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The problematic argument in Section 9.2 was our claim that all the degen-
erate micro-states of the first excited energy level correspond to flipping a single
spin_to oppose the full alignment of the ground state. This is true for any d > 1
simple cubic lattice, and even in one dimension this does account for 2V of the
micro-states with next-to-minimal energy E;. However, uniquely in one dimension
there are additional micro-states with ;.

Fixing d = 1, suppose we start from the ground state and flip spin s; to reach
the first excited energy level. Relative to the ground-state energy F, = —N,
the energy of this micro-state is increased to E; = —N + 4 due to the positive
contributions from the s;_;s; and s;s;1 links. But if we now consider also flipping
spin s;41, the s;s;41 link goes back to providing a negative contribution while the
positive contribution shifts to the s;41s;42 link. This gives us an additional 2V
micro-states featuring a flipped nearest-neighbour pair of spins, with the same
energy F; but a smaller magnetization |m| = 1 — % . And we can continue this
process, finding more degenerate micro-states with aflipped block of any number
of neighbouring spins up to N —1, and hence any magnetization, including m = 0.

Therefore, for d = 1 only, our argument that the first excited energy level
of the Ising model corresponds to the unique magnetization |m| = 1 — 2 — 1
was incorrect. As we have now seen from our exact solution, there is actually no
ordered phase in one dimension. A useful way to visualize this sort of behaviour
is to think of all these micro-states in the first excited energy level as consisting of
two domains — one in which the spins point up and the other in which they point
down. The two domain walls separating these domains are able to move freely
through the lattice without changing the energy, but as the domain walls move the

magnetization samples the full range of values — (1 — 2) <m <1-— 2

9.4.2 Two-dimensional critical temperature

While the zero-field Ising model on the d = 2 square lattice has also been
exactly solved, both Onsager’s original calculation and subsequent re-derivations
using simpler techniques go substantially beyond this module. However, a few
years before Onsager published his famous result, Hans Kramers and G. H. Wan-
nier were able to determine the exact d = 2 critical temperature in 1941. They did
this by identifying a relation between two Ising model partition functions, without
actually evaluating either sum over micro-states:

Z(B) - Z(E) “7_))

2N cosh?N B 9e2NB’

where the two inverse temperatures 8 and 3 are related by

sinh(28) = —1—~ UU’)
sinh(20)
This relation is now known as Kramers—Wannier duality, and the general concept
of duality has become a powerful tool in modern theoretical physics. Note that
small B implies large § and vice versa — the duality relates one d = 2 Ising model
at a high temperature to another one at a low temperature.
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Although it can be instructive to explicitly compare such high- and low-
temperature partition functions, by computing series expansions as we did for the
non-interacting spin system in Section 3.4 and for the Einstein solid in a tutorial,
to keep this section under control I'll skip that exercise. Those who are interested
can find related discussions in Sections 5.3.2 and 5.3.3 of David Tong’s Lectures
on Statistical Physics (the first item in the list of further reading on page 5). Some
of the manipulations below, which may seem to come out of thin air, can be moti-
vated by considering these expansions.

The first manipulation is to express the zero-field partition function as

7= z exp {ﬁ Z sisk| = Z H exp [Bs;jsk] = Z H [cosh B + s;sp, sinh ],

{sn} (7k) {sn} (3k) {sn} (3k)

which relies on the fact s;s; = x1 for the Ising model. It's easy to check the
relation e#%i*x = cosh 8 + s;s; sinh 8 for both cases:

—

| - ( -F
F oA \f’> AR ICOMS
¢ 7 2let N te e -
QF = P / © -e £ of
e

Next, we write the sum over the cosh and sinh as an explicit summation,

7=3 [Tlcoshp+ssspsinhfl=> T[> Cpu(B)(sssu),

{sn} (4k) {sn} (Jk) Pj»=0,1

raising s;sy to the corresponding power p;;, while defining Cy(8) = cosh 8 and
C1(B) = sinh 8. Recall that the sum over nearest-neighbour pairs (jk) corre-
sponds to summing over all 2N links in the d = 2 lattice. To make the language a
little less awkward, we can say thatworresponds to link 5k being ‘on’ while
p;x = 0 when itis turned ‘off’. The product and sum above account for all possible
configurations of links that are turned on and off, which we can more conveniently
represent as another configuration sum,

IEDIREDY

{r} p1=0,1 pan=0,1

Introducing this configuration sum lets us isolate and then trivially rearrange
the final product,

Z = Z Z H CpJL W88 )% = Z Z H Chs (8) H Pk g P]L

{sn} {p} (k) {sn} {p} | (Gk) (4k)

The final factor can now be converted from a product over links to a product over
sites. Any given spin s,, will appear four times in the product, once for each of the
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four links connected to it in two dimensions. The product of these four factors can
be rewritten

H shrk = ghn defining P, = pu.

