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single micro-state takes far longer than the age of the universe, then the fraction
we could sample in a reasonable amount of time (say, a day) is almost vanishingly
small.

As a concrete example, if we generously suppose our computer only needs
a few nanoseconds to sample a micro-state of a tiny N ~ 1000 Ising system, over
the course of a day it would sample roughly ten trillion (10'%) spin configurations
— only about one part in 10%7 of the total 2V ~ 103%° micro-states. To make the
situation even worse, as N increases the number of possible Ising model micro-
states grows exponentially quickly, ~2%, in addition to the more modest growth
in the amount of computing required to sample each micro-state. For illustration,
2015 research arXiv:1502.07613 numerically predicting T, for the Ising model in
d = 5, 6 and 7 dimensions includes calculations up to N = 64° ~ 10°. Out of
the roughly 219° ~ 10323:000000 micro-states for this systems, only ~104 could be
sampled in a reasonable amount of time. How much trust should we place in
results from such numerical work?

Thinking back to our consideration of the ordered and disordered phases of
the Ising model in Section 9.2, we could make a case that everything may work
out in the high-temperature disordered phase. In the infinite-temperature limit, all
the micro-states become equally probable, and observable expectation values are
determined by the degeneracies of the different energy levels. Random sampling
is more likely to account for the dominant energy levels with large degeneracies,
making it plausible that reasonable results could be obtained by averaging even
over such a tiny fraction of the total number of micro-states.

In the low-temperature ordered phase, however, the opposite occurs. As the
temperature decreases, the large-scale behaviour of the system in this phase is
dominated by a very small number of micro-states. For sufficiently low tempera-
tures, observable expectation values are effectively determined by the two degen-
erate minimum-energy micro-states with all spins aligned either up or down. Only
exponentially suppressed corrections would then be introduced by higher-energy
excited states. As there is essentially no chance of randomly sampling either
of those two minimum-energy micro-states, the random sampling approach de-
scribed above seems doomed to fail.

<6) L fo
A key breakthrough that made numerlcal results truly reliable was the in-

vention of stochastic procedures to sample any micro-state w; with a probability
proportional to its Boltzmann factor, p; o e #Fi, Such automated procedures
are known as algorithms (a term that evolved from the name of Muhammad ibn
Musa al-Khwarizmi), and the overall approach is called importance sampling,
since it preferentially samples the important micro-states that make the most sig-
nificant contributions to the partition function and derived quantities. Assuming
we have such an algorithm, applying it to the 8 — oo low-temperature phase
considered above would produce an exponentially enhanced probability of sam-
pling low-energy micro-states, as desired. As 8 — 0 in the high-temperature
phase, there would be little change compared to the more straightforward pseudo-
random sampling considered above, since all micro-states would become equally
probable.
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The challenge is to design importance sampling algorithms in the first place.
In particular, these algorithms can’t rely on knowing the full set of micro-state
energies E;, and the corresponding probabilities p;, since enumerating these data
would be ec equivalent to brute-force computation  of the full partition function. In
essence, the algorithm has to exploit its stochastic aspect — its use of pseudo-
random numbers — to guide it to important, high-probability micro-states. And
this guiding needs to be done without introducing any other bias that might cause
distorted results to be obtained from averaging over the tiny fraction of micro-
states that can be sampled in a reasonable amount of time.

A famous solution to this challenge was developed in 1953 by Nick Metropo-
lis, Arianna Rosenbluth, Marshall Rosenbluth, Mici Teller and Edward Teller. | will
call this solution the Metropolis—Rosenbluth—Teller algorithm, or the MRT algo-
rithm for short.’® It relies on the concept of Markov chains that we bnefly dis-
cussed when considering random walks all the way back in Section 1.5. To reit-
erate the key concept, a Markov chain is a process in which the next micro-state
to be sampled is pseudo-randomly chosen based on the micro-state currently un-
der consideration, with no ‘memory’ of any other micro-states that may previously
have been sampled.

