classical limit.

To get the rest of the way to the low-temperature equation of state for ideal
gases of non-relativistic fermions, we need to compute the pressure

Pf = −
∂

∂V
⟨E⟩f

∣∣∣∣
N,Sf

.

As we just discussed, the single accessible micro-state for T → 0 automatically
satisfies the condition of constant entropy, Sf = 0. Applying Eq. 101 that relates
the chemical potential to the average particle number density, we have

⟨E⟩f =
3

5
µ ⟨N⟩f =

3

5

(
ℏ2

2m

)(
3π2

V

)2/3

⟨N⟩5/3f .
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This is all we need to determine the pressure, which we can relate to the energy
density, the Fermi energy EF = µ and the particle number density:

Pf = −
∂

∂V

[
3

5

(
ℏ2

2m

)(
3π2

V

)2/3

⟨N⟩5/3f

]
=

In particular, we can see that the pressure (like the energy) remains positive even
as the temperature approaches absolute zero, with

Pf =
(
3π2
)2/3 ℏ2

5m
ρ
5/3
f , (104)

where we define the density ρf = ⟨N⟩f /V . This positive pressure in the zero-
temperature limit is not due to any direct force between the fermions, which re-
main non-interacting in this ideal gas. Instead, it is a purely quantum effect result-
ing from the Pauli exclusion principle.

As we saw earlier in this section, the temperature independence of the pres-
sure Pf is due to approximating the low-temperature Fermi function as a step
function in Eq. 100, and systematic corrections to this approximation can be com-
puted through a Sommerfeld expansion. Even without getting into such detailed
calculations, we know that in the high-temperature classical regime the quantum
ideal gas of massive fermions will be well approximated by the classical ideal gas
we considered in Section 4.4, with equation of state

PV = NT =⇒ P =
N

V
T = ρT. (105)

In words, at high temperatures the pressure depends linearly on the temperature,
with the slope corresponding to the density ρ. The plot below (produced by this
Python code) shows how the pressure changes from a positive constant as T → 0
to this linear behaviour at higher temperatures.

0
T

0

P

Fermion gas
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8.6 Type-Ia supernovas

The positive pressure that remains for a fermion gas even at zero tempera-
ture, Eq. 104, is known as the degeneracy pressure. (This use of the word ‘de-
generacy’ is unrelated to its other use describing multiple energy levels with the
same value of the energy.) The degeneracy pressure plays a key role in a certain
type of supernova explosions of stars — a famous astrophysical phenomenon.

To begin considering this topic, we’ll remark that the temperature doesn’t
need to be exactly zero in order for the degeneracy pressure to be significant. The
temperature just needs to be small compared to the Fermi energy, T ≪ EF . From
Eq. 101 we can see that EF ∝ ρ

2/3
f increases for larger densities ρf = ⟨N⟩f /V .

While the densities of stars can be very large, due to the enormous amount of
matter that is being squeezed together by gravitational attraction, these extreme
conditions can also create very high temperatures.

For reference, everyday solids have densities around 1028–1029 atoms per
cubic metre (roughly Avogadro’s number per cubic centimetre). In the case of
metals, the density of conducting electrons (fermions not bound to particular
atoms) is similar, leading to Fermi energies EF ∼ 104 K, very large compared
to everyday temperatures. Perhaps surprisingly, the average density of the sun
is not much different, around 1030 atoms per cubic metre, corresponding to EF ∼
105 K. This is because its much larger gravitational forces are largely counter-
balanced by the large radiation pressure coming from the fusion of hydrogen
and helium nuclei in the sun. That fusion also heats up the core of the sun to
T ∼ 107 K≫ EF , making our low-temperature derivations above inapplicable.

Something interesting happens when this hydrogen and helium ‘fuel’ is ex-
hausted and the radiation pressure decreases precipitously. This causes stars to
be gravitationally compressed into much denser and more compact objects. The
precise chain of events depends on the mass of the star. Stars with masses com-
parable to our sun turn into white dwarfs with radii comparable to the radius of the
earth, roughly a hundred times smaller than that of the sun. In other words, the
density of a white dwarf is ρ ∼ (100)3ρsun ∼ 1036 atoms per cubic meter, equivalent
to a mass density around one tonne per cubic centimetre.

The corresponding white dwarf Fermi energy is

EF ∼
(

ρ

ρsun

)2/3

E
(sun)
F ∼

(
106
)2/3

105 ∼ 109 K.

Even for a young white dwarf that retains its initial core temperature of roughly
ten million kelvin, we have T ∼ 107 K≪ EF and can accurately describe the star
using the low-temperature ideal (non-interacting) fermion gas we analyzed above.
In particular, the degeneracy pressure, Eq. 104, coming from the electrons in
the white dwarf is what stabilizes these stars and prevents them from collapsing
further into even denser objects such as neutron stars or black holes.

So far we haven’t encountered supernovas. In isolation, white dwarfs will
happily cool for trillions of years, supported by their degeneracy pressure, until

MATH327 Unit 8 120 Last modified 31 Mar. 2024



they reach thermal equilibrium with the ∼2.725 K cosmic microwave background
radiation we discussed in Section 8.2. (The coldest known white dwarfs have
cooled to temperatures of thousands of kelvin over the past ∼14 billion years.)
Things become more interesting for a white dwarf in a binary system with a com-
panion star. If this companion star is still burning hydrogen or helium through
nuclear fusion, it will emit matter that is then captured by the white dwarf, slowly
increasing the white dwarf’s mass. Such a binary system is pictured below, in an
artist’s illustration provided by the European Space Agency.

As the white dwarf accumulates the matter emitted by its companion, its
mass and its density will steadily increase. As the mass of the white dwarf ap-
proaches a value roughly 40% larger than the mass of our sun, known as the
Chandrasekhar limit (named after Subrahmanyan Chandrasekhar), its density
becomes large enough for new types of nuclear fusion reactions to occur. In-
stead of hydrogen or helium, which the white dwarf has already burned, these
new fusion reactions involve carbon and oxygen, which remain present in abun-
dance. In the space of just a few seconds, these fusion reactions run away,
increase the temperature of the white dwarf to billions of kelvin, and blast it apart
in a supernova explosion about five billion times brighter than the sun.

For obscure historical reasons, these particular stellar explosions are known
as type-Ia (“one-A”) supernovas. They rely on the degeneracy pressure (Eq. 104)
of a low-temperature gas of non-interacting fermions, which allows a specific
amount of mass to build up before the explosion is triggered. The specificity of
the process results in a great deal of regularity among type-Ia supernovas. This
played a key role in demonstrating that the expansion of the universe is accelerat-
ing (a phenomenon popularly called ‘dark energy’), which was awarded the 2011
Nobel Prize in Physics.

8.7 Relativistic ideal fermion gas

Although we will discuss them more briefly, gases of relativistic fermions
also play important roles in nature. In fact, by changing units we can see that the
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white dwarf Fermi energy discussed above, EF ∼ 109 K ∼ 0.3 MeV is comparable
to the 0.511 MeV rest-energy of electrons, suggesting that relativistic effects may
be non-negligible in white dwarfs. Such relativistic effects are indeed crucial to
the computation of the Chandrasekhar limit mentioned above.

While the full calculations required to analyze massive relativistic particles
are beyond the scope of this module, we can take advantage of our earlier analy-
ses of gases of massless photons to consider similar gases of massless fermions.
Neutrinos (denoted ‘ν’) are physical examples of fermions whose masses are so
small that they can be very well approximated as massless. In fact, for many
years neutrinos were thought to be exactly massless — the discovery that neutri-
nos have non-zero masses was awarded the 2015 Nobel Prize in Physics.

In the same way as photons, massless fermions would travel at the speed
of light, c, and have energies E = cp determined by their angular frequencies,

Eν = ℏω.

In a volume V = L3, these energies are quantized as usual,

ω =
2πc

λ
= c

π

L
k,

where k2 = k2
x + k2

y + k2
z and kx,y,z > 0 are positive integers. Just as for the non-

relativistic case considered in Section 8.4, for each distinct k⃗ typical massless
fermions, including neutrinos, have two degenerate energy levels with the same
energy E(k) but opposite spin.

The computations required to analyze a gas of massless fermions are very
similar to the work we recently did for photon gases. In particular, massless
fermions are also easy to create and absorb, and therefore well described by a
vanishing chemical potential, µ ≈ 0. Again approximating sums over discrete
integer kx,y,z by integrals over continuous real k̂x,y,z, and changing variables to
integrate over the angular frequency, we end up with the grand-canonical potential

Φν = − V T

c3π2

∫ ∞

0

ω2 log
[
1 + e−βℏω] dω . (106)

The only changes here compared to Eq. 94 for the photon Φph are a couple of
negative signs, precisely as we would expect from comparing the Bose–Einstein
and Fermi–Dirac grand-canonical potentials in Section 7.5.

