MATH327: Statistical Physics, Spring 2022
Computer Project — Part 1

Instructions

In this first part of the computer project you will numerically analyze ordinary
diffusive behaviour in a one-dimensional random walk. This will allow you to verify
your numerical results by comparing them with exact analytic predictions based
on the law of large numbers and central limit theorem. The verified numerical
methods can then be generalized to consider anomalous diffusion in the second
part of the project, where exact analytic predictions will not be available.

There are three exercises below, the first two of which include some back-
ground information on pseudo-random numbers and inverse transform sampling.
While the exercises mention some syntax specific to Python, you may use a
different programming option if you prefer. This demo illustrates all the Python
programming tools needed for the project. Even running slowly in the cloud via
replit.com, the computing for each exercise should complete in a minute or less.

This part of the project is due by 23:59 on Thursday, 17 February. Submit
it by file upload on Canvas.! Both your answers to the questions below and the
code that produces your results must be submitted. These can be uploaded as
separate files or in a combined file, as you prefer. With the exception of Math-
ematica .nb files, it will be quicker for me to check code submitted in its native
format (for example, a .py file for Python code or a .m file for MATLAB code).
Anonymous marking is turned on, and | will aim to return feedback promptly in
case this may be helpful when working on the second part of the project.

Exercise 1: Pseudo-random numbers

Background

We have discussed how statistical physics is based on considering systems
that involve some element of randomness. Because computer programs are de-
terministic, it is not possible to use them to generate a truly random sequence
of numbers.? Instead, computer algorithms generate pseudo-random numbers,
which are entirely sufficient for our purposes.

A sequence of pseudo-random numbers is defined to be a sequence that
looks random, in the sense that knowing the first N — 1 elements in the sequence

By submitting solutions to this assessment you affirm that you have read and understood
the Academic Integrity Policy detailed in Appendix L of the Code of Practice on Assessment and
have successfully passed the Academic Integrity Tutorial and Quiz. The marks achieved on this
assessment remain provisional until they are ratified by the Board of Examiners in June 2022.

2New quantum technologies are being developed as a way to produce truly random numbers.
This is part of the motivation for large investments in quantum technologies around the world.

MATH327 Project Part 1 1 Last modified 3 Feb. 2022


https://tinyurl.com/math327demo
https://replit.com/languages/python3
https://liverpool.instructure.com/courses/47333/assignments/178541
https://www.liverpool.ac.uk/media/livacuk/tqsd/code-of-practice-on-assessment/appendix_L_cop_assess.pdf
https://uknqt.ukri.org

does not suffice to predict the Nth element with a high probability of correctness.
Equivalently, it takes a very long time for the sequence to start repeating itself—
such repetition will eventually happen, because computers encode numbers in a
finite set of bits, which can represent only a finite set of numbers. For example, 32
bits can represent all integers from 0 through 232 — 1 ~ 10° while 64 bits increase
the upper bound to 264 —1 ~ 10'. Python uses the Mersenne Twister algorithm as
its default pseudo-random number generator (PRNG). This algorithm can provide
219937 1 ~ 10%°% numbers before its sequence repeats.

We can view the absence of true randomness as an advantage rather than
a limitation. Deterministic pseudo-random numbers allow our computer programs
to be reproducible up to the (very high) precision of the computer. Each exercise
below starts by initializing the PRNG with a “seed”. Given the same seed, the
PRNG will subsequently generate the same sequence of pseudo-random num-
bers. In Python, as shown in the demo, this initialization is done by calling the
function random.seed(s), where s is the seed we specify.

Task

The Python function random.random() generates a pseudo-random number
u with the uniform probability distribution

(u) = 1 for0 <u<1
PY=1 0 otherwise

Clearly [ p(z)dz = [, dzx = 1, as required. What are the exact mean 1 and
standard deviation ¢ of this probability distribution?
[2 marks]

Initialize the PRNG with seed s = 327. For each of the five R = 10, 100,
1000 10,000 and 100,000, generate a sequence of R pseudo-random numbers wu,
distributed according to p(u). (Don’t re-initialize the PRNG when changing R, or
else these sequences will partially duplicate each other.) Use each sequence to
estimate the mean and standard deviation via the law of large numbers,

1 & 1 &

How do your numerical results compare to your exact analytic predictions above?
Rounding to four decimal places should suffice for these comparisons.
[5 marks]

MATH327 Project Part 1 2 Last modified 3 Feb. 2022


https://en.wikipedia.org/wiki/4,294,967,295
https://docs.python.org/3/library/random.html

In class we saw ((7r — 1)*) o< 1/R (page 14 of the lecture notes). Let’s
test this numerically by repeating the above computation of uz another 99 times,
ignoring @ for simplicity. Together with the result you reported above, this gives
a total of 100 estimates of the random variable (@ — 4)®, which we can use to
approximate the expectation value as

wR—m2z——§ij—m? (2)

Rather than reporting your results as numerical values, plot R x (ugr — M)2
vs. R and see whether the five points appear approximately constant. If so, is the
size of this constant roughly what you would expect?