We can use the Ising model to illustrate how the MRT algorithm employs
Markov chains to sample micro-states proportionally to their importance. Any
spin configuration can serve equally well as the initial micro-state at the start
of the chain. Starting from this initial configuration, we pseudo-randomly select
one spin, s;, and compute AE;, the change in the system’s energy that would be
caused by flipping s; — —s;. We then update the spin configuration by ‘accepting’
this spin flip with probability

Paccept = Min {1, e PAE} | (124)

which defines the next micro-state in the Markov chain. Importantly, this new
micro-state may be identical to the previous micro-state — this occurs with prob-
ability Preject = 1—Paccept- e final step of the algorithm is to repeat this single-spin
update procedure as many times as our computers can handle.

We can appreciate why micro-states may need to be repeated in the Markov
chain by considering what should happen if we were to sample the ground state
at low temperatures. In this regime, the ground state should dominate, so the
algorithm should sample it repeatedly, proportionally to its probability.

Digging into Eq. 124, we can see that any spin flip that lowers the energy
will always be accepted, since AE < 0 = e #2F > 1. The MRT algorithm is
therefore free to approach the minimum-energy ground state of the system. If it
is in the ground state, then any spin flip will increase the energy, AE > 0, and
will only be accepted with an exponentially suppressed probability e #2% — 0 as

T =1/p — 0, as desired. More generally, if we consider two micro-states w4 and

16]n an infamous misfiring of alphabetical ordering, this remains widely known as the “Metropolis
algorithm” even though Metropolis’s role was providing specialized computing equipment rather
than creating the algorithm itself. In addition, the key contributions of Arianna Rosenbluth and
Mici Teller were widely under-appreciated for many years.
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wp, then the relative probabilities of moving between these two micro-states are

P(A —5/1%\ min {1, PE=EAl  o-p(Ep=Ex)  o—~AEp -
P(B-A4) " min {1,e-pEa=Em)} 1 ~ e BBa’ (125)

regardless of whether £, < Ep or Eg < Ey4.

So long as every micro-state can be generated from any other micro-state
by making a series of pseudo-random changes to individual degrees of freedom,
Eq. 125 ensures that the micro-states w; will indeed be sampled with probabilities
proportional to the Boltzmann factors e~ that quantify their importance. The
necessary condition that the Markov chain can reach every micro-state (at least
in principle) is called ergodicity. Because the micro-state probabilities p; are
effectively ‘felt out’ through the accept/reject test described above, in non-ergodic
situations the algorithm will fail to account for the probabilities of micro-states that
can’t be reached by the Markov chain. This can easily lead to incorrect results.

You can read more about the MRT algorithm in Section 8.2 of Dan Schroe-
der’s Introduction to Thermal Physics (the second item in the list of further reading
on page 5), which provides a single-page annotated code implementing it for the
two-dimensional Ising model. While the conceptually simple MRT algorithm is the
most famous means to carry out Markov-chain Monte Carlo importance sampling,
it is far from the only option, and often far from the best. If time-permits, we may
discuss some of the challenges that make it advantageous to go beyond the MRT
algorithm, in particular the issue of auto-correlations.

For now, suffice it to say that there is an enormous amount of ongoing re-
search developing, optimizing and applying more elaborate Monte Carlo methods
to investigate topics throughout the mathematical sciences and beyond. In Sec-
tion 10.3 we will briefly look at some of these broader applications. First, there is
another important concept to introduce, called universality, which helps to reveal
why interacting statistical systems are so useful to apply to such a diverse range
of scientific investigations.

10.2 Universality

In Section 9.3 we defined the critical exponent b as the non-integer power
governing the behaviour of the order parameter (m) o (T, — T)" for temperatures L=/ MF
slightly lower than the critical temperature T, of the second-order phase transi-
tion. In addition to being an important characteristic any specific phase transition, ‘/7 2d
it was discovered during the twentieth century that precisely the same critical ;27 2/
exponents turn out to govern the behaviour of phase transitions that we initially
would not have expected to have any connection.