Due to these negative signs, when we take derivatives of the potential to
compute derived quantities like ⟨E⟩ν = ∂

∂β
[βΦν ] and ⟨N⟩ν = − ∂

∂µ
Φν

∣∣∣
µ=0

, we will

encounter slightly different but equally enjoyable integrals:∫ ∞

0

x3

ex + 1
dx =

(
1− 1

23

)
Γ(4)ζ(4) =

7π4

120
,∫ ∞

0

x2

ex + 1
dx =

(
1− 1

22

)
Γ(3)ζ(3) =

3

2
ζ(3).

Using these results, what are the average internal energy density and the average
particle number density for a gas of massless fermions?
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⟨E⟩ν
V

= − 1

c3π2

∫ ∞

0

ω2 ∂

∂β
log
[
1 + e−βℏω] dω =

⟨N⟩ν
V

=
T

c3π2

∫ ∞

0

ω2 ∂

∂µ
log
[
1 + e−βℏωeβµ

]
dω

∣∣∣∣
µ=0

=

You should again find ⟨E⟩ν ∝ ⟨N⟩ν T ∝ V T 4, and by noting that

Φν

T
= − V

c3π2

(
T

ℏ

)3 ∫ ∞

0

x2 log
[
1 + e−x

]
dx ∝ V T 3,

we can see that the entropy Sν = (⟨E⟩ν − Φν) /T is constant when V T 3 = const.
Applying this, what is the pressure for a gas of massless fermions?

Pν = − ∂

∂V
⟨E⟩ν

∣∣∣∣
Sν

=

You should find an equation of state with the usual functional form and just a new
numerical factor:

PνV =
1

3
⟨E⟩ν =

7π4

540ζ(3)
⟨N⟩ν T =

(7/8)ζ(4)

(3/4)ζ(3)
⟨N⟩ν T ≈ 1.05 ⟨N⟩ν T.
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8.8 Density of states & Sommerfeld expansion

In Eq. 103 we found that the average internal energy of a non-relativistic
fermion gas becomes independent of the temperature in the limit T → 0. This
means that its heat capacity,

cv =
∂

∂T
⟨E⟩
∣∣∣∣
N,V

,

vanishes in this limit, which we could also see by considering the fluctuation–
dissipation relation cv ∝

〈
(E − ⟨E⟩)2

〉
with only a single micro-state.

To derive the non-trivial heat capacity for a gas with a small but non-zero
temperature, we need to move beyond approximating the Fermi function

F (E) =
1

eβ(E−µ) + 1

as a step function, and return to the full Eq. 99 for the average particle number,

⟨N⟩f = V

√
2m3

π2ℏ3

∫ ∞

0

F (E)
√
E dE ≡

∫ ∞

0

g(E) F (E) dE . (107)

Here we have defined the density of states

g(E) ≡ V

√
2m3

π2ℏ3
√
E ≡ g0

√
E

as the number of single-particle energy levels per unit energy. We can read
Eq. 107 as saying that the total number of particles is given by integrating over the
single-particle energy levels, g(E), times the probability F (E) that each of these
energy levels is occupied.

The figures below, from Schroeder’s Introduction to Thermal Physics, illus-
trate this integral in the case of T = 0 (left) and T > 0 (right). As we have already
seen, when T → 0 all energy levels with E < EF are occupied while all those with
E > EF are unoccupied. With T > 0, there is an exponentially suppressed prob-
ability for some energy levels with E > EF to be occupied. Because the Fermi
energy is set by the number of particles,

EF =
ℏ2

2m

(
3π2 ⟨N⟩f

V

)2/3

,

having some of these particles occupy energy levels with E > EF requires that
an equal number of energy levels with E < EF be unoccupied.
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Note that E = µ is the point where the Fermi function F (E) = 1
2
. We will see

below that µ ≤ EF , as shown in the right figure above, with equality when T = 0.

In order to determine the particle number and internal energy, we need to
evaluate the integrals

⟨N⟩f = g0

∫ ∞

0

F (E)
√
E dE ⟨E⟩f = g0

∫ ∞

0

E F (E)
√
E dE (108)

without approximating the Fermi function as a step function. For T ≪ EF , we can
do this through a Sommerfeld expansion. Let’s begin by considering the particle
number. The first step in the Sommerfeld expansion is integrating by parts:∫ ∞

0

E1/2 F (E) dE =

Changing variables to x ≡ β(E − µ), you should find

⟨N⟩f =
2

3
g0

∫ ∞

−βµ

ex

(ex + 1)2
E3/2 dx .

This is not obviously simpler than the expression we started with, but has the
benefit of being exponentially suppressed for both

x≫ 1 =⇒ ex

(ex + 1)2
≈ ex

e2x
=

1

ex

and x≪ −1 =⇒ ex

(ex + 1)2
≈ ex

1
=

1

e−x
.

The additional E3/2 factor is far too mild to overcome this exponential suppres-
sion. In other words, non-negligible contributions to the integral as a whole come
only from a region centered at E = µ, which becomes narrower in E as the tem-
perature decreases (corresponding to larger β = 1/T ). This is illustrated by the
plot below, which shows the exponential suppression setting in when |E − µ| is
larger than a few times the temperature, and certainly for |E − µ| ≳ 5/β = 5T .
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These considerations justify two low-temperature approximations. First, re-
calling µ > 0 at low temperatures, for large β we are free to extend the lower limit
of the integral to obtain a more convenient domain of integration,

⟨N⟩f =
2

3
g0

∫ ∞

−βµ

ex

(ex + 1)2
E3/2 dx ≈ 2

3
g0

∫ ∞

−∞

ex

(ex + 1)2
E3/2 dx .

Second, we can expand E3/2 in a Taylor series around E = µ, and truncate after
the first few terms:

E3/2 ≈ µ3/2 + (E − µ)
∂

∂E
E3/2

∣∣∣∣
E=µ

+
1

2
(E − µ)2

∂2

∂E2
E3/2

∣∣∣∣
E=µ

= µ3/2 +
3

2
(E − µ)µ1/2 +

3

8
(E − µ)2µ−1/2 = µ3/2 +

3

2

xµ1/2

β
+

3

8

x2µ−1/2

β2
.

Switching to work with T = 1/β, the Sommerfeld expansion has given us a
series of manageable integrals we can consider one by one:

⟨N⟩f ≈
2

3
g0µ

3/2I0 + g0Tµ
1/2I1 +

g0T
2

4µ1/2
I2.

I0 =
∫ ∞

−∞

ex

(ex + 1)2
dx =

I1 =
∫ ∞

−∞

xex

(ex + 1)2
dx =

I2 =
∫ ∞

−∞

x2ex

(ex + 1)2
dx =
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Collecting the results and restoring g0 = V
√
2m3

π2ℏ3 , you should find

⟨N⟩f ≈
2

3
g0µ

3/2 + g0
π2T 2

12µ1/2
= V

(2mµ)3/2

3π2ℏ3
+ V

√
2m3

12ℏ3µ1/2
T 2.

The first term reproduces what we found with the step-function approximation
in Section 8.5, while the second term provides the promised temperature de-
pendence, at leading order in the Sommerfeld expansion. This becomes more
interesting if we rearrange Eq. 101 to work in terms of the Fermi energy:

EF =
ℏ2

2m

(
3π2 ⟨N⟩f

V

)2/3

=⇒

The result
µ

EF

≈

[
1− π2T 2

8E
3/2
F µ1/2

]2/3
can be simplified through one final low-temperature approximation. Because T is
small, just in the second term above we can set EF ≈ µ (the zero-temperature
relation). Then

µ

EF

≈ 1− π2T 2

12E2
F

, (109)

which confirms our earlier claim µ ≤ EF , and reveals that the leading correction
to the zero-temperature relation is quadratic in T

EF
≪ 1.