Hints: Include 0 on the y-axis of your plot to maintain a sense of scale.

The Matplotlib Python plotting library provides (via its pyplot module) the op-

tion xscale(‘log’) that sets a logarithmic scale for the x-axis, to produce even
spacing between these five R.

[8 marks]

Exercise 2: Inverse transform sampling

Background

The uniform distribution is a bit boring. Inverse transform sampling is a
technique that allows us to consider more interesting probability distributions,
while still generating pseudo-random numbers using the random.random() func-
tion. The idea is illustrated by the sketch below.

In words, we take our uniformly distributed w«, and act on them with some
invertible transformation F' to define =, = F(u,) that follow the distribution of
interest, p(x). We require p(u)du = p(x)dx, which allows us to relate p(x) and the
transformation F'(u):

() = pu) 2 = plu)-+

MATH327 Project Part 1 3 Last modified 3 Feb. 2022



hence the name “inverse transform sampling”. This relation lets us either engi-
neer an appropriate transformation F'(u) to produce a desired distribution p(z), or
determine the distribution that results from a given transformation.

Task

Based on the uniformly distributed pseudo-random numbers u generated by
random.random(), define

= F(u) = arcsin (u _ %) | (3)

What is the probability distribution p(z) of these random numbers =? What
are the minimum and maximum possible values that x can take? What are the
resulting exact mean p and standard deviation o of p(x)?

[5 marks]

Reset by initializing the random number generator with seed 327. Now, using
the arcsin function provided by the Numerical Python (NumPy) library, generate
R = 1,000,000 pseudo-random numbers z, via Eq. 3. Use these to numerically
estimate the mean and standard deviation of p(z), analogously to Eq. 1 in the
previous exercise. How do your numerical results compare to your exact i and o
above? Rounding to four decimal places should suffice for this comparison.

[5 marks]

In a single plot, compare the histogram of the 1,000,000 {z,} to the analytic
p(z) you found above. Do your numerical results match your prediction? Roughly
51 bins in the histogram should suffice for this comparison.

Hint: The demo shows how Matplotlib can plot a function p(x) on top of a
histogram produced using its hist routine.
[5 marks]

MATH327 Project Part 1 4 Last modified 3 Feb. 2022



Exercise 3: Random walks

(a) Central limit theorem

Now consider a random walk that consists of N steps, with the length of
each step set by a pseudo-random number z; obtained using Eq. 3. By inde-
pendently generating R different N-step random walks you can analyze the final
positions of the walks,

N
X, (N) =) r=1,2---,R.
1=1

Based on the central limit theorem, what are the analytic predictions for (X (N))
and the diffusion length

6(N) = J(IX(N)P) - (X(V))2,
each as a function of N? (Hint: /,(/N) would be called AX (N) in the notes; the
new nomenclature is preparation for the second part of the project.)

[2 marks]

(b) Fixed number of steps

Reset by initializing the random number generator with seed 327. With fixed
N = 100, generate R 100-step random walks for each of the four R = 10, 100,
1000 and 10,000. Use the resulting X, to numerically estimate

X(N>RE%ZXT(N) 52(N)R%J <%Z[XT(N)]2> — X(N)p-

r=1

How do your numerical results compare to your exact analytic predictions
for N = 100? Rounding to four decimal places should suffice for this comparison.
[8 marks]

(c) Diffusion constant

Reset by initializing the random number generator with seed 327. Then

fix R = 10,000 and compute ¢;(N), for every N = 1,2,---,500. Rather than

reporting results as numerical values, plot ¢5(V), vs. N. (Hint: You can ignore

potential correlations between ¢,(V), for different values of V.)
[4 marks]

Now fit your numerical results to the function
(2(N), = C + DVN.

Include your fit in your plot of /() vs. N. How do your fit results for C' and D
compare to the exact analytic predictions from the central limit theorem? (Hint:
NumPy’s polyfit routine can handle fits linear in v/N.)

[6 marks]

MATH327 Project Part 1 5 Last modified 3 Feb. 2022