A famous example of universality involves the liquid—gas phase transition,
which we have run out of time to discuss in detail. This phase transition occurs
only for interacting (non-ideal) gases, and after our studies of simple interacting
spin systems in Unit 9 we can appreciate that such interacting gases are far more
difficult to analyze than the ideal gases we considered in Units 4 and 8. Sec-
tion 8.2 of Dan Schroeder’s Introduction to Thermal Physics explains some tricks
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that can simplify these calculations in certain regimes. Specifically, the equation
of state of a low-density interacting gas can be expressed as an expansion around
the ideal gas law,

PV = NT [1+ B(T)pgas + O (pgas)]

where pqss is the density of the atoms in the gas, which needs to be small in order
for this approach to work. The temperature-dependent function that governs the
leading correction to the ideal gas law,

B(T) = —2n /00 r (e —1) dr,

in turn depends on the interaction energy u(r) between pairs of particles sepa-
rated by distance r, which can vary significantly for different types of particles.

Unfortunately, the restriction to low densities in this analysis prevents its
application to the liquid—gas phase transition. From everyday experience we can
appreciate that the liquid phase of a given set of particles (for example, water)
has a higher density than the gas phase of those same particles (in this case,
steam). The liquid—gas phase transition occurs at the critical temperature T, that
produces equal densities for the two phases — this is the largest density the gas
can reach while still remaining a gas, rather than the low density assumed above.

An alternative approach, pioneered by Johannes van der Waals in the late
1800s (and awarded the 1910 Nobel Prize in Physics), is to propose modifications
to the equation of state based on qualitative physical arguments. The van der
Waals equation of state,

(P+ap?) (V. — Nb) = NT,

aims to model two aspects of interacting fluids and gases, through two unknown
parameters a and b. First, Nb represents the non-zero volume occupied by the N
particles, which is subtracted from the total available volume V. Second, the ap?
dependence on the density represents repulsive forces that the particles exert on
each other when they are packed more closely together.

These are obviously rough, imprecise arguments, and you may not be sur-
prised to hear that the van der Waals equation of state does not provide a very
accurate description of real fluids and gases. However, as discussed in Sec-
tion 5.1 of David Tong’s Lectures on Statistical Physics, it does successfully pre-
dict a phase transition between the liquid and gas phases, along with a set of
critical exponents characterizing this transition. One of these critical exponents
concerns the behaviour of the densities,

"—1—'_ ! OC(TC—‘Q@

Pgas  Pliquid =

The van der Waals equation of state predicts b = 1/2, while the true value is
b ~ 0.32, for any liquid—gas transition (not just H,O water/steam).

It may seem surprising that all liquids involve the same critical exponent.
If we look back to the end of Section 9.3, we can be even more surprised that
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this is the same critical exponent as the magnetization in the three-dimensional
Ising model! This is not merely a numerical coincidence, but an example of an
amazing phenomenon known as universality. In essence, universality states
that the specific details of interacting statistical systems become irrelevant close
to critical points at which phase transitions occur. It doesn’t matter whether we are
considering a three-dimensional lattice of Ising spins or a liquid such as water —
the behaviour of both systems is governed by the same set of critical exponents,
completely specified by their universality class.

The detailed mathematics underlying universality is well beyond the scope
of this module. Important contributions to its development were made by Michael
Fisher, Leo Kadanoff and Ken Wilson, among many others (with Wilson receiving
the 1982 Nobel Prize in Physics). Suffice it to say that universality causes the
same large-scale behaviour to appear in the vicinity of critical points even for
systems that appear completely different. This insensitivity. to the details of the
system helps to explain the power of even simple interacting statistical systems
such as the Ising model, and their applicability in so many different domains.

10.3 Broader applications

In this section we will quickly highlight a few ways in which the concepts
and tools of statistical physics find application within and beyond the mathemat-
ical sciences. These discussions will just be quick high-level glimpses, without
any detailed derivations. Only a few examples are included here, and the famil-
iarity you have now gained with statistical physics can help you to uncover and
understand many more.