The calculation is essentially the same for the internal energy from Eq. 108.
With E3/2 in place of E1/2, integrating by parts just gives

⟨E⟩f = g0

∫ ∞

0

E3/2

eβ(E−µ) + 1
dE ≈ 2

5
g0

∫ ∞

−∞

ex

(ex + 1)2
E5/2 dx

with the same x = β(E − µ) and extended lower limit of integration. The Taylor
expansion

E5/2 ≈ µ5/2 +
5

2
(E − µ)µ3/2 +

15

8
(E − µ)2µ1/2 = µ5/2 +

5

2

xµ3/2

β
+

15

8

x2µ1/2

β2

also produces the same integrals, with different coefficients:

⟨E⟩f ≈
2

5
g0µ

5/2I0 + g0Tµ
3/2I1 +

3

4
g0T

2µ1/2I2 =
2

5
g0µ

5/2 +
1

4
g0π

2T 2µ1/2.
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Inserting g0 =
3⟨N⟩f

2E
3/2
F

, we have

⟨E⟩f ≈
3

5
⟨N⟩f

µ5/2

E
3/2
F

+
3

8
⟨N⟩f π

2T 2 µ
1/2

E
3/2
F

,

which we can simplify by applying Eq. 109 and dropping O (T 3) terms:

µ5/2 ≈

From your result you should obtain the heat capacity

cv =
∂

∂T
⟨E⟩
∣∣∣∣
N,V

≈ π2

2

⟨N⟩f
EF

T.

This low-temperature linear dependence on T agrees with experimental heat ca-
pacity measurements, as we have seen in a tutorial.

As a final comment in this section, let’s consider what would happen to ⟨N⟩f
at higher temperatures T 2 ∼ E2

F , for which the two terms in Eq. 109 would cancel
out, leaving O(T 4/E4

F ) effects non-negligible. In this regime, there’s no guaran-
tee that the low-temperature Sommerfeld expansion would even converge, so we
need to work with the full integral from Eq. 108. Fortunately, it is not hard to
numerically evaluate this integral, which is done by this Python code. For the
purpose of numerical analysis, it’s best to express everything in terms of dimen-
sionless ratios, such as

t ≡ T

EF

c ≡ µ

EF

x ≡ E

T
= βE.

Also inserting g0 =
3⟨N⟩f

2E
3/2
F

, we have

⟨N⟩f =
3 ⟨N⟩f
2E

3/2
F

∫ ∞

0

√
E

eβ(E−µ) + 1
dE =

3 ⟨N⟩f
2

t3/2
∫ ∞

0

√
xe−x

e−c/t + e−x
dx,

working with small e−βE = e−x rather than large ex to avoid numerical overflow.

As in Eq. 109, ⟨N⟩f drops out, and we end up with the consistency condition

1 =
3

2
t3/2

∫ ∞

0

√
xe−x

e−c/t + e−x
dx . (110)
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If we fix the temperature t = T/EF in units of the Fermi energy, by repeatedly
evaluating this integral with different values of c = µ/EF we can determine the
self-consistent value of the chemical potential, also in units of the Fermi energy.
The red ×’s in the figure below are results of such work for eleven tempera-
tures 0.1 ≤ t ≤ 2, compared to the O (t2) result from the Sommerfeld expansion,
Eq. 109. This leading-order Sommerfeld expansion clearly deviates from the full
results by the time T ∼ EF . The more interesting result is that the chemical po-
tential continues to decrease as the temperature increases, becoming negative
for T ≳ EF and approaching the expected high-temperature classical limit.
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Unit 9: Interacting systems

9.1 The Ising model

So far in this module we have considered ‘ideal’ systems composed of con-
stituent degrees of freedom that do not interact with each other. While we have
seen that this approximation of non-interacting particles can produce excellent
mathematical models for real physical systems ranging from the low-temperature
heat capacities of solids to solar radiation and the cosmic microwave background,
there are crucial statistical physics phenomena that this approach fails to predict.

An important class of examples, which we investigate in this unit, are phase
transitions. These occur when interactions allow extremely different large-scale
behaviours to arise from the same set of degrees of freedom, depending on con-
trol parameters such as the temperature or pressure. Phase transitions occur in
both everyday and extreme situations. Everyday examples include the liquid–gas
transition of H2O molecules from water to steam upon boiling a kettle, as well as
the transition from liquid water to solid ice as the temperature decreases. In the
extreme conditions following the big bang, the matter in the universe existed as
a charged plasma of quarks and gluons. Once the universe was a few micro-
seconds old, it cooled enough for this matter to transition into the protons and
neutrons we are made out of today.

An intermediate example in between the everyday and the extreme involves
two layers of graphene as illustrated in the figure below.13 Graphene is an amaz-
ing material (recognized by the 2010 Nobel Prize in Physics) that consists of a
single-atom-thick sheet of carbon atoms arranged in a hexagonal ‘honeycomb’
lattice. Under most conditions, graphene is an electrical insulator. However, if two
graphene sheets are stacked and rotated with respect to each other by a small
“magic angle” θ ≈ 1.1◦, the system transitions into a superconducting phase at low
temperatures T ≲ 1.7 K. Superconductivity allows electrical current to flow with
no resistance, meaning that no energy is lost to the production of waste heat. If
we could discover or design materials that exhibit superconductivity at everyday
temperatures T ∼ 300 K rather than low T ∼ O(1) K, it would revolutionize the
energy efficiency of electronics and the power grid.

13Heather M. Hill, “Twisted bilayer graphene enters a new phase”, Physics Today 73:18, 2020.
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With this motivation for investigating phase transitions, let’s step back to
introduce interactions and explore their effects using simple spin systems of the
sort we considered in units 2 and 3. In the non-interacting case we previously
analyzed (Eq. 40), the internal energy of the system is

Ei = −H
N∑

n=1

sn (non-interacting)

for micro-state ωi specified by the N spins {sn} (and, as always for this module, in
thermodynamic equilibrium). Here H > 0 is the constant strength of an external
magnetic field and the orientation of the nth spin, sn, takes one of only two possi-
ble values: sn = 1 if the spin is aligned parallel to the field and sn = −1 if the spin
is aligned anti-parallel to the field. The ground state of the system features all N
spins aligned parallel to the magnetic field, with minimal energy E0 = −NH.

In this unit we will only consider systems of distinguishable spins that we
label by their fixed position in a d-dimensional simple cubic lattice. The d = 1
case of a one-dimensional lattice is precisely the system of spins arranged in a
line that we analyzed in Section 3.4.1. This and the case of d = 2 are both easy
to visualize and draw on a sheet of paper:

While we can only have physical lattices with d = 1, 2 or 3 in nature, the mathe-
matical construction works just as well for any integer d ≥ 1.

We can see that the total internal energy of the non-interacting system can
easily be written as a sum over energies εn for each individual spin,

εn = −Hsn Ei =
N∑

n=1

εn (non-interacting).

This is a generic feature of non-interacting systems, and an aspect of the fac-
torization that enormously simplifies calculations — in this case by causing the
N -particle partition function (Eq. 41) to take the form of a product of N identical
terms, ZN = [2 cosh (βH)]N = ZN

1 . However, it is possible to have non-factorizable
systems in which the internal energy can be expressed as a sum of this sort. A
stronger condition needs to be satisfied in order to guarantee factorization, and
this conditions rigorously defines what it means for a system to be non-interacting.
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Let ∆Ej be the change in the system’s internal energy caused by changing
its jth degree of freedom. Then the system is defined to be non-interacting if
and only if ∆Ej is independent of all other degrees of freedom k ̸= j.

For our system of N distinguishable spins, the only possible change we can
make to a degree of freedom is to negate it, sj → −sj, which corresponds to
flipping its alignment relative to the external magnetic field. It is easy to check
that the change in the internal energy resulting from such a spin flip satisfies our
definition of a non-interacting system:

Now let’s make things more interesting by considering a different spin sys-
tem that includes a simple two-spin contribution to the internal energy:

Ei = −
∑
(jk)

sjsk −H
N∑

n=1

sn. (111)

The first sum runs over all pairs of nearest-neighbour spins in the lattice, denoted
(jk). What is the change in energy ∆Ej from Eq. 111 upon negating sj → −sj?
Does this indicate an interacting or non-interacting system?

The pictures on the next page illustrate nearest-neighbour pairs for simple
cubic lattices in d = 2 and 3 dimensions, while also introducing some additional
lattice terminology. Instead of drawing up- and down-pointing arrows, these pic-
tures identify the spins with sites in the lattice represented as points (or larger
filled circles). In simple cubic lattices, all sites are positioned in a regular grid,
separated by a constant distance along each basis vector. We can also draw
links as solid lines connecting these nearest-neighbour sites, with each link cor-
responding to a term in

∑
(jk). The picture of a two-dimensional lattice on the left
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highlights the four links (with red hatch marks) that correspond to the four nearest
neighbours (circled in red) of a particular site (circled in blue). For d ≥ 2, the ele-
mentary unit of surface area is called a plaquette, while for d ≥ 3 the elementary
unit of volume is called a cube.

