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The situation improves for the two-dimensional Ising model. Onsager’s
exact H = 0 solution features a second-order phase transition, at an inverse
critical temperature 3, = ilog (1 +\/§) ~ 0.44 that had been exactly deter-
mined a few years before his work. For T < T, the magnetization vanishes
as (m) « (T, — T)*®, corresponding to a critical exponent 1/8. While the mean-
field prediction of a second-order phase transition is now qualitatively correct, at
a quantitative level its predicted . = 55 = 0.25 is off by almost a factor of 2, while

2d
the mean-field critical exponent b = 1/2 is four times larger than the true b = 1/8.

For higher dimensions d > 3 there is no known exact solution for the Ising
model, but the existence of a second-order phase transition can be established
and the corresponding critical temperature and critical exponents can be com-
puted numerically, as we will discuss in Unit 10. In three dimensions the mean-
field T, = 2d = 6 and b = 1/2 are still significantly different from the true T,, = 4.5
and b =~ 0.32. The mean-field prediction for the critical exponent b = 1/2 turns out
to be correct for d > 4, while the critical temperature 7, = 2d gradually approaches
the true value as the number of dimensions increases. Numerical computations
find T, ~ 6.7, 8.8, 10.8 and 12.9 for d = 4, 5, 6 and 7, respectively, so that the
mean-field result improves from being ~19% too high for d = 4 to only ~9% too
high for d = 7. Formally, the mean-field approximation exactly reproduces the
Ising model in the abstract limit of infinite dimensions, d — oo. Roughly speaking,
the greater reliability of the mean-field approach in higher dimensions is due to
the larger number of nearest neighbours for each site, 2d. The larger number
of nearest-neighbour spins produces a more reliable approximation of the mean
spin in the effective field seen by each site in the mean-field approach.

9.4 Supplement: Ising model exact results

If time permits, it is not too hard to prove some of the exact results men-
tioned above, for Ising models in one and two dimensions where the mean-field
approximation is least reliable.

9.4.1 One-dimensional partition function and magnetization

The special property of the one-dimensional Ising model that helps us derive
a closed-form expression for its partition function is the fact that it has exactly as
many links as it has sites. Looking back to the illustration on page 134, we can
rewrite the nearest-neighbour interaction term as

N
§ Sjsk:§ SnSn+1,
n=1

G

where the periodic boundary conditions identify sy1 = s1. If we also rewrite
HYN s, =23 N (s, + su41), then the full internal energy is

N H
Ei=—2[3"5"+1+3(fﬁ+sn+l) : Z< %’

n=I1
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Inserting this into the partition function Z (5, N, H) = E{s"} exp [—BE(s,)], we can
convert the exponential of the sum into a product of exponentials,

N sH
Z = Z Z Hexp [ﬁ5n5n+1+7(3n+5n+1) :

s1==%1 sny=x1n=1

—

Similarly to Eq. 41 for the non-interacting case, we are going to distribute the
summations. Now, however, we have to keep track of the fact that a given spin s;

will appear both when n = j and when n + 1 = j, and for each spin configuration
it must have the same value both times it appears. An elegant way to account for
all allowed possibilities is through matrix multiplication. Use the 2 x 2 matrix

Tn = < B ea—w) (118)

to collect the exponential factors for the four possibilities

Ly -
{80,801} = <{:_i_,1} {i,—l{) '

The matrix product 7, - T,,1 then provides the sum over all contributions with con-

sistent values for s,,. ;. Repeating this for all terms in Hi"zl, the periodic boundary

conditions produce the (cyclic) trace, making the exact partition function simply

N /
22 f T 1 .
Z=Tr|[[Z. Ji () )L kg N
n=1 15\4(,

What’s more, since T,, = T is actually independent of n, this simplifies further to

Z=Tr[T"]. (120)

T is known as the transfer matrix — roughly speaking, it ‘transfers’ infor-
mation about the values of the spins from one link to the next. At this point we
can appreciate that our earlier rewriting of the magnetic-field term in the energy
just helped to make T" more symmetric. If we now diagonalize

ePefH P Ap O
T_<e_/3 eﬁe“ﬂH> - <0 A )’

the partition function will become simply

N, N
Z="Tr [<A0+ f_ﬂ = Tr @&) =M+ AT
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What are the two eigenvalues A, of T'?