Quantum field theory

First considering an example within the mathematical sciences, let’s elabo-
rate on the Liverpool theoretical physics research mentioned in Section 10.1 as
a major use of Monte Carlo importance sampling. This research investigates the
behaviours of various quantum field theories (QFTs), with applications ranging
from the strong nuclear force (explaining how protons, neutrons and other com-
posite particles arise from the fundamental interactions of quarks and gluons), to
the Higgs boson, dark matter, and even holographic gauge/gravity duality.

Qualitatively, any particular QFT involves a set of fields, ®(Z, 1), that fill all
of space and time. These fields interact with each other (and with themselves),
producing behaviour that is governed by the Feynman path integral

2(0(#,1)] = / PP exp%/ iz dtﬁ[@(aﬁ',t)]} ,

where the lagrangian L£[®(Z, t)] specifies the interactions between the degrees of
freedom. Both the lagrangian and the path integral are functionals of the fields,
which are in turn functions of space and time. The measure D® represents inte-
gration over all configurations of all the fields at every (&, ).
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The path integral should look tantalizingly similar to the partition function in
the canonical ensemble, with £ appearing in place of the energy of each field
configuration, and Planck’s constant i appearing in place of the temperature —
which we can interpret as quantum fluctuations playing a role analogous to ther-
mal fluctuations in statistical physics. The main difference is the imaginary unit 7 in
the exponential, which we can address through the trick of working in “imaginary

time” it = ¢. This is known as a Wick rotation, and gives us

Z[6(, 7)) = /ﬁ_ exp [—/% / Pz dr L[3(, T)]]

(0) — % / D& O[5 (z,7)] exp [—% / &z dr L[5, 7)]] ,

—

which we can analyze through Monte Carlo importance sampling in much the
same way as we would for an Ising model. The catch is that Wick rotation is only
valid in equilibrium, limiting the phenomena that can be analyzed through this
approach.

Finally, there is one more complication we need to deal with. Treating space
and time as continuous implies that there are infinitely many degrees of free-
dom for each field, making Z formally an infinite-dimensional integral. We need
to regularize this integral by replacing space and time with a discrete lattice of
space-time points, as illustrated below.

Pttt ias

< ‘
O

-} & 7 ¥ . ' 1t
D0 T Ty { o 0
(Image credit: Claudio Rebbi)

This approach of Wick rotating and then discretizing space and time is
known as lattice field theory. The image above comes from a lattice field theory
computation that predicted properties of protons. It visualizes a snapshot (at a
single point in imaginary time) of the spatial configuration of a quark field within
that proton. Each quark degree of freedom has a “color charge” — a linear com-
bination of {red, blue, green} — whose orientation in colour space is indicated by
the colour of each point in the illustration above, while the size of each points
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represents the magnitude of the charge. By repeating these numerical calcula-
tions for discrete space-times with more lattice sites placed closer together, we
can recover the original, continuous system by extrapolating to the continuum
limit where there are infinitely many lattice sites infinitesimally close together.
Lattice field theory is an extremely successful and broadly applicable approach,
which has proven able to predict many aspects of complicated interacting QFTs
with high precision and controlled uncertainties that are systematically improvable
through additional computing resources or algorithmic innovations.

Voter models

Moving beyond the mathematical sciences, we can consider sociology as a
domain where the applicability of statistical physics is less obvious. Despite this,
there is a diverse and active field of “sociophysics”, which uses methods and per-
spectives of statistical physics to describe various aspects of social and political
behaviour. Serge Galam’s 2012 book Sociophysics provides a comprehensive
introduction. In the decade since it was published, the continued growth of enor-
mous online social networks has unleashed a flood of data that can be modeled
through frameworks based on interacting statistical systems.

A particular branch of sociology where connections to statistical physics may
be more apparent is the field of opinion formation, where “voter models” have
been widely used since the 1970s to model elections, and more general political
debates, with varying degrees of success. Voter models are interacting statistical
systems not too different from the Ising model, where the spin degrees of freedom
that we have been working with are reinterpreted as voters’ opinions on a certain
topic. For example, support for a particular proposition, individual candidate or
political party can be represented as s, = +1, with s,, = —1 indicating opposition.
Just like the interactions in the Ising model encourage spins to align with each
other, voter models incorporate a tendency for voters to align (i.e., agree) with the
majority of other voters they interact with.