Computing the energy in Eq. 111 requires determining all of the nearest-
neighbour pairs to be summed in the first term, which is equivalent to all of the
links in the lattice, ℓ = (jk). When considering a finite lattice, this task is compli-
cated by the need to consider the edges of the lattice. We can avoid this compli-
cation by imposing periodic boundary conditions, which remove these edges
by adding links between each site on the left edge of the lattice and the corre-
sponding site on the right edge, and similarly in all other dimensions. This is
illustrated below for the simple case of the one-dimensional lattice, drawn as a
circle to emphasize that all N sites remain separated by a constant distance. In
higher dimensions, periodic boundary conditions produce flat (zero-curvature) d-
dimensional tori that preserve the simple cubic lattice structure.

With periodic boundary conditions, we can easily see that the N -site one-
dimensional lattice drawn above has N links. Each site has two links connecting
it to its two nearest neighbours, and each of those links is shared between two
sites, so that #ℓ = 2N/2 = N . Looking back to the two-dimensional lattice drawn
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farther above, the four links per site produce #ℓ = 4N/2 = 2N . How many terms
are there in the sum

∑
(jk) in Eq. 111 for N -site lattices with periodic boundary

conditions in d dimensions?

The energy of interacting spins given by Eq. 111, with a lattice structure
defined to specify which spins form the nearest-neighbour pairs (jk), defines a
famous system known as the d-dimensional Ising model. Since the 1960s, the
Ising model has been the basis of thousands of scientific studies analyzing ev-
erything from ferromagnetism to neural networks to urban segregation.14 The
model was proposed in 1920 by Wilhelm Lenz, whose PhD student Ernst Ising
solved the one-dimensional system as a research project in 1924. Exactly solv-
ing the two-dimensional case (with H = 0) took another twenty years, culminating
in renowned work by Lars Onsager in 1944. The three-dimensional Ising model
remains an open mathematical question, with no known exact solution.

In this context, ‘solving’ the Ising model means deriving a closed-form ex-
pression for its canonical partition function,

Z(β,N,H) =
∑
{sn}

exp [−βE(sn)] =
∑
{sn}

exp

β∑
(jk)

sjsk + βH
∑
n

sn

 .

As in Section 3.4, the partition function sums over all possible spin configurations
{sn}, which amounts to a sum of 2N exponential factors for N spins, with O(N)
terms within each exponential. Now that the system is interacting, the partition
function no longer factorizes into the N identical cosh factors of Eq. 41, making
it extremely difficult to evaluate. This is why there is no known exact solution
to the three-dimensional Ising model, and it also makes ‘brute-force’ numerical
computations impractical. Even for a system of N = 1023 spins, twenty orders
of magnitude smaller than our typical N ∼ 1023, there are roughly 21023 ∼ 10310

terms in the partition function, far beyond the capabilities of existing or foresee-
able supercomputers.

9.2 Ising model phases and phase transition

Despite the insolubility of the Ising model in an arbitrary number of d di-
mensions, we can still make robust predictions for its large-scale behaviour by
considering the simplified limits of high and low temperature, much as we did for
non-interacting spin systems in Section 3.4. We can also simplify the system by

14For a brief discussion, see Charlie Wood, “The Cartoon Picture of Magnets That Has Trans-
formed Science”, Quanta Magazine, 2020.
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setting H = 0 in this section, and considering just

Ei = −
∑
(jk)

sjsk Z(β,N) =
∑
{sn}

exp

β∑
(jk)

sjsk

 . (112)

We will see that the behaviour of this zero-field Ising model is qualitatively dif-
ferent at high temperatures compared to low temperatures. In other words, the
system exhibits at least two distinct phases for different temperatures. This is a
necessary but not sufficient condition for there to be a true phase transition — it
leaves open the possibility of a gradual crossover between these two phases, as
opposed to a rapid transition. In this section we will use the Ising model to more
rigorously define what exactly constitutes a phase transition, and how this can be
distinguished from a crossover.

First, though, let’s consider the high-temperature limit β → 0, where the
Ising model partition function becomes extremely simple:

lim
β→0

Z(β,N) =

In this limit, all 2N spin configurations are adopted with the same probability pi =
1/2N , regardless of their internal energy from Eq. 112. In effect, that energy has
become negligible compared to the temperature.

Rather than computing the expectation value of that internal energy, there is
a simpler observable that we can consider to characterize this high-temperature
phase. This is the magnetization M = n+ − n−, retaining our definition of n±
as the number of spins with value ±1, even without an external field for them to
align with or align against. It is convenient to normalize the magnetization by the
number of spins,

m ≡ M

N
=

n+ − n−

n+ + n−
, (113)

so that −1 ≤ m ≤ 1 for any value of N . In addition, without an external field
to distinguish between ±1 spins, it is also convenient to consider the absolute
magnitude 0 ≤ |m| ≤ 1.

Our task is now to determine the expectation value of the magnetization
at high temperatures. Above we found that all spin configurations are equally
probable in this regime, so ⟨|m|⟩ will be determined by how many of these equally-
probably micro-states have a particular magnetization. For example, there are
only two micro-states with |m| = 1, corresponding to (n+, n−) = (N, 0) and (0, N).
In general, just as we saw in Eq. 23, there are(

N

n+

)
=

(
N

n−

)
=

N !

n+! n−!
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equally probable micro-states with a given n+ = N − n−. For large N ≫ 1 this
binomial coefficient has a factorially narrow peak around

n+ = n− =
1

2
N −→ |m| = 0.

This characterizes a disordered phase with similar numbers of up- and down-
pointing spins producing a small magnetization. In the thermodynamic limit N →
∞, the expectation value of the magnetization in the disordered phase vanishes
exactly, ⟨|m|⟩ → 0.

We next need to determine ⟨|m|⟩ in the low-temperature limit β → ∞. In
this regime, as we saw in Section 3.4.1, the Boltzmann factor exp

[
β
∑

(jk) sjsk

]
makes it exponentially more likely for the system to adopt micro-states with lower
energies. In particular, we can expect the ground state to dominate the expecta-
tion value of the magnetization, ⟨|m|⟩, up to exponentially suppressed corrections
from higher-energy excited states. With H = 0, the Ising model has two degener-
ate ground states corresponding to the two ways all the spins can be aligned with
each other: (n+, n−) = (N, 0) and (0, N). What is the ground-state energy of the
N -site Ising model in d dimensions?

E0 = −
∑
(jk)

sjsk =

As mentioned above, both of these degenerate ground states have the max-
imal magnetization |m| = 1. Let’s check what effect the first excited state would
have on the overall magnetization of the system. For d > 1, the first excited en-
ergy level is obtained by flipping a single spin — negating its value. Starting from
the two degenerate ground states, this produces all possible micro-states with
(n+, n−) = (N −1, 1) and (1, N −1). Because any one of the N spins in the lattice
could be flipped, the degeneracy of this first excited energy level grows with N :(

N

1

)
+

(
N

N − 1

)
= 2N.

At the same time, as N increases the magnetization of each of these micro-states
gets closer to that of the ground state,

|m| = N − 2

N
= 1− 2

N
.
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The key factor is the probability for the system to be in one of these micro-states,
which depends on the value of the energy E1 for the first excited energy level.
What is this E1 for the N -site Ising model in d dimensions?

E1 =

Let’s bring everything together by computing the relative probability for the
d-dimensional Ising model to be in its ground state with |m| = 1 compared to its
first excited state with |m| = 1 − 2

N
. We just need to multiply the degeneracy of

each energy level times the corresponding Boltzmann factor for each degenerate
micro-state, while the 1

Z
normalization cancels out in the ratio

P (E0)

P (E1)
=

2 · exp [βd ·N ]

2N · exp [β (d ·N − 4d)]
=

exp [4βd]

N
.

For any fixed N , a sufficiently low temperature will cause the ground state to dom-
inate, with exponentially suppressed contributions from higher energy levels, just
as we previously found for simpler non-interacting systems. This characterizes an
ordered phase with essentially all spins aligned in the same direction, producing
a large expectation value for the magnetization, ⟨|m|⟩ → 1.

We have now seen how the behaviour of the magnetization ⟨|m|⟩ distin-
guishes the high- and low-temperature phases of the zero-field Ising model in
d > 1 dimensions. In the high-temperature disordered phase, the magnetization
is small and ⟨|m|⟩ → 0 in the thermodynamic limit N →∞. In the low-temperature
ordered phase, the magnetization is large and ⟨|m|⟩ → 1 as T → 0.

