in terms of the dual variables s, that we’re now working with. It’s easy to see that
- 155
Cp(B) = (cosh B) exp [plog tanh ] = (cosh j3) exp {TJ log tanh ,B] ;

—

substituting p = (1 — 5;53) /2. Breaking up the exponential gives us
A i =
|
Gplf) = (g)?,}l Bsinh B)/* exp {—isjsk log tanh ﬁ} :

Inserting this into the partition function, the product over all links just provides 2N
factors of the s,-independent first term, and we can then convert the product of
exponentials into an exponential of the sum, producing

7= % (2 cosh fsinh ) Z exp { logtanhﬁ Z Sjsk} ; Z(F) ~ Z (JB>
@ \/.r\) (%)
%

If we define
~  logtanh

- )

2
then we can recognize the sum over {5} configurations as simply a zero-field Ising
model partition function Z(ﬁ) as in Eqg. 112. We can also recognize this definition
of B as equivalent to Eqg. 122:

+an1« F = e—_lﬁ

F_-F Ll - _\-zﬂ”z/;@:

AT N
C/)SL}“"\LP - “c(\?—(ﬁp (’Q—f) (Cﬁ "(L‘)S) - %‘(67_}3 ‘ZF> ? S'”L)(Z;) //[qf
g.l___._-
ﬂ,(SML Uﬂ < L’ };J }0/'447/

Using similar manipulations, we can express the spin-independent prefactor in
terms of either g or S,

1
2 cosh fsinh f = sinh(2f) = =,
o (26) sinh(2p)
or in the mixed form that reproduces Eq. 121:
5 ~
Z
2 cosh Bsinh 8 = 2 cosh? B tanh 1 = 2 COS}E 6 = 200 ~ = ('B)~
S e28 (2 cosh? ﬂ) Zeip

We have successfully derived Kramers—Wannier duality! Now let’s briefly
interpret what it means. It's a worthwhile exercise to show that multiplying a
partition function by an overall spin-independent factor, Z(38) — ¢(8)Z(5), has no
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effect on expectation values. (Try it!) Therefore the relation above identifies a
d = 2 Ising system at temperature 8 with another such system at temperature 3,
where small 5 corresponds to large g and vice versa.

However, this does not mean that d = 2 Ising model behaves the same
at low and high temperatures. Indeed, we saw already in Section 9.2 that it
changes between qualitatively different ordered and disordered phases in these
two regimes. What Kramers—Wannier duality is telling us is that the ordered
phase of Ising spins in two dimensions, characterized by their order parameter, is
secretly equivalent to the disordered phase of the dual spins — a different set of
degrees of freedom, which can be characterized by a ‘disorder parameter’. Sim-
ilarly, the disordered phase of the original system maps onto the ordered phase
of the dual system.

If we assume there is a single phase transition where the ordered and dis-
11( ~ o | orederd phases coincide, then Kramers—Wannier duality implies this must occur
sk 2p) swl{1pvhen 8 = B. In other words,

log (1 + v/2)

1
sinh®(26.) =1 = ﬁi = Earcsinh(l) = 5

— 0.440686 . . .,
recalling (or looking up) that arcsinh(z) = log (z ++/22 +1). Because this exact
critical temperature T, = 2/log (1 + v/2) = 2.269185.. .. was predicted three years

before Onsager analytically solved the d = 2 Ising model, the fact that his solution/
correctly reproduced this T, was a significant check of its correctness.

As mentioned at the start of this subsection, dualities of this sort are a pillar
of theoretical physics in the 21st century. In general, these dualities are much
more complicated than Kramers—Wannier duality, in two main ways. First, the
dual degrees of freedom are typically different — and have different interactions
— than the original degrees of freedom. For example, if we were to carry out a
similar analysis of the three-dimensional Ising model, we would find that the dual
system is not just another Ising model. The d = 2 Ising model is a special case
of a self-dual system, which we exploited to determine 7.