There are many generalizations that can then be added to better describe
the outcome of polls and elections. A simple extension would be to allow voters
to be neutral or indifferent to the question, represented as s,, = 0. Similarly, the
strength of a voter's commitment to their opinion can be modelled by extending
the range of possible spin values,

S € {-+,—2,—1,0,+1,42,--- }.

Voter models should also be defined on flexible and evolving graphs, rather
than the regular lattices we considered for the Ising model, in order to capture the
possibility of people interacting with different sets of individuals over time. The
figure on the next page, from Richard Durrett et al., “Graph fission in an evolving
voter model” (2012), illustrates how such a graph can look for a two-state voter
model with s,, € {—1,+1} coloured red and blue. As in everyday experience (and
inspired by social networks), different voters have different numbers of connec-
tions with each other. In this particular investigation, network connections be-
tween disagreeing voters are probabilistically severed, which enables a transition

MATH327 Unit 10 164 Last modified 12 May 2022



between two phases. In one of these phases a consensus develops among the
vast majority of voters. In the other phase the population becomes increasingly
polarized, as shown below. Voters with a particular opinion increasingly interact
only with others who share that opinion, and eventually nearly all connections are
severed between the two opposing groups.

DOI:10.1073/pnas.1200709109

Simpler studies, that don’t allow connections to be severed, can also ob-
serve a transition to consensus once an opinion reaches a critical concentration.
In particular, Alexander Balankin et al., “Ising percolation in a three-state majority
vote model” (2016) found this to be a second-order phase transition in the univer-
sality class of the two-dimensional Ising model. This work also observed the pos-
sibility of a “stable non-consensus” phase, with long-term polarization between
‘clusters’ of aligned voters who interact mainly with each other rather than with
voters holding different opinions. In this case, rather than severing connections
between the two groups, the fixed patterns of connections encouraged voters to
change their opinions until these stable clusters eventually formed.

Epidemiology

Another application of interacting statistical systems, which has attracted a
lot of attention over the past couple of years, is to model the spread of diseases
in populations. As in the case of voter models, the degrees of freedom under
consideration are again individuals, whose interactions with each other can allow
the infection to spread to those who are susceptible. Numerical Monte Carlo
calculations can then be used to model how many people are likely to be infected
as time passes, guided by data on typical movement and contacts.

The picture on the next page is a snapshot from an over-simplified simula-
tion provided by the Washington Post to illustrate these concepts. Here individ-
uals are modeled simply as a gas of interacting particles in two dimensions, and
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various ways of restricting their motion are used to explore the likely effects of
measures such as quarantines and social distancing. By coincidence, the scale
of this simulation, which considers a population of just 200 people, is compara-
ble to the first importance sampling Monte Carlo calculation carried out in 1953,
which computed the pressure (i.e., equation of state) for 224 interacting particles
in a two-dimensional ‘volume’. At the time, this required several days of comput-
ing time on a state-of-the-art machine; now these sorts of calculations are easily
done on a smartphone.
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Larger-scale and more realistic versions of these epidemiological simula-
tions provide important input into government deliberations regarding what re-
strictions (such as lockdowns) would be most beneficial to reduce the spread of
disease, and how long it would be best to maintain such restrictions. Rather than
investigating a phase transition, the goal is to quantify likely effects of various po-
tential restrictions. As described in Section 1.2, the numerical experiments are
therefore repeated many times with different sequences of pseudo-random num-
bers, to produce an ensemble of possibilities from which the likely outcomes of
interventions can be inferred.