This contrast between ordered and disordered phases is typical behaviour
for interacting statistical systems. These two phases are distinguished by an or-
der parameter — an observable (related to a derivative of the free energy) that
is zero in the disordered phase but non-zero in the ordered phase.15 The mag-
netization is the order parameter for the Ising model, which we will connect to the
free energy in the next section. Note that the order parameter need not reach
its maximum value in the ordered phase — in the case of the Ising model, we
don’t need complete domination by the fully ordered ground state. So long as
there is a tendency towards order, mathematically defined by a non-zero order

15There are atypical (but interesting and important) topological phase transitions that are not
characterized by such an order parameter. The most famous example is the BKT phase transition
named after Vadim Berezinskii, J. Michael Kosterlitz and David Thouless, which was awarded the
2016 Nobel Prize in Physics. It is also possible for a single system to have multiple distinct phase
transitions, each characterized by a different order parameter.
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parameter, the system is in the ordered phase. The details of how the order pa-
rameter changes between zero and non-zero values are what distinguish gradual
crossovers from rapid phase transitions.

A phase transition is defined by a discontinuity or divergence in the order
parameter or its derivative(s), in the N →∞ thermodynamic limit. The value(s) of
the control parameter(s) at which the discontinuity occurs define the critical point
corresponding to the transition.

For the zero-field Ising model, since we have set H = 0, the only remaining
control parameter is the temperature T . Any phase transition would therefore oc-
cur at a critical temperature TC . The sketches below illustrate the most common
types of phase transitions. When the order parameter (OP) itself is discontinuous
(shown by a dashed line), the transition is said to be a first-order phase transition.
When the order parameter is continuous at TC but its first derivative with respect
to the control parameter is discontinuous (typically divergent), the transition is
said to be a second-order phase transition. Historically, this naming scheme was
extended to nth-order phase transitions for which discontinuities don’t occur un-
til the (n − 1)th derivative of the order parameter (related to an nth derivative of
the free energy). At present it is more common for any phase transition with a
continuous order parameter to be called simply a second-order transition.

In practice, any system with a finite number of degrees of freedom will not
exhibit a true discontinuity or divergence in any observable. As a result, it is some-
times said that true phase transitions only occur in the N → ∞ thermodynamic
limit, but I consider this excessively pedantic, especially given the finite number of
atoms in the observable universe. We are still able to distinguish crossovers from
true phase transitions when considering a finite number of degrees of freedom,
by analyzing the way in which the system approaches the thermodynomic limit. If
there is time and inclination, we may explore such finite-size scaling, but first we
will develop a useful approximation technique, and apply it to the Ising model to
investigate its (dimensionality-dependent) phase transition in more detail.
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9.3 The mean-field approximation

Having identified the ordered and disordered phases of the zero-field Ising
model, respectively at low and high temperatures, let’s now restore a non-zero
external magnetic field, H > 0. This will allow us to gain a deeper appreciation of
the magnetization — now with no absolute value — by noting that Eq. 113 means
the magnetization is just the average spin:

m =
M

N
=

1

N
(n+ − n−) =

1

N

N∑
n=1

sn.

We can benefit from this observation in two ways. First, we can recognize the
magnetization in the internal energy of the full Ising model with H > 0:

Ei = −
∑
(jk)

sjsk −H
N∑

n=1

sn = −
∑
(jk)

sjsk −HNm = −
∑
(jk)

sjsk −HM.

The corresponding canonical partition function is

Z =
∑
{sn}

exp

β∑
(jk)

sjsk + βHM

 .

Based on this expression, and our earlier experience with the entropy and internal
energy, we can anticipate that ⟨m⟩ = ⟨M⟩ /N is related to the derivative of the
Helmholtz free energy F = −T logZ with respect to the field strength H:

∂

∂H
F =

As promised in the previous section, this relation ensures that the magnetization
is an appropriate order parameter for the Ising model phase transition.

The second way we can benefit from relating the magnetization to the aver-
age spin is to express the Ising model in terms of the expectation value

⟨m⟩ = 1

Z

∑
{sn}

m e−βE(sn) =
1

N

N∑
n=1

⟨sn⟩ .

The expectation value of the average spin, 1
N

∑N
n=1 ⟨sn⟩, is independent of the

spin configuration {sn} and is simply a function of the inverse temperature β and
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magnetic field strength H. By adding and subtracting factors of ⟨m⟩, we can
exactly rewrite each nearest-neighbour term in the Ising model energy, Eq. 111,
as

sjsk = [(sj − ⟨m⟩) + ⟨m⟩]× [(sk − ⟨m⟩) + ⟨m⟩]
= (sj − ⟨m⟩) (sk − ⟨m⟩) + (sj + sk) ⟨m⟩+ ⟨m⟩2 . (114)

This is beneficial because we can note that the factors of (sj − ⟨m⟩) corre-
spond to the spins’ fluctuations around their mean value ⟨m⟩. By conjecturing
that these fluctuations are small on average, we can approximate the Ising model
energy by neglecting the first term in Eq. 114 when summing over all links:

Ei = −
∑
(jk)

sjsk−H
N∑

n=1

sn −→ EMF = −
∑
(jk)

[
(sj + sk) ⟨m⟩+ ⟨m⟩2

]
−H

N∑
n=1

sn.

The sum over the links ℓ = (jk) in d dimensions simply counts d · N factors of
the constant ⟨m⟩2. Similarly, since the first term includes both spins (sj + sk) on
each end of the link, every individual spin appears 2d times in the sum over links.
Therefore this term just gives us 2d ⟨m⟩ times another sum over the spins sn,
which we can combine with the final term above:

EMF = −d ·N ⟨m⟩2 − (2d ⟨m⟩+H)
N∑

n=1

sn ≡ −d ·N ⟨m⟩2 −Heff

N∑
n=1

sn. (115)

In this expression we define an effective magnetic field Heff = 2d ⟨m⟩ + H
that depends on the mean spin. This is a way to remember that this approach of
neglecting the squared fluctuations (sj − ⟨m⟩) (sk − ⟨m⟩) is known as the mean-
field approximation. In essence, this approach supposes that we can average
over all 2d nearest neighbours of each spin and end up with an approximately
constant factor that behaves like a modification of the magnetic field. Given the
resulting mean-field energy EMF from Eq. 115, let’s check the change in this en-
ergy, ∆Ej, upon negating any sj → −sj:
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In light of this result, it isn’t surprising that the mean-field approximation
producing Eq. 115 makes it very easy to compute the corresponding canonical
partition function

ZMF =
∑
{sn}

exp [−βE(sn)] = exp
[
βd ·N ⟨m⟩2

] ∑
s1=±1

· · ·
∑

sN=±1

exp

[
−x

N∑
n=1

sn

]
= exp

[
βd ·N ⟨m⟩2

]
(2 cosh [βHeff])

N

= exp
[
βd ·N ⟨m⟩2

]
(2 cosh [β (2d ⟨m⟩+H)])N , (116)

where we defined x ≡ −βHeff to put the sums into the same form as in Eq. 41.
Although this factorized result is far simpler than the partition function for the full
Ising model, it does involve some complicated dependence on ⟨m⟩ — especially
when we recall that ⟨m⟩ itself is related to a derivative of logZMF. With

logZMF = N log cosh [β (2d ⟨m⟩+H)] + {H-independent terms} ,
the relation we derived above gives us

⟨m⟩ = 1

Nβ

∂

∂H
logZMF =

1

β

1

cosh [β (2d ⟨m⟩+H)]

∂

∂H
cosh [β (2d ⟨m⟩+H)] .

Simplifying, we obtain a self-consistency condition for the Ising model magne-
tization in the mean-field approximation:

⟨m⟩ = tanh [β (2d ⟨m⟩+H)] . (117)

Solving this equation for ⟨m⟩ is equivalent to finding the roots of the equation
tanh [β(2d · x+H)]− x = 0.

A straightforward way to inspect such solutions is by plotting both

f(⟨m⟩) = ⟨m⟩ g(⟨m⟩) = tanh [β(2d ⟨m⟩+H)]

and monitoring the intersections of these two functions. Fixing d = 2 dimen-
sions, the plot below considers the simplest case β = 1

4
and H = 0 for which

g(⟨m⟩) = tanh [⟨m⟩] (the solid line). There is only a single intersection between
this function and f(⟨m⟩) (the dashed line), at ⟨m⟩ = 0, which we should interpret
as a disordered phase.

−1

0

1

〈m〉

tanh(〈m〉)
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To confirm our interpretation of this result, let’s check how the intersections
depend on β and H. In the next plot below we keep the same temperature
T = 1/β = 4 while comparing two non-zero values for the external magnetic
field. A positive H = 2 simply shifts g(⟨m⟩) to the left (the green line), while a neg-
ative H = −2 shifts it to the right (the blue line). In both cases there is still only
a single intersection, at ⟨m⟩ ≈ ±0.88 for H = ±2. We can interpret this non-zero
result as an indication that the system is in an ordered phase where the spins
tend to align with the external field.