(nk)
We are now left with a product over individual s,,:
N ’l ‘
Z Z H Cpﬂ‘ Z P". sm o g
{»} (k) {sn} =1 [T

Although each s, is raised to a power that depends on p,,;, for all four of its links
to its nearest neighbours, and can consider what happens when we sum over the
two values s, = +1. There are two possibilities: If P, is odd, then the s, = 1
and s, = —1 contributions cancel — making the entire product over sites vanish!
Otherwise, if P, is even, they add up to 2. In other words, we have

4= ZHCM H252(P = QNZHCM H E(nk)pnk) (123)

{p} (k) n=1 {r} (k) n=1

where the ‘mod-2" Kronecker delta 6,(F,) vanishes if P, is odd and equals one if
P, is even. o

Something interesting has happened in Eq. 121: there is no longer any ref-
erence to our original spin degrees of freedom, s,,. We have successfully summed
over all spin configurations {s, }, at the cost of introducing a different sum over all
configurations of on/off links (p;, = 1 or 0, respectively). And there is a very tricky
set of N inter-dependent constraints coming from the product of §, factors, which
require that an even number of links be turned on at every lattice site, in order
to get a non-zero contribution to the partition function. In effect, this informs us
that our new variables p;; aren't really independent of each other — which makes
sense, since we have 2N of them, but started off with only N degrees of freedom.

What we can do about this is essentially to try working backwards. We
introduced the p;;, = 0,1 in order to manipulate a configuration sum over s,, = +1,
so we can guess that introducing a different set of 5, = 41 can have an effect
on the resulting configuration sum over p;,. We want the £1 values of 3, to be
related to the {0,1} values of p;, which we can achieve by implicitly defining 5,
via

~l
_1—§1§2;/ __1—’523’/3
P12 = ) P13 = 2
1 — 533, 1 — 35154
&f%/ po="—p

and so on for all 2V links. A convenient way to keep track of the subscripts above
is to identify these ,, with the dual lattice drawn on the next page. Each s, is
identified with one of the N plaquettes of the original lattice, and pairs 5, and 3,
determine p;;, for the link passing between them.
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These relations confirm the claim above that p;, aren’t independent vari-
ables — both p;, and p;5 depend on 5, both py, and p;3 depend on 3,, etc. De-
lightfully, these patterns of dependence are precisely what we need to handle the
d, factors that are still in our partition function. If we consider
$182 + S283 + S384 + 5154

2

P =pia+piz+pu+ps=2—
(51 + 53) (52 + 54)
2

we see that working in terms of s,, automatically turns on an even number of links
at every site, producing [, 6,(P,) = 1!

=

E {0)2?4}7

In addition to eliminating odd P;, you can confirm that all possible ways of
obtaining even P; are accounted for as configurations of the dual spins 5,,. In fact,
they all appear twice as we can see by checking the simple example P, = 4:

ed=2 (3 m)(sm,\ = (5 ¢5)5H)= =)

86,55, %l Dy -d -0, I S

e tt

. , : . I o .&w;]u/
This generalizes to the full N-spin system,'® so converting the partition functio
from the configuration sum over {p} in Eq. 121 to a configuration sum over {3}

gives us
1
Z = §2N Z H Ca—3;5)/2(8)-
£ @

The final step is to express

Co(B) = cosh C1(B) = sinh

15This is discussed in more detail by Robert Savit, “Duality in field theory and statistical sys-
tems”, Reviews of Modern Physics 52:453, 1980
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in terms of the dual variables s, that we’re now working with. It’s easy to see that
o 1
Cp(B) = (cosh B) exp [plog tanh B] = (cosh ) exp [

-—

~25j i log tanh ﬁ} g

substituting p = (1 — s;s;)/2. Breaking up the exponential gives us
R Sl 3

1
Cp(B) = (_cg@h Bsinh B)"/? exp [— aﬁlog tanh ﬂ} )

Inserting this into the partition function, the product over all links just provides 2N
factors of the s,-independent first term, and we can then convert the product of
exponentials into an exponential of the sum, producing

1 h
Z = L (2 cosh f3sinh f3) Zexp [ ogtan P Zsjsk] .
{s} J\J (jk)
%

If we define
~  logtanhf

- o)

2
then we can recognize the sum over {s} configurations as simply a zero-field Ising
model partition function Zgﬁ) as in Eq. 112. We can also recognize this definition
of ﬁ as equivalent to Eq. 122:

"'GML )—) = Q_-‘L
|
F_ gy 2 s ——
/6\_/_:(,/\ } -}sz,ﬁ ,-,}3 5!4}4)7 ("Slqﬁ Cfsl,,)%smwj’
Apr = £ AN ) 5 )
ﬂ/{swa(zﬁ) = m— /;//’

Using similar manipulations, we can express the spin-independent prefactor in
terms of either g or g,

1
2 cosh Bsinh f = sinh(24) = —,
4 o (26) sinh(2p)
or in the mixed form that reproduces Eq. 121:
5 ~
Z

2 cosh Bsinh 8 = 2 cosh? Btanh f = M = (6) ¥ = Z(B)M
e?p (2 cosh? B) S

We have successfully derived Kramers—Wannier duality! Now let’s briefly
interpret what it means. It's a worthwhile exercise to show that multiplying a
partition function by an overall spin-independent factor, Z(8) — ¢(8)Z(B), has no
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