Second, the Ising model is special in that we were able to explicitly derive
the duality it exhibits, which is typically not (yet) possible. Instead, most dualities
have to be conjectured and then checked by subjecting them to as many tests
as possible. For example, this is the case for holographic dualities that are con-
jectured to relate certain theories of qguantum gravity to non-gravitational quantum
systems that can be much easier to analyze mathematically. As an aside, the fully
connected lattice we encountereed in recent tutorials also makes an appearance
in holography — the behaviour of interacting fermions on this fully connected lat-
tice (known as the SYK model, named after Subir Sachdev, Jinwu Ye and Alexei
Kitaev) is conjected to be dual to the gravitational dynamics_of quantum black
holes. Roughly one thousand scientific studies of the SYK model and its conjec-
tured holographic duality have been published since 2016!
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Unit 10: Synthesis and broader applications

10.1 Monte Carlo importance sampling

Although we were able to derive some exact results for the Ising model in
one and two dimensions, it’s worth recalling that for 3 < d < co no exact solution
is known even for this simple system. In general, interacting statistical systems
are not exactly solvable. In order to explore their broad applications throughout
the mathematical sciences and beyond, we therefore need to analyze them either
through systematic approximation schemes (such as perturbation theory) or by
numerical computations. Numerical methods have become increasingly impor-
tant over the past fifty years, and in this section we’ll outline the general methods
they employ.

Our goal is to compute expectation values of interest, which are formally
defined by sums over all micro-states. Considering the canonical ensemble for
simplicity,

M 1 M _sn, Zivil O; e~PEi
’<-(_9>§_ ;Ozpz Z;Oze Z?/:Ile—ﬁEi .
We already saw, at the end of Section 9.1, that enormous computational re-
sources would be required to carry out such sums over micro-states. Even for
tiny Ising systems with NV ~ 1000 spins, the largest existing or foreseeable super-
computers would have to run for far longer than the age of the universe in order
to evaluate the roughly 2'°% ~ 10°® terms in the partition function. To quantify
tiny’, consider that N ~ 1000 would correspond to a 10 x 10 x 10 lattice in three
dimensions or a 6 x 6 x 6 x 6 lattice in four dimensions, both very far from the
N — oo thermodynamic limit of interest for phase transitions.

And yet, at the end of Section 9.3 we were able to quote numerical results
for the Ising model critical temperature for 3 < d < 7, along with a d = 3 critical ex-
ponent. These results are obtainable because practical numerical computations
do not perform a ‘brute-force’ evaluation of every single micro-state. Instead, they
proceed by (pseudo-)randomly sampling a very small subset of those micro-
states, and using this subset to compute results for the average energy, magne-
tization, and other thermodynamic quantities. So long as this sampling is done
appropriately, the law of large numbers allows us to treat these averages as con-
trolled approximations to the true ensemble expectation values.

As we saw in the computer project, such numerical calculations employ
pseudo-random numbers rather than complete randomness, which allows them
to be reproducible up to very high precision by different people using different
computers. Due to the role of randomness, these numerical approaches have
become known as Monte Carlo methods, based on a whimsical reference to the
famous gambling centre in Monaco. Monte Carlo methods are crucial in statisti-
cal physics, and related disciplines, because they are very broadly applicable to
interacting systems that no longer benefit from dramatic simplifications through
factorization.
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We can gain some intuition about how Monte Carlo methods work by using
such pseudo-random sampling to numerically evaluate a simple integral. The idea
is that the integral can be numerically approximated by evaluating its integrand

at randomly sampled points in the integration domain, and normalizing by the
number of samples. An amusing example is to compute

! ! 5 . g 1 forr>0
l—/_ldx/—ldyﬂl—{x +4°}) H(r)—{o for 1 <0
where the Heaviside step function H(r) picks out a disk with radius R = 1in a
square integration domain with area 4, as shown below. Since the integrand is
either 0 or 1 for each randomly sampled point in that domain, simply counting the
fraction of the S samples that lie in the disk provides a numerical determination of
m, With a statistical uncertainty that vanishes o Mﬁﬂ.\ln just a few minutes, this
Python code predicts 7 = 3.14152 4-0.00023 purely from sampling pseudo-random

numbers.

