
MATH327: Statistical Physics, Spring 2024

Tutorial activity — Lattices

This activity will be introduced in our 2 May tutorial, and you’ll have until our
final tutorial on 9 May to work on it. You can already start considering the concep-
tual questions below, and in the next lecture we’ll meet the Ising model on simple
cubic lattices with periodic boundary conditions. Other lattice structures play im-
portant roles in both nature and mathematics. Some of the remarkable electronic
properties of graphene, for example, are due to its two-dimensional honeycomb
lattice structure, while more elaborate three-dimensional lattices play central roles
in the search for materials exhibiting high-temperature superconductivity.

The figures below show three simple two-dimensional lattices, each of which
has a different coordination number C — the number of nearest neighbours for
each site (with periodic boundary conditions). The square lattice has C = 2d = 4,
and generalizes to simple cubic and hyper-cubic lattices in higher dimensions.

The honeycomb lattice of graphene has a smaller C = d+1 = 3, and gener-
alizes to ‘hyper-diamond’ lattices in higher dimensions. Finally, the triangular lat-
tice essentially fills in the middle of each honeycomb cell, leading to coordination
number C = 2(d + 1) = 6. Its higher-dimensional generalizations are known as
A∗

d lattices, of which the simplest example is the three-dimensional body-centered
cubic lattice shown below. Also shown below is the 2d ‘kagome’ lattice, which has
the same C = 4 as the square lattice, illustrating that the coordination number is
insufficient to completely characterize a lattice.
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We can define versions of the Ising model with nearest neighbours (jk)
given by any of the lattices shown above. We can further generalize the Ising
model to have energy

E = −J
∑
(jk)

sjsk −H

N∑
n=1

sn,

where J sets the interaction strength. While any positive J > 0 can be rescaled to
our usual J = 1 without loss of generality, the case of a constant negative J < 0
is qualitatively different. Setting H = 0, consider the following conceptual ques-
tions without doing detailed calculations: What are the minimum-energy ground
states for each case J > 0 and J < 0, for each of the square, honeycomb and
triangular lattices? What sort of order parameter could distinguish these ground
states from the disordered micro-states that dominate at high temperatures?

Generalizing the Ising model in this way opens up a vast landscape of ap-
plications. One important example is modelling spin glasses, by allowing the
interaction strength to vary from link to link:

ESG = −
∑
(jk)

Jjksjsk.

Giorgio Parisi was awarded part of the 2021 Nobel Prize in Physics for his work
studying the mathematics of such spin glass systems. In particular, he was able to
solve the system for which (1) the values Jjk are randomly drawn from a gaussian
distribution around some mean J0, and (2) every site j is a nearest neighbour of
every other site k ̸= j, giving a fully connected lattice (or complete graph). The
pictures on the next page illustrate complete graphs with N = 1, 2, · · · , 12 sites,
for which the sum over links turns into a sum over all 1 ≤ j < k ≤ N . How many
links are there for N sites in this case?

Spin glasses are too complicated to tackle here. Instead, let’s return to a
simpler Ising model with constant interaction strength, while still considering the
fully connected lattice:

E = − J

N

∑
j<k

sjsk −H

N∑
n=1

sn = − J

2N

∑
j ̸=k

sjsk −H

N∑
n=1

sn.

We normalize the interaction strength by N so that the system retains a finite
energy per spin in the N → ∞ thermodynamic limit.

The challenge is to solve this Ising model on the fully connected lattice —
that is, to compute a closed-form expression for its partition function Z. This is
tricky, but can be done by writing Z as a sum over the N+1 possible values of the
magnetization −1 ≤ m ≤ 1, and counting how many micro-states there are for
each magnetization. The energy above also needs to expressed in terms of the
magnetization, which is easier to do by considering the sum over all j ̸= k. Finally,
for large N we can approximate the N + 1 possible values of m as continuously
varying, and integrate

Z =

∫ 1

−1

(· · · ) dm.
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