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MATH327: Statistical Physics, Spring 2023
Homework 1 — Comments on Question 1

The two measurements given in the first homework question — 1 GBq at
time ¢ and 584 GBq at time ¢ + 3.5 hours — allow us to estimate the time of the
accident as well as the amount of radioactivity released. Since they tell us the
probability P(z > X) increased by a factor of 584 during the At = 3.5 hours from
time ¢ to time ¢’ = t + At, we just need to solve

1 /°° . (z — vget')? s
———— X —_—— =
Vort'D? Jx b 2t' D?

for ¢t. This is easier said than done.

584 ee (:L‘ = 'Udrt)2
exp | ———=—| dz
VantD? Jx 2tD?

We can make some progress by relating each of these integrals to the error
function, as in the model solution. Doing so converts the equation above into

1 gt | 2= ult4 B9 =5M[Lﬂﬂ<x_%Jﬂ.
2(t + At) D2 V2t D?
While this is still not convenient to work with by hand, modern numerical methods
can easily deal with it.

One strategy is to plot both sides of the equation above vs. ¢ and see where
they intersect — this intersection point occurs at the ¢ for which the two measure-
ments are consistent. This is done in the two plots below. The plot on the left first
considers a large range 10 < t < 100, from which we can see that the desired in-
tersection occurs slightly before ¢ = 60. Zooming in on 50 < ¢ < 60 in the second
plot on the right, we can read off ¢t ~ 57.
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While we could continue zooming in, an alternative approach is to numeri-
cally find the appropriate root of the difference

erfc <m —var(t + At)) — b84 erfc <:L — Udrt) = (),

20 + At)D2 Va2tD?

where erfc(z) = 1—erf(z). It can help the root-finding algorithm if we first estimate
roughly where it should look (around ¢ = 60). Figures like those above are a good
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MATH327: Statistical Physics, Spring 2023
Tutorial activity — Otto cycle

The figure below shows the ‘Otto cycle’ that describes an idealized petrol engine.

* Fast (adiabatic) compression increases the pressure of the gas (a mixture of air
and vaporized petrol), until a spark ignites it.

+ This ignition introduces lots of heat almost instantaneously, while the volume is
fixed at V5. Even though the gas itself is burning, we can interpret this heat as
coming from energy exchange with a hot thermal reservoir.

* The gas then does work by adiabatically expanding back to volume V; > V.

* Finally, heat is expelled at fixed volume V; by swapping the hot exhaust for an
equal amount of cooler, fresh gas ready to be burned.

¥ 3
Ignition 4
Q Power
2 1
| 4
Exhaust
Compression 1
| |
| |

-
Vo S = W 1%

The efficiency n of the Otto cycle depends on the compression ratio

Vi
= —>1.
T

What is this efficiency? How does it compare to the efficiency of the Carnot cycle?
How should V; and V; be chosen to maximize the efficiency?

MATH327 Tutorial (Cycle) 1 Last modified 15 Mar. 2023
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MATH327: Statistical Physics, Spring 2023
Tutorial activity — Einstein solid

In Section 3.4 we computed the energy for N distinguishable spins in a solid,
E = —NH tanh(SH)

for inverse temperature § = 1/T and magnetic field strength H. What is the
corresponding heat capacity? How does it compare to the experimental’ data
points'in the figure below (from Schroeder’s Introduction to Thermal Physics)?
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You should find poor agreement — especially upon turning off the external
field by taking H — 0! This issue turns out to persist even for more realistic mod-
els of solids analyzed using classical approaches. To address it, in 1907 Einstein
developed a simple model of solids based on quantized energies, taking some in-
spiration from his 1905 proposal that quantized energies explain the photoelectric
effect.

The ‘Einstein solid’ consists of many atoms whose positions are fixed to
(distinguishable) locations in a regular lattice. Interactions between neighbouring
atoms are credited with pinning down each atom to its fixed location. This is
modeled by picturing neighbouring atoms connected by ‘oscillators’, analogous
to springs, which possess energy as a consequence of these interactions. We
define the Einstein solid by hypothesizing that the energy of each oscillator is
quantized, ¢; = 0, hw, 2Aw, - - -, with the same characteristic angular frequency w
for all oscillators. Although these oscillators model interactions between nearest-
neighbour atoms, in this approach they are non-interacting degrees of freedom
that we can analyze using the statistical physics tools we have already developed.

As illustrated by the figure below, also from Schroeder’s Introduction to Ther-
mal Physics, the number of oscillators depends both on the number of atoms and

"Experimentally it is easier to measure the heat capacity at constant pressure, c,, rather than
at constant volume, but the difference between ¢, and ¢, is negligible for our purposes here.
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