−1

0

1

〈m〉

tanh, H > 0

tanh, H < 0

From our work in the previous section, we can expect that the spins’ align-
ment will increase — approaching the minimal-energy ground state — as the
temperature decreases. Decreasing the temperature increases β, which causes
the argument of the tanh to vary more rapidly with ⟨m⟩, making g(⟨m⟩) a steeper
function that more rapidly approaches its limiting values ±1. The plot below illus-
trates this for T = 1/β = 2, so that β = 1

2
is doubled. Already for this temperature

and magnetic field H = ±2, the intersection is ⟨m⟩ ≈ ±1 to a very good approxi-
mation. We can also appreciate that −1 ≤ tanhx ≤ 1 ensures that the mean-field
self-consistency condition can only ever be satisfied for −1 ≤ ⟨m⟩ ≤ 1, reassur-
ingly consistent with the definition of the magnetization.

−1

0

1

〈m〉

tanh, H > 0

tanh, H < 0

MATH327 Unit 9 142 Last modified 19 Apr. 2024



Also in the previous section, we saw that the Ising model spins should align
at low temperatures, even without an external field to promote one direction over
the other. We hope to see this behaviour captured by the mean-field approxima-
tion, which we can check by considering the self-consistency condition for various
temperatures with H = 0. The plot below shows the results, considering a low
temperature T = 2 with β = 1

2
(the blue line), the same green curve for T = 4

shown in the first plot above, and a high temperature T = 8 with β = 1
8

(the
red line). While the ⟨m⟩ = 0 expected in the disordered phase is always a pos-
sible solution, something interesting happens at lower temperatures, where the
steeper tanh function introduces two additional solutions at non-zero ⟨m⟩ = ±m0

corresponding to the ordered phase. As T → 0, this magnetization approaches
its maximum value m0 → 1.

−1

0

1

〈m〉

tanh, T = 2

tanh, T = 4

tanh, T = 8

When there are three solutions ⟨m⟩ = {−m0, 0,m0} at low temperatures,
we can determine that the ⟨m⟩ = 0 solution is actually unstable. Here we are
venturing briefly into non-equilibrium territory, and thinking of the mean-field sys-
tem as a ‘blind’ process that attempts to satisfy the self-consistency condition
⟨m⟩ = tanh [2βd ⟨m⟩], based only on knowledge of whether the expectation value
of the magnetization is too small or too large compared to the tanh. Once the
magnetization is self-consistent, the system can happily settle into thermody-
namic equilibrium.

From the figure above we can see that (with H = 0) we can have three
solutions only when the slope of the tanh at ⟨m⟩ = 0 is greater than 1. Any positive
value ⟨m⟩ = ε > 0 would then produce tanh [2βd ⟨m⟩] > ⟨m⟩, which the system
‘feels’ as a magnetization that is too small to be self-consistent. This drives the
system to continue increasing its magnetization, until it eventually settles at the
non-zero solution ⟨m⟩ = m0. Similarly, any negative magnetization ⟨m⟩ = −ε < 0
would drive ⟨m⟩ away from zero and to the ⟨m⟩ = −m0 solution.

This argument can be visualized more easily by plotting tanh [2βd ⟨m⟩]−⟨m⟩
vs. ⟨m⟩ as shown in the final plot below. Whenever this difference is negative, it

MATH327 Unit 9 143 Last modified 19 Apr. 2024



implies ⟨m⟩ is larger than the self-consistency condition allows, driving the system
to smaller ⟨m⟩ as shown by the arrows pointing to the left. Conversely, whenever
the difference is positive, the system ‘seeks’ self-consistency by increasing ⟨m⟩
as shown by the arrows pointing to the right. For the low temperature T = 2, we
see that the arrows move the system away from the unstable solution ⟨m⟩ = 0
and to the stable solutions ⟨m⟩ = ±m0.

So in the end we can conclude that the non-interacting mean-field approxi-
mation successfully captures at least the high- and low-temperature limits of the
interacting zero-field Ising model that we determined in the previous section. For
high temperatures the mean-field self-consistency condition demands ⟨m⟩ = 0 as
in the disordered phase, while for low temperatures it produces ⟨m⟩ = ±m0 ̸= 0
as in the ordered phase.

Going further, now that we have a more tractable non-interacting system we
can determine the value of the temperature at which its ⟨m⟩ = ±m0 solutions
appear and the ⟨m⟩ = 0 solution becomes unstable. As described above, this
occurs whenever the slope of the tanh function at ⟨m⟩ = 0 is greater than 1.
Let’s call the corresponding temperature Tc, though it remains to be determined
whether it is really the critical temperature of a true phase transition. Expanding
tanh(x) = x+O (x3) for x ≈ 0, what is Tc?

You should find that the change from the high-temperature disordered phase
to the low-temperature ordered phase occurs at Tc = 2d in d dimensions, or equiv-
alently βc =

1
2d

— corresponding to the green lines in the two figures above with
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d = 2. In order to determine whether or not this is a true critical temperature,
we need to check whether the order parameter ⟨m⟩ or its T -derivatives are dis-
continuous at Tc. We can do this by considering the self-consistency condition
for a temperature T lower than but very near to Tc = 2d, which would produce
0 < | ⟨m⟩ | ≪ 1 and allow us to expand tanh(x) = x − x3

3
+ O (x5). What is the

resulting prediction for ⟨m⟩?

Making the approximation
(

T
Tc

)2
≈ 1, your result should resemble

⟨m⟩ = ±
√
3

(
Tc − T

Tc

)1/2

for T ≲ Tc.

From this, we can see that the order parameter ⟨m⟩ is continuous at Tc:

⟨m⟩ ∝

{
(Tc − T )1/2 for T ≲ Tc

0 for T ≳ Tc

. (118)

However, its first derivative

d ⟨m⟩
dT

∝ 1

(Tc − T )1/2

diverges as T → Tc from below. This is the situation we discussed at the end
of the previous section, which predicts a second-order phase transition with crit-
ical temperature Tc = 2d in d dimensions. The power-law dependence ⟨m⟩ ∝
(Tc − T )b with non-integer b is a generic feature of second-order phase transi-
tions. The power b is known as a critical exponent, in this case b = 1/2.

At this point we have invested some effort to find that the mean-field approx-
imation of the d-dimensional Ising model, with H = 0, predicts a second-order
phase transition at Tc = 2d with critical exponent 1/2. Let’s wrap up this section
with some quick comments on the reliability of the mean-field approximation and
the accuracy of these results it has given us.

The accuracy of the mean-field results turns out to depend on the number of
dimensions. For the one-dimensional Ising model that Ising himself solved, there
is no phase transition at all, as we will derive in the next section. In other words,
the mean-field approximation simply fails for d = 1.
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The situation improves for the two-dimensional Ising model. Onsager’s
exact H = 0 solution features a second-order phase transition, at an inverse
critical temperature βc = 1

2
log
(
1 +
√
2
)
≈ 0.44 that had been exactly deter-

mined a few years before his work. For T ≲ Tc, the magnetization vanishes
as ⟨m⟩ ∝ (Tc − T )1/8, corresponding to a critical exponent 1/8. While the mean-
field prediction of a second-order phase transition is now qualitatively correct, at
a quantitative level its predicted βc =

1
2d

= 0.25 is off by almost a factor of 2, while
the mean-field critical exponent b = 1/2 is four times larger than the true b = 1/8.

For higher dimensions d ≥ 3 there is no known exact solution for the Ising
model, but the existence of a second-order phase transition can be established
and the corresponding critical temperature and critical exponents can be com-
puted numerically, as we will discuss in Unit 10. In three dimensions the mean-
field Tc = 2d = 6 and b = 1/2 are still significantly different from the true Tc ≈ 4.5
and b ≈ 0.32. The mean-field prediction for the critical exponent b = 1/2 turns out
to be correct for d ≥ 4, while the critical temperature Tc = 2d gradually approaches
the true value as the number of dimensions increases. Numerical computations
find Tc ≈ 6.7, 8.8, 10.8 and 12.9 for d = 4, 5, 6 and 7, respectively, so that the
mean-field result improves from being ∼19% too high for d = 4 to only ∼9% too
high for d = 7. Formally, the mean-field approximation exactly reproduces the
Ising model in the abstract limit of infinite dimensions, d→∞. Roughly speaking,
the greater reliability of the mean-field approach in higher dimensions is due to
the larger number of nearest neighbours for each site, 2d. The larger number
of nearest-neighbour spins produces a more reliable approximation of the mean
spin in the effective field seen by each site in the mean-field approach.

