


MATH327: Statistical Physics, Spring 2023

Tutorial activity — Entropy bounds

We met the second law of thermodynamics by considering what happens
when two subsystems are brought into thermal contact — allowed to exchange
energy but not particles. Conservation of energy means that if subsystem Ω1 has
energy e1, the other subsystem Ω2 must have energy E − e1, where E is the total
energy of the overall micro-canonical system Ω. We found (in Eq. 21 on page 33
of the lecture notes) that the total number of micro-states of the overall system is

M =
∑
e1

M (1)
e1

M
(2)
E−e1

where M
(S)
e is the number of micro-states of subsystem S ∈ {1, 2} with energy e.

Because M is a sum of strictly positive terms, we can easily set bounds
on it. Say the sum over e1 has Nterms ≥ 1 terms M

(1)
e1 M

(2)
E−e1

, and define max be
the largest of those terms. Then max ≤ M , with equality only when Nterms = 1.
Similarly, M ≤ Nterms ·max, with equality when every term in the sum is the same.
All together, we have

max ≤M ≤ Nterms ·max .

This can be more powerful than it may initially appear, thanks to the large
numbers involved in statistical physics. For illustration, suppose max ∼ eN and
Nterms ∼ N for a system with N degrees of freedom. (We have already seen
M = 2N = eN log 2 for a system of N spins with H = 0, while H > 0 introduces
factors of N ! that Stirling’s formula can recast in terms of NN = eN logN .) Then

eN . M . NeN .

If we take the logarithm and recall logM = S is the entropy, this gives us

N . S . N + logN.

With our characteristic N ∼ 1023, we have logN ∼ 50 and 1023 . S . 1023 + 50, a
very tight range in relative terms, with the upper bound only ∼10−20% larger than
the lower bound.

To see how this works in practice, let each of Ω1 and Ω2 be a spin system
with N1 = N2 = 10 spins and H = 1. Fix E = −10 for the combined system and
numerically compute the bounds on its entropy,

log (max) ≤ S ≤ log (Nterms ·max) .

What fraction of the true entropy S is accounted for by log (max)? How do these
answers change for N1 = N2 = 20, 30, 40, · · · , still with fixed E = −10?

By considering the sort of spin configurations that produce max, you can
see the emergence of an ‘arrow of time’!
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Tutorial activity — Stirling’s formula

We have already made use of Stirling’s formula in the following form:

log(N !) = N logN −N +O(logN) ≈ N logN −N for N � 1,

which implies

N ! ≈ exp [N logN −N ] =

(
N

e

)N

.

This can be made more precise:

N ! =
√

2πN

(
N

e

)N (
1 +

A

N
+

B

N2
+

C

N3
+ · · ·

)
(1)

with calculable coefficients A, B, C, etc.1 By performing a sequence of analyses
of increasing complexity, we can build up these results.

First analysis: Derive the bounds

N logN −N < log(N !) < N logN (2)

for N � 1. The second bound is the easier one. There are multiple ways to obtain
the first bound. One pleasant approach is to consider the series expansion for ex.
Together, these bounds establish

1− 1

logN
<

log(N !)

N logN
< 1 =⇒ log(N !) ∼ N logN

Second analysis: Compute the first term in Eq. 1, N ! ≈
√

2πN
(
N
e

)N . This
requires several steps, the first of which is to consider the gamma function

Γ(N + 1) ≡
∫ ∞
0

xNe−x dx.

Show that Γ(N + 1) = N ! for integer N ≥ 0. In other words, derive the Euler
integral (of the second kind)

N ! =

∫ ∞
0

xNe−x dx. (3)

Again, this can be done in multiple ways, including induction with integration by
parts or by taking derivatives of∫ ∞

0

e−ax dx = a−1

and then setting a = 1.
1James Stirling computed the

√
2π while Abraham de Moivre derived the expansion in powers

of 1/N . An interesting aspect of this expansion is that it is asymptotic — it has a vanishing radius
of convergence but can provide precise approximations if truncated at an appropriate power.
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The next step in this second analysis is to approximate the gamma function
as a gaussian integral. Show that the integrand xNe−x = exp [N log x− x] of Eq. 3
is maximized at x = N .

For N � 1, the integrand is sharply peaked around this maximum at x = N .
You can check this for yourself or take it as given. We can therefore focus on a
small region around this peak by changing variables to y ≡ x−N and considering∣∣ y
N

∣∣� 1. Expand the log x in the integrand, up to and including terms quadratic in
y
N

. You should be left with the desired result, except for the following factor, which
can be approximated by a gaussian integral (note the lower bound of integration):∫ ∞

−N
e−y

2/(2N) dy ≈
∫ ∞
−∞

e−y
2/(2N) =

√
2πN.

The error introduced by extending the integration from (−N,∞) to (−∞,∞) is
exponentially small and could be captured by computing the series of corrections
suppressed by powers of 1

N
in Eq. 1.

This leads us to the third analysis: Compute some of the leading power-
suppressed corrections in Eq. 1. That is, determine the coefficients A, B, etc.
Again, there are many ways to achieve this, including higher-order expansions of
the log x considered above. One pleasant approach is to compareN ! and (N+1)!,
now that we have derived the series prefactor

√
2πN

(
N
e

)N .
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