Flocking

Let's conclude these brief highlights of some broader applications of sta-
tistical physics by considering another biological example, where interacting sta-
tistical systems are used to model the large-scale collective motion of certain
groups of animals. The image on the next page, from Marcus Woo, “How bird
flocks are like liquid helium” (2014) illustrates the “flocking” behaviour of groups
of starlings, which fly through the sky in surprisingly tight coordination, producing
shape-shifting clouds known as murmurations. Qualitatively similar behaviour is
also seen in schools of fish, swarms of insects, and even crowds of humans.
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Many models based on interacting statistical systems have been, and con-
tinue to be, developed to describe this emergent collective behaviour — with one
interesting study published just a few days ago, on 10 May 2022. This recent
work builds upon a particularly simple “Vicsek model” introduced in 1995, which
supposes that each particle (i.e., bird) will interact with others near to it. These in-
teractions encourage the particle to move in the same direction as its neighbours,
similar to how the nearest-neighbour interactions in the Ising model encourage its

spins to align.

Models of this sort exhibit a transition between two distinct phases. When
there is a low density of particles, there are relatively few interactions and the
particles’ motion is disordered, with no formation of murmurations or swarms. At
high densities, in contrast, large-scale collective motion appears, based solely
on the interactions between the individual particles in the system. An order pa-
rameter sensitive to this behaviour is the average angle of the particles’ motion.
Different variations of the model can predict either a first-order or second-order
transition between these two phases, and in the second-order case the univer--
sality class of the critical exponents can depend on the details of the variation. In
some cases, as the critical density is approached from the disordered phase, the
particles exhibit anomalous super-diffusion like that investigated in the computer
project.

10.4 Wrap-up recap and synthesis

We have covered a lot of ground in this module, building on foundations from
probability theory to develop and apply the core concepts of statistical physics. In
Unit 1 we defined probability spaces, expectation values and variances, and used
these to establish the law of large numbers through which stable large-scale be-
haviour occurs for stochastic systems that involve a large number of degrees of
freedom, N > 1. We also saw how the central limit theorem relates large-N prob-
ability distributions to the underlying mean and variance of the elementary degree
of freedom, and practiced extracting probabilities from such distributions. The
law of diffusion results from the central limit theorem, and the computer project
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applied inverse transform sampling to study how anomalous diffusion can arise
when the central limit theorem’s assumption of finite elementary mean and vari-
ance breaks down.

Starting in Unit 2 we specialized to focus on statistical ensembles in thermo-
dynamic equilibrium as more specialized realizations of probability spaces. These
statistical ensembles consist of the set of micro-states w; that a system can pos-
sibly adopt through its evolution in time, each with the corresponding probability
p; that it will actually be adopted. The laws of nature — such as the first law of
thermodynamics that requires conservation of energy — impose constraints on
statistical ensembles. The micro-canonical ensemble directly implements such
constraints, by requiring the system’s internal energy and particle number be
constant as it evolves in time, which means that the system must be completely
isolated from the rest of the universe. This makes both the entropy (Eq. 20)
and temperature (Eq. 22) derived quantities, which we explored through the sim-
ple example of non-interacting spin systems. In particular, we derived a form of
the second law of thermodynamics, which states that the total entropy never de-
creases as time passes and therefore implies that maximal entropy corresponds
to thermodynamic equilibrium.

Motivated by the impracticality of demanding that a system be completely
isolated, in Unit 3 we turned to the canonical ensemble, which allows systems
to exchange energy with a large thermal reservoir that imposes a constant tem-
perature. The particle number is still fixed, while the entropy, internal energy and
heat capacity are now important derived quantities, with the last two related by
a fluctuation—dissipation relation. Maximizing the entropy to consider systems in
thermodynamic equilibrium defines the partition function (Eq. 33) and Boltzmann
distribution (Eq. 34) as the fundamental mathematical definition of the system.
Derived quantities are determined from the partition function, or equivalently the
Helmholtz free energy (Eq. 37).

By analyzing non-interacting systems of both distinguishable and indistin-
guishable spins, we demonstrated that the intrinsic information content of statis-
tical systems has physically measurable effects. These physical measurements
are possible for canonical systems that don’t have to be completely isolated, and
in tutorials we saw that measured heat capacities for many materials can be mod-
eled by the Einstein solid, with improved results obtainable through the Debye
theory of solids. These analyses highlighted the useful trick of considering high-
and low-temperature limits in which statistical systems can simplify dramatically.