— P FAN N - { =P
),~/\:,;), e : - -y B F )_t.
&)3 efe}u’\ >\ e (ﬁ ¢

=\ - 'ZXQP ngL,(PH) + Zoml, LZF) =1
Ne = EZL’(\XQ;CUSL(f’L{) - /\/?@5}41()?1'{) _ 2&91414(2};)>

With 8 > 0 and H > 0, we can check that both eigenvalues are real and
\; > A_. For asymptotically high temperatures, 8 — 0, the eigenvalues reduce to
At = 2and A_ = 0 independent of H. In the special case H = 0, the eigenvalues
are A, = 2cosh8 and A_ = 2sinh 8, while 7 > 0 typically produces Ay > A_.
Because A_/\, < 1, for sufficiently large N > 1 we can further simplify -

N
__ 2sinh(25)
b '\/1 €28 cosh®(BH )]

So there we have it — the solution of the Ising model in one dimension. As
usual, the partition function Z is not so revelatory in and of itself. Its principal
value lies in enabling us to predict observables like the magnetization — so let’s
do that, returning to the zero-field case for which we computed the mean-field
critical temperature and cfitical exponent in the previous section:

N
sz\}_

AN
1+ </\ ) } ~ MY = P cosh™ (BH)

[

_1 ey 2 W 9
<m>—NﬁaHlobZ£I-=£— /VF W ’9;/\(’/;{..-6 h} I o

QL 2 / Z <
T = D?H (ngLU?H, t t’/f,vfl” le ’25‘”14(%)]

N
< el (pH) —> 0

Note that we set H = 0 only after computing the derivative of the free energy,
which avoids the need to consider the absolute value. Upon setting H = 0,
something remarkable happens: (m) = 0 for all temperatures!

As claimed at the end of the previous section, the one-dimensional Ising
model has no phase transition at all. It is always in the disordered phase, even
in the limit of absolute zero T — 0. In addition to revealing that the mean-field
approximation fails in one dimension, this result also contradicts our general con-
sideration of the phases of the d-dimensional Ising model in Section 9.2. What
went wrong there? i
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The problematic argument in Section 9.2 was our claim that all the degen-
erate micro-states of the first excited energy level correspond to flipping a single
spin to oppose the full alignment of the ground state. This is true for any d > 1
simple cubic lattice, and even in one dimension this does account for 2N of the
micro-states with next-to-minimal energy E,. However, uniquely in one dimension
there are additional micro-states with F;.

Fixing d = 1, suppose we start from the ground state and flip spin s; to reach
the first excited energy level. Relative to the ground-state energy Fy = —N,
the energy of this micro-state is increased to E; = —N + 4 due to the positive
contributions from the s;_;s; and s;s;41 links. But if we now consider also flipping
spin s;41, the s;s;41 link goes back to providing a negative contribution while the
positive contribution shifts to the s;;15;12 link. This gives us an additional 2N
micro-states featuring a flipped nearest-neighbour pair of spins, with the same
energy F; but a smaller magnetization |m| = 1 — T41' And we can continue this
process, finding more degenerate micro-states with a flipped block of any number
of neighbouring spins up to N —1, and hence any magnetization, including m = 0.

Therefore, for d = 1 only, our argument that the first excited energy level
of the Ising model corresponds to the unique magnetization |m| = 1 — 2 — 1
was incorrect. As we have now seen from our exact solution, there is actually no
ordered phase in one dimension. A useful way to visualize this sort of behaviour
is to think of all these micro-states in the first excited energy level as consisting of
two domains — one in which the spins point up and the other in which they point
down. The two domain walls separating these domains are able to move freely
through the lattice without changing the energy, but as the domain waIIs move the

magnetization samples the full range of values — (1 — 2) <m <1-— 2

9.4.2 Two-dimensional critical temperature

While the zero-field Ising model on the d = 2 square lattice has also been
exactly solved, both Onsager’s original calculation and subsequent re-derivations
using simpler techniques go substantially beyond this module. However, a few
years before Onsager published his famous result, Hans Kramers and G. H. Wan-
nier were able to determine the exact d = 2 critical temperature in 1941. They did
this by identifying a relation between two Ising model partition functions, without
actually evaluating either sum over micro-states:

ZB)  Z(B)

ON cosh?™ §~ 9¢2NB’

where the two inverse temperatures 5 and j are related by
1
sinh(28)
This relation is now known as Kramers—Wannier duality, and the general concept
of duality has become a powerful tool in modern theoretical physics. Note that

small g implies large g and vice versa — the duality relates one d = 2 Ising model
at a high temperature to another one at a low temperature.

sinh(24) =
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