9.4 Exact results for the Ising model

If time permits, it is not too hard to prove some of the exact results men-
tioned above, for the Ising model in one and two dimensions where the mean-field
approximation is least reliable.

9.4.1 One-dimensional partition function and magnetization

The special property of the one-dimensional Ising model that helps us derive
a closed-form expression for its partition function is the fact that it has exactly as
many links as it has sites. Looking back to the illustration on page 134, we can
rewrite the nearest-neighbour interaction term as

∑
(jk)

sjsk =
N∑

n=1

snsn+1,

where the periodic boundary conditions identify sN+1 = s1. If we also rewrite
H
∑N

n=1 sn = H
2

∑N
n=1 (sn + sn+1), then the full internal energy is

Ei = −
N∑

n=1

[
snsn+1 +

H

2
(sn + sn+1)

]
.
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Inserting this into the partition function Z(β,N,H) =
∑

{sn} exp [−βE(sn)], we can
convert the exponential of the sum into a product of exponentials,

Z =
∑

s1=±1

· · ·
∑

sN=±1

N∏
n=1

exp

[
βsnsn+1 +

βH

2
(sn + sn+1)

]
.

Similarly to Eq. 41 for the non-interacting case, we are going to distribute the
summations. Now, however, we have to keep track of the fact that a given spin sj
will appear both when n = j and when n+ 1 = j, and for each spin configuration
it must have the same value both times it appears. An elegant way to account for
all allowed possibilities is through matrix multiplication. Use the 2× 2 matrix

Tn =

(
eβ+βH e−β

e−β eβ−βH

)
(119)

to collect the exponential factors for the four possibilities

{sn, sn+1} =
(
{1, 1} {1,−1}
{−1, 1} {−1,−1}

)
.

The matrix product Tn ·Tn+1 then provides the sum over all contributions with con-
sistent values for sn+1. Repeating this for all terms in

∏N
n=1, the periodic boundary

conditions produce the (cyclic) trace, making the exact partition function simply

Z = Tr

[
N∏

n=1

Tn

]
.

What’s more, since Tn ≡ T is actually independent of n, this simplifies further to

Z = Tr
[
TN
]
. (120)

T is known as the transfer matrix — roughly speaking, it ‘transfers’ infor-
mation about the values of the spins from one link to the next. At this point we
can appreciate that our earlier rewriting of the magnetic-field term in the energy
just helped to make T more symmetric. If we now diagonalize

T =

(
eβeβH e−β

e−β eβe−βH

)
−→

(
λ+ 0
0 λ−

)
,

the partition function will become simply

Z = Tr

[(
λ+ 0
0 λ−

)N
]
= Tr

(
λN
+ 0
0 λN

−

)
= λN

+ + λN
− .
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What are the two eigenvalues λ± of T?

With β ≥ 0 and H ≥ 0, we can check that both eigenvalues are real and
λ+ > λ−. For asymptotically high temperatures, β → 0, the eigenvalues reduce to
λ+ = 2 and λ− = 0 independent of H. In the special case H = 0, the eigenvalues
are λ+ = 2 cosh β and λ− = 2 sinh β, while H > 0 typically produces λ+ ≫ λ−.
Because λ−/λ+ < 1, for sufficiently large N ≫ 1 we can further simplify

Z = λN
+

[
1 +

(
λ−

λ+

)N
]
≈ λN

+ = eNβ coshN(βH)

[
1 +

√
1− 2 sinh(2β)

e2β cosh2(βH)

]N
.

So there we have it — the solution of the Ising model in one dimension. As
usual, the partition function Z is not so revelatory in and of itself. Its principal
value lies in enabling us to predict observables like the magnetization — so let’s
do that, returning to the zero-field case for which we computed the mean-field
critical temperature and critical exponent in the previous section:

⟨m⟩ = 1

Nβ

∂

∂H
logZ

∣∣∣∣
H=0

=

Note that we set H = 0 only after computing the derivative of the free energy,
which avoids the need to consider the absolute value. Upon setting H = 0,
something remarkable happens: ⟨m⟩ = 0 for all temperatures!

As claimed at the end of the previous section, the one-dimensional Ising
model has no phase transition at all. It is always in the disordered phase, even
in the limit of absolute zero T → 0. In addition to revealing that the mean-field
approximation fails in one dimension, this result also shows how the balance of
energy level degeneracy vs. Boltzmann factor considered in Section 9.2 depends
on the lattice structure.
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For the case of a one-dimensional lattice, the first excited energy level with
energy E1 includes more micro-states than the 2N we get by flipping a single
spin to oppose the full alignment of the ground state. Suppose we start from the
ground state and flip spin sj to reach the first excited energy level. Relative to
the ground-state energy E0 = −N , the energy of this micro-state is increased to
E1 = −N +4 due to the positive contributions from the sj−1sj and sjsj+1 links. But
if we now consider also flipping spin sj+1, the sjsj+1 link goes back to providing
a negative contribution while the positive contribution shifts to the sj+1sj+2 link.
This gives us an additional 2N micro-states featuring a flipped nearest-neighbour
pair of spins, with the same energy E1 but a smaller magnetization |m| = 1 − 4

N
.

And we can continue this process, finding more degenerate micro-states with a
flipped block of any number of neighbouring spins up to N − 1, and hence any
magnetization, including m = 0.

The non-existence of an ordered phase in one dimension also holds for
more general interacting systems beyond just the Ising model. A useful way to
analyze this sort of behaviour is to describe all of the micro-states in the first
excited energy level as consisting of two domains separated by two domain walls
(recalling the periodic boundary conditions). For the Ising model, one domain will
contain only up spins while the other will contain only down spins. The two domain
walls are able to move freely through the lattice without changing the energy, but
as the domain walls move the magnetization samples the full range of values
−
(
1− 2

N

)
≤ m ≤ 1− 2

N
.

9.4.2 Two-dimensional critical temperature

While the zero-field Ising model on the d = 2 square lattice has also been
exactly solved, both Onsager’s original calculation and subsequent re-derivations
using simpler techniques are much too complicated to cover here. However, a few
years before Onsager published his famous result, Hans Kramers and Gregory
Wannier were able to determine the exact d = 2 critical temperature in 1941.
They did this by identifying a relation between two Ising model partition functions,
without actually evaluating either sum over micro-states:

Z(β)

2N cosh2N β
=

Z(β̃)

2e2Nβ̃
, (121)

where the two inverse temperatures β and β̃ are related by

sinh(2β) =
1

sinh(2β̃)
. (122)

This relation is now known as Kramers–Wannier duality, and the general concept
of duality has become a powerful tool in modern theoretical physics. Note that
small β implies large β̃ and vice versa — the duality relates one d = 2 Ising model
at a high temperature to another one at a low temperature.

Although it can be instructive to explicitly compare such high- and low-
temperature partition functions, by computing series expansions as we did for
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the non-interacting spin system in Section 3.4 and for the Einstein solid in a tuto-
rial activity, we’ll skip that exercise, to keep this section from becoming too long.
Those who are interested can find related discussions in Sections 5.3.2 and 5.3.3
of David Tong’s Lectures on Statistical Physics (the first item in the list of further
reading on page 6). Some of the manipulations below, which may seem to come
out of thin air, can be motivated by considering these expansions.

The first manipulation is to express the zero-field partition function as

Z =
∑
{sn}

exp

β∑
(jk)

sjsk

 =
∑
{sn}

∏
(jk)

exp [βsjsk] =
∑
{sn}

∏
(jk)

[cosh β + sjsk sinh β] ,

which relies on the fact sjsk = ±1 for the Ising model. It’s easy to check the
relation eβsjsk = cosh β + sjsk sinh β for both sjsk = 1 and sjsk = −1:

Next, we write the sum over the cosh and sinh as a summation,

Z =
∑
{sn}

∏
(jk)

[cosh β + sjsk sinh β] =
∑
{sn}

∏
(jk)

∑
pjk=0,1

Cpjk(β)(sjsk)
pjk ,

by defining C0(β) ≡ cosh β and C1(β) ≡ sinh β while raising sjsk to the corre-
sponding power pjk. Recall that the nearest-neighbour pairs (jk) correspond to
all 2N links in the d = 2 lattice. To make the language a little less awkward, we
can say that pjk = 1 corresponds to link jk being ‘on’ while pjk = 0 when it is
turned ‘off’. The product and sum above account for all possible configurations
of links that are turned on and off, which we can more conveniently represent as
another configuration sum, ∑

{p}

≡
∑

p1=0,1

· · ·
∑

p2N=0,1

.

