MATH327: Statistical Physics, Spring 2024 Tutorial activity - Entropy bounds

This activity will be introduced in our 29 Feb. tutorial, where there should be plenty of time to analyze the $N_{1}=N_{2}=10$ case. You can keep working on the larger- N cases afterwards; we'll review them during our next tutorial on 7 March.

We met the second law of thermodynamics by considering what happens when two subsystems are brought into thermal contact - allowed to exchange energy but not particles. Conservation of energy means that if subsystem Ω_{1} has energy e_{1}, the other subsystem Ω_{2} must have energy $E-e_{1}$, where E is the total energy of the overall micro-canonical system Ω. We found (in Eq. 21 on page 33 of the lecture notes) that the total number of micro-states of the overall system is

$$
M=\sum_{e_{1}} M_{e_{1}}^{(1)} M_{E-e_{1}}^{(2)}
$$

where $M_{e}^{(S)}$ is the number of micro-states of subsystem $S \in\{1,2\}$ with energy e.
Because M is a sum of strictly positive terms, we can easily set bounds on it. Say the sum over e_{1} has $N_{\text {terms }} \geq 1$ terms, and define max be the largest of those terms. Then $\max \leq M$, with equality only when $N_{\text {terms }}=1$. Similarly, $M \leq N_{\text {terms }} \cdot \max$, with equality when every term in the sum is the same. All together, we have

$$
\max \leq M \leq N_{\text {terms }} \cdot \max
$$

This can be more powerful than it may initially appear, thanks to the large numbers involved in statistical physics. For illustration, suppose max $\sim e^{N}$ and $N_{\text {terms }} \sim N$ for a system with N degrees of freedom. (We have already seen $M=2^{N}=e^{N \log 2}$ for a system of N spins with $H=0$, while $H>0$ introduces factors of N ! that Stirling's formula can recast in terms of $N^{N}=e^{N \log N}$.) Then

$$
e^{N} \lesssim M \lesssim N e^{N}
$$

For a micro-canonical ensemble in thermodynamic equilibrium, the entropy is $S=\log M$, giving

$$
N \lesssim S \lesssim N+\log N
$$

With $N \sim 10^{23}$, we have $\log N \sim 50$ and $10^{23} \lesssim S \lesssim 10^{23}+50$, a very tight range in relative terms, with the upper bound only $\sim 10^{-20} \%$ larger than the lower bound.

To see how this works in practice, let each of Ω_{1} and Ω_{2} be a spin system with $N_{1}=N_{2}=10$ spins and $H=1$. Fix $E=-10$ for the combined system and numerically compute the bounds on its entropy,

$$
\log (\max) \leq S \leq \log \left(N_{\text {terms }} \cdot \max \right)
$$

What fraction of the true entropy S is accounted for by $\log (\max)$? How do these answers change for $N_{1}=N_{2}=20,30,40, \cdots$, still with fixed $E=-10$?

By considering the sort of spin configurations that produce max, you can see the emergence of an 'arrow of time'!

