
MATH327: Statistical Physics, Spring 2024

Tutorial activity — Debye solid

This activity will be introduced in our 25 April tutorial, and you’ll have until
our next tutorial on 2 May to work on it. In particular, in the next lecture we’ll
discuss the non-relativistic fermion gas needed for the second task below. You
already have everything you need to solve the first task adapting the photon gas.

We have seen that Einstein’s simple non-interacting model of a solid predicts
the heat capacity
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with x ≡ βℏω = ℏω/T . As T → 0, this vanishes exponentially rapidly,
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for T ≪ ℏω.

While the asymptotic limT→0 cv = 0 is correct (and one way of expressing the
third law of thermodynamics), the heat capacities of real materials vanish poly-
nomially in T , as opposed to this exponential dependence. This is demonstrated
by the figure below (from Schroeder’s Introduction to Thermal Physics), which
shows cv/T varying linearly with T 2 at low temperatures T ≲ 4 K, and (for these
three metals) approaching a non-zero constant value at absolute zero:

cv
T

= α + γT 2 =⇒ cv = αT + γT 3.
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The two terms arise from different physical sources. We already have the
tools to analyze the O(T 3) term, by thinking about what might be going wrong
with the Einstein solid as a model of real materials. Recall that this model treats
materials as lattices of atoms that are held in place by oscillators connecting
them to their nearest neighbours. If an atom tries to move out of its position, it
compresses the oscillator in the direction of its motion. This adds (quantized)
energy to the oscillator, which exerts a force to push the atom back into place.

What the Einstein solid neglects is the equal and opposite force the atom
exerts on the oscillator, which the oscillator passes on to the atom on its other
side. This second atom is therefore shoved out of place, requiring intervention
from the other oscillators it’s connected to. Ultimately, we can expect this to result
in patterns of correlated motion travelling long distances (relative to the atomic
scale) through the solid. Thinking of the stadium wave or plants blowing in the
wind can give us a rough mental picture of this behaviour.

Such a picture makes it clear that the Einstein-solid approach of randomly
assigning units of energy to oscillators throughout the material is at best a crude
approximation. Remarkably, it is still possible to more realistically model the col-
lective motion of many atoms in terms of non-interacting degrees of freedom.
Taking inspiration from having considered photons as quantized electromagnetic
waves, we describe the propagating waves of coherent atomic motion in terms
of phonons.1 Analyzing solids in terms of non-interacting phonons produces the
Debye model (named after Peter Debye), which provides an important founda-
tion for modern solid-state physics. As an aside, the concept of phonons was
only introduced in 1932, about twenty years after Debye introduced his model as
a refinement of the Einstein solid. Phonons are an example of a quasi-particle
— a collective excitation of many degrees of freedom that behaves approximately
like a non-interacting particle.

Your first task for this activity is to determine the high- and low-temperature
behaviour of the heat capacity predicted by the Debye model. To approach this
task, you can revisit the photon gas analyzed in Section 8.3 of the lecture notes,
accounting for these similarities and differences between photons and phonons:

• Both photons and phonons are massless (ultra-relativistic) bosons.

• Phonons travel at the (material-dependent) speed of sound cs rather than at
the much larger speed of light.

• Phonons have three polarizations compared to the photons’ two, but you
can feel free to neglect all numerical factors like this and consider only the
functional form of the heat capacity at high and low temperatures.

• Most significantly, phonons possess a minimum wavelength set by the dis-
tance between the atoms in the solid, as illustrated by the figure below (also
from Schroeder’s Introduction to Thermal Physics). This corresponds to a
maximum frequency, ωmax ∝ 3

√
N for N atoms in three dimensions.

1The word ‘phonon’ (like ‘telephone’) is based on the Greek term ϕωνoς (“phonos”), meaning
“sound” — the behaviour we have described is essentially how acoustic waves carry sound.
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• While there is also a minimum frequency set by the size of the solid, even
tiny solids are so large compared to the atomic scale that this minimum
frequency can be set to zero.

In the end, you should find the same T → ∞ limit as for the Einstein solid, while
for low temperatures you should find cv ∝ T 3 → 0, correcting the Einstein solid’s
exponential T -dependence.

We still need to explain the origin of the linear term in the experimental data
shown above. To do so, we can note that this is most relevant at very low tem-

peratures T
TD
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, where the Debye temperature TD is here
just a convenient reference scale we can use to work in terms of dimensionless
numbers. At these low temperatures, there is not enough thermal energy for any
phonons to form (or oscillators to oscillate) — the lattice of atoms is effectively
frozen. But we will soon see that ideal gases of non-relativistic fermions retain
non-zero energy even as T → 0. This will provide a hint about what’s going on:
The linear heat capacity at very low temperatures is coming not from the atoms
in the solid, but from a low-temperature gas of electrons.

Your second task for this activity is to determine the low-temperature be-
haviour of the heat capacity predicted by an ideal, non-relativistic electron gas.
This requires going beyond the approximation of the Fermi function F (E) as
a step function in Section 8.5 of the lecture notes. Instead, integrate ⟨E⟩f ∝∫∞
0

F (E)E3/2 dE by parts, then argue that the boundary term vanishes while the
remaining integrand ∝ E5/2 is sharply peaked around E ≈ µ. Expanding that E5/2

factor in a Taylor series around E = µ produces simpler integrals, and by evaluat-
ing them and taking the derivative ∂

∂T
⟨E⟩f you should find cv ∝ T at leading order.

Again feel free to neglect numerical factors and focus on the functional form.
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