Our partition function is now written in terms of two configuration sums, but
we can expect only one to be necessary. We will aim to eliminate the sum over
all spin configurations, by pulling out everything independent of the spins:

Z =
∑
{sn}

∑
{p}

∏
(jk)

Cpjk(β)(sjsk)
pjk =

∑
{p}

∏
(jk)

Cpjk(β)

∑
{sn}

∏
(jk)

s
pjk
j s

pjk
k

 .

The final factor can be converted from a product over links to a product over sites.
For d = 2, any spin sn will appear four times in the product, once for each of the
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four links connected to it. The product of these four factors can be rewritten as∏
(nk)

spnk
n = sPn

n , defining Pn ≡
∑
(nk)

pnk.

We are now left with a product over individual sn:

Z =
∑
{p}

∏
(jk)

Cpjk(β)

∑
{sn}

[
N∏

n=1

sPn
n

]
.

Although each sn is raised to a power that depends on pnk for all four of its links to
its nearest neighbours, consider what happens when we sum over the two values
sn = ±1. There are two possibilities: If Pn is odd, then the sn = 1 and sn = −1
contributions cancel — making the entire product over sites vanish! Otherwise, if
Pn is even, they add up to give twice the product over the other sites. Repeating
for all sites, the only non-zero contribution must have N factors of 2:

Z =
∑
{p}

∏
(jk)

Cpjk(β)
N∏

n=1

2δ2(Pn) = 2N
∑
{p}

∏
(jk)

Cpjk(β)
N∏

n=1

δ2
(
Σ(nk)pnk

)
, (123)

where the ‘mod-2’ Kronecker delta δ2(Pn) vanishes if Pn is odd and equals one if
Pn is even.

We have successfully eliminated the spin configuration sum {sn} in Eq. 123,
which no longer explicitly refers to our original degrees of freedom at all! In its
place we now have a configuration sum over all on-or-off links — pjk = 1 or 0,
respectively. And there is a very tricky set of N inter-dependent constraints com-
ing from the product of δ2 factors, which require that an even number of links be
turned on at every lattice site, in order to get a non-zero contribution to the parti-
tion function. This is a sign that our new variables pjk aren’t entirely independent
of each other — which makes sense, since we have 2N of them, but started off
with only N degrees of freedom.

What we can do about these constraints? Well, the constraints arose as a
result of eliminating a configuration sum over sn = ±1, so it is at least plausible
that we can unwind them by introducing a different set of spin variables, s̃n = ±1.
We want the ±1 values of s̃n to be related to the {0, 1} values of pjk, which we
can achieve by implicitly defining s̃n via

p12 =
1− s̃1s̃2

2
p13 =

1− s̃2s̃3
2

p14 =
1− s̃3s̃4

2
p15 =

1− s̃1s̃4
2

and so on for all 2N links. A convenient way to keep track of the subscripts above
is to identify these s̃n with the dual lattice drawn on the next page. Each s̃n is
identified with one of the N plaquettes of the original lattice, and pairs s̃a and s̃b
determine pjk for the link passing between them.
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This is another way to see that pjk aren’t completely independent variables:
Both p12 and p15 depend on s̃1, both p12 and p13 depend on s̃2, and so on. Delight-
fully, these patterns of dependence are precisely what we need to handle the δ2
factors that are still in our partition function. If we consider

P1 = p12 + p13 + p14 + p15 = 2− s̃1s̃2 + s̃2s̃3 + s̃3s̃4 + s̃1s̃4
2

= 2− (s̃1 + s̃3)(s̃2 + s̃4)

2
∈ {0, 2, 4} ,

we see that working in terms of s̃n automatically turns on an even number of links
at every site, producing

∏N
n=1 δ2(Pn) = 1!

In order to replace {p} by
∑

{s̃}, we need to confirm that the latter accounts
for all possible Pn = {0, 2, 4}. It turns out that the dual-spin configuration sum
provides all values of Pn twice, which we can check for the simple case P1 = 4:

This generalizes to the full N -spin system: Negating all s̃n → −s̃n leaves all
Pn unchanged.16 Therefore converting the partition function from Eq. 123 into a
configuration sum over {s̃} gives us

Z =
1

2
2N
∑
{s̃}

∏
(jk)

C(1−s̃j s̃k)/2(β),

where (jk) now refers to the dual lattice.
16This is discussed in more detail by Robert Savit, “Duality in field theory and statistical sys-

tems”, Reviews of Modern Physics 52:453, 1980
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The final step is to express C0(β) = cosh β and C1(β) = sinh β in terms of
the dual variables s̃n that we’re now working with. The trick here is to write

Cp(β) = (cosh β) exp [p log tanh β] = (cosh β) exp

[
1− s̃j s̃k

2
log tanh β

]
,

substituting p = (1− s̃j s̃k)/2. Breaking up the exponential gives us

Cp(β) = (cosh β sinh β)1/2 exp

[
−1

2
s̃j s̃k log tanh β

]
.

Inserting this into the partition function, the product over all links just provides 2N
factors of the s̃n-independent first term, and we can then convert the product of
exponentials into an exponential of the sum, producing

Z =
1

2
(2 cosh β sinh β)N

∑
{s̃}

exp

− log tanh β

2

∑
(jk)

s̃j s̃k

 .

By defining β̃ ≡ −1
2
log tanh β, we can recognize the sum over {s̃} configu-

rations as simply a zero-field Ising model partition function Z(β̃) (Eq. 112). We
can also confirm that this definition of β̃ is equivalent to Eq. 122:

Using similar manipulations, we can express the spin-independent prefactor in
terms of either β or β̃,

2 cosh β sinh β = sinh(2β) =
1

sinh(2β̃)
,

or in the mixed form that reproduces Eq. 121:

2 cosh β sinh β = 2 cosh2 β tanh β =
2 cosh2 β

e2β̃
=⇒ Z(β)(

2 cosh2 β
)N =

Z(β̃)

2e2Nβ̃
.

We have successfully derived Kramers–Wannier duality! Now let’s briefly
interpret what it means. It’s a worthwhile exercise to show that multiplying a
partition function by an overall spin-independent factor, Z(β)→ c(β)Z(β), has no
effect on expectation values. (Try it!) Therefore the relation above identifies a
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d = 2 Ising system at temperature 1/β with another such system at temperature
1/β̃, where small β corresponds to large β̃ and vice versa.

This does not mean that d = 2 Ising model behaves the same at low and
high temperatures. Indeed, we saw already in Section 9.2 that it changes between
qualitatively different ordered and disordered phases in these two regimes. What
Kramers–Wannier duality is telling us is that the ordered phase of Ising spins in
two dimensions, characterized by their order parameter, is secretly equivalent to
the disordered phase of the dual spins — a different set of degrees of freedom,
which can be characterized by a ‘disorder parameter’. Similarly, the disordered
phase of the original system maps onto the ordered phase of the dual system.

If we assume there is a single phase transition where the ordered and dis-
orederd phases coincide, then Kramers–Wannier duality implies this must occur
when β = β̃. In other words,

sinh2(2βc) = 1 =⇒ βc =
1

2
arcsinh(1) =

log
(
1 +
√
2
)

2
= 0.440686 . . . ,

recalling (or looking up) that arcsinh(x) = log
(
x+
√
x2 + 1

)
. Because this exact

critical temperature Tc = 2/ log
(
1 +
√
2
)
= 2.269185 . . . was predicted three years

before Onsager analytically solved the d = 2 Ising model, the fact that his solution
correctly reproduced this Tc was a crucial check of its correctness.

As mentioned at the start of this subsection, dualities of this sort are a pillar
of theoretical physics in the 21st century. In general, these dualities are much
more complicated than Kramers–Wannier duality, in two main ways. First, the
dual degrees of freedom are typically different — and have different interactions
— than the original degrees of freedom. For example, if we were to carry out a
similar analysis of the three-dimensional Ising model, we would find that the dual
system is not just another Ising model. The d = 2 Ising model is a special case
of a self-dual system, which we exploited to determine Tc.

Second, the Ising model is special in that we were able to explicitly derive
the duality it exhibits, which is typically not (yet) possible. Instead, most dualities
have to be conjectured and then checked by subjecting them to as many tests
as possible. For example, this is the case for holographic dualities that are con-
jectured to relate certain theories of quantum gravity to non-gravitational quantum
systems that can be much easier to analyze mathematically. As an aside, the fully
connected lattice encountered in a tutorial activity also makes an appearance in
holography — the behaviour of interacting fermions on this fully connected lat-
tice (known as the SYK model, named after Subir Sachdev, Jinwu Ye and Alexei
Kitaev) is conjected to be dual to the gravitational dynamics of quantum black
holes. More than a thousand scientific studies related to the SYK model and its
conjectured holographic duality have been published since 2016!
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