In Unit 4 we continued working with the canonical ensemble, applying it to
study non-interacting (ideal) gases of non-relativistic, classical particles. At the
start of this analysis we had to regulate the system to ensure that its partition
function was well-defined. We did this by assuming that only discrete momenta
are possible in a finite volume V/, and then taking the limit of continuously vary-
ing momenta that allowed us to replace discrete sums with continuous integrals.
Considering ideal gases of both distinguishable and indistinguishable patrticles,
we determined their partition functions and used these to derive the internal en-
ergy (Eq. 52) and entropy (Eq. 53). We saw that mixing two gases of distinguish-
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able particles produces a positive mixing entropy, meaning that this process is
irreversible, in contrast to combining and reseparating gases of indistinguishable
particles. Finally we defined the pressure as the change in the system’s energy
upon changing its volume while keeping its entropy constant (Eq. 55), and derived
the ideal gas law (Eq. 56) as a famous equation of state.

Building on these analyses of ideal gases in the canonical ensemble, in
Unit 5 we considered thermodynamic cycles as systems that perform a repeat-
able sequence of expansions, compressions and heat transfers in order to act as
heat engines or refrigerators. This required first considering the work done on the
system through these processes (Eq. 59), the heat added to or removed from it
(Eq. 61), and the first law of thermodynamics expressed in terms of these quanti-
ties (Eq. 63). As two limiting cases, we contrasted slow isothermal processes that
feature sufficient heat exchange to keep the temperature constant, versus more
realistic adiabatic processes that occur too quickly for any heat to be exchanged.
After introducing PV _diagrams as a convenient way to visualize thermodynamic
cycles and the individual processes that comprise them, we analyzed the Carnot
heat engine and computed how much work it can do on its surroundings as heat
flows through it from a hot thermal reservoir to a cold reservoir. This balance
of work and heat defines the engine’s efficiency (Eq. 64). We showed that the
Carnot cycle achieves the maximum possible efficiency allowed by the second
law of thermodynamics, and in a tutorial we confirmed the lower efficiency of the
Otto cycle that describes a petrol engine.

Returning to the formulation of statistical ensembles, in Unit 6 we further
generalized our perspective to consider systems that can exchange both parti-
cles and energy with a large particle reservoir. Introducing the chemical potential
(Eq. 67) as the new quantity that the particle reservoir keeps constant — along
with the temperature — defined the grand-canonical ensemble. A final round of
entropy maximization gave us the grand-canonical partition function (Eq. 74) and
the corresponding grand-canonical potential (Eq. 75) that determine the derived
quantities, which now include the particle number in addition to the internal en-
ergy and the entropy. We were also able to derive a generalized thermodynamic
identity (Eq. 80) that relates the chemical potential to the change in energy upon
adiabatically adding a particle to the system.

Our main applications of the grand-canonical ensemble involved analyzing
quantum gases, and as preparation for that we introduced quantum statistics in
Unit 7 — simply considering this as an ansatz rather than relying on prior knowl-
edge of quantum mechanics. After demonstrating how our earlier classical (non-
quantum) approach to ideal gases breaks down when there is a non-negligible
probability for multiple identical particles to occupy the same energy level, we
got around this problem by organizing the micro-states in terms of the possible
occupation numbers of the energy levels. These possible occupation numbers
distinguish between the two types of particles that appear in nature: bosons can
have any non-negative occupation numbers n, € Ny, while fermions obey the
Pauli exclusion principle and can have only n, € {0,1}. We derived (and factor-
ized) the respective Bose—Einstein (Eq. 86) and Fermi—Dirac (Eq. 88) statistics
for these two types of quantum particles, and checked that both approach clas-
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sical Maxwell-Boltzmann statistics (Eq. 87) in the limit of high temperature with
large negative chemical potential —p > T.