Of course, numerically computing = can be done far more efficiently with
other, more specialized, techniques. Monte Carlo integration is most useful when
we need to consider very high-dimensional integrals — such as partition func-
tions of interacting statistical systems, interpreted as N-dimensional integrals
over the system’s N degrees of freedom. To illustrate the scale of computa-
tions that can currently be carried out, ongoing theoretical physics research here
in Liverpool routinely uses Monte Carlo methods to numerically evaluate roughly
hillion-dimensional integrals.

At this point, you might be concerned that such sampling can account for
only an extremely small fraction of the possible micro-states for the systems un-
der consideration, suggesting a risk of inaccurate results from unrepresentative
sampling. This is a new manifestation of the obstacle we encountered when con-
sidering brute-force computations above. If the brute-force evaluation of every
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single micro-state takes far longer than the age of the universe, then the fraction
we could sample in a reasonable amount of time (say, a day) is almost vanishingly
small.

As a concrete example, if we generously suppose our computer only needs
a few nanoseconds to sample a micro-state of a tiny N ~ 1000 Ising system, over
the course of a day it would sample roughly ten trillion (10'%) spin configurations
— only about one part in 10?7 of the total 2% ~ 10%* micro-states. To make the
situation even worse, as N increases the number of possible Ising model micro-
states grows exponentially quickly, ~2%, in addition to the more modest growth
in the amount of computing required to sample each micro-state. For illustration,
2015 research arXiv:1502.07613 numerically predicting T, for the Ising model in
d = 5, 6 and 7 dimensions includes calculations up to N = 645 =~ 10°. Out of
the roughly 210° ~ 10323.000000 micro-states for this systems, only ~10* could be
sampled in a reasonable amount of time. How much trust should we place in
results from such numerical work?

Thinking back to our consideration of the ordered and disordered phases of
the Ising model in Section 9.2, we could make a case that everything may work
out in the high-temperature disordered phase. In the infinite-temperature limit, all
the micro-states become equally probable, and observable expectation values are
determined by the degeneracies of the different energy levels. Random sampling
is more likely to account for the dominant energy levels with large degeneracies,
making it plausible that reasonable results could be obtained by averaging even
over such a tiny fraction of the total number of micro-states.

In the low-temperature ordered phase, however, the opposite occurs. As the
temperature decreases, the large-scale behaviour of the system in this phase is
dominated by a very small number of micro-states. For sufficiently low tempera-
tures, observable expectation values are effectively determined by the two degen-
erate minimum-energy micro-states with all spins aligned either up or down. Only
exponentially suppressed corrections would then be introduced by higher-energy
excited states. As there is essentially no chance of randomly sampling either
of those two minimum-energy micro-states, the random sampling approach de-
scribed above seems doomed to fail.

A key breakthrough that made numerical results truly reliable was the in-
vention of stochastic procedures to sample any micro-state w; with a probability
proportional to its Boltzmann factor, p; o e AP, Such automated procedures
are known as algorithms (a term that evolved from the name of Muhammad ibn
Musa al-Khwarizmi), and the overall approach is called importance sampling,
since it preferentially samples the important micro-states that make the most sig-
nificant contributions to the partition function and derived quantities. Assuming
we have such an algorithm, applying it to the 3 — oo low-temperature phase
considered above would produce an exponentially enhanced probability of sam-
pling low-energy micro-states, as desired. As f — 0 in the high-temperature
phase, there would be little change compared to the more straightforward pseudo-
random sampling considered above, since all micro-states would become equally
probable.
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