MATH327: Statistical Physics, Spring 2022
Tutorial problem — Lattices

In the module we are focusing on simple cubic lattices with periodic bound-
ary conditions, but other lattice structures play important roles in both nature and
mathematics. Some of the remarkable electronic properties of graphene, for ex-
ample