With quantum statistics in hand, Unit 8 featured our analyses of quantum
gases, first considering a non-interacting ideal gas of ultra-relativistic photons with
energies defined in terms of frequencies (Eqg. 93). Based on the grand-canonical
potential, we derived the Planck spectrum (Eq. 95) governing the frequency de-
pendence of the energy density for the photon gas, and found how it solves the
ultraviolet catastrophe of the classical Rayleigh—Jeans spectrum. We also saw
how the Planck spectrum provides an excellent mathematical model for both so-
lar radiation from stars — among the hottest environments in the universe —
as well as the cosmic microwave background that fills frigid inter-galactic space
and provides strong evidence for the existence of dark matter. We finally de-
rived the radiation pressure of photon gases, and the corresponding equation of
state (Eq. 98), which has the same form as the ideal gas law, just with a different
numerical factor.

We continued with a similar application of the grand-canonical ensemble
to ideal quantum gases of non-interacting fermions, focusing mainly on non-
relativistic particles and considering the low-temperature regime where quantum
Fermi—Dirac statistics differs the most from the classical case. Again based on
the grand-canonical potential, we derived the Fermi function F(F) and saw how
it approaches a step function at low temperatures. This corresponds to all the
low-lying energy levels being filled by the single fermion that can occupy each of
them according to the Pauli exclusion principle. The transition from filled to empty
energy levels defines the Fermi energy, which in the zero-temperature limit is sim-
ply the chemical potential (Eq. 101). The resulting internal energy (Eqg. 103) and
pressure (Eq. 104) remain positive even as the temperature approaches absolute
zero. This non-zero degeneracy pressure helps to explain the regularity of type-
la supernovas, which play a key role in establishing the existence of so-called
dark energy. After more briefly deriving the equation of state for a relativistic ideal
fermion gas, we wrapped up the non-interacting portion of the module by working
through the Sommerfeld expansion that enabled us to predict the leading low-
temperature corrections to the zero-temperature limits of /- (Eq. 109) and the
heat capacity (c, o< T').

Following the spring break, we turned our attention to exploring the effects
of interactions.in statistical systems, making further use of the tools we had previ-
ously developed. Statistical systems in which the constituent degrees of freedom
interact with each other can exhibit a broader array of phenomena, such as phase
transitions. At the same time, they become enormously more difficult to analyze,
because their partition functions and derived quantities no longer factorize into in-
dependent single-particle contributions. In Unit 9 we focused on the famous Ising_
@Q@Lwhich is simple to write down as a system of spins interacting with their
nearest neighbours on a d-dimensional lattice (Eqg. 111), but extremely difficult to
solve exactly in two or more dimensions. For d > 2 dimensions, the Ising model
exhibits a second-order phase transition between its high-temperature disordered
phase and its low-temperature ordered phase, with its magnetization serving as
the order parameter. We analyzed the Ising model through the mean-field approx-
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imation that produced a self-consistency condition (Eq. 117) for its order param-
eter, the magnetization. We then exactly solved the one-dimensional Ising model
and derived Kramers—Wannier duality to predict the exact critical temperature in
two dimensions, showing that the mean-field approximation is not very reliable in
a low number of dimensions.

Although the mean-field approximation to the Ising model does capture a
second-order phase transition, the critical temperature and critical exponents it
predicts for this transition only slowly converge towards the correct values as
the dimensionality of the system increases. Determining the correct critical be-
havior in d > 2 dimensions requires numerical analyses that we discussed in
this final Unit 10. Monte Carlo importance sampling algorithms are the standard
way to carry out reliable numerical computations with controlled uncertainties in
a realistic amount of time, and are very broadly applicable to more general inter-
acting statistical systems. Amazingly, extremely different physical systems can
exhibit transitions characterized by exactly the same critical exponents, a phe-
nomenon known as universality, which helps to explain the broad applicability
and far-reaching power of statistical physics.

In summary, we have learned foundations including statistical ensembles,
entropy, and the laws of thermodynamics. We have studied applications includ-
ing diffusion, ideal gases, thermodynamic cycles, and phase transitions. And
we have explored advanced topics including numerical methods and universal-
ity. All together, our new knowledge of statistical physics enables us to observe
and appreciate many further applications of these concepts and tools across the
mathematical sciences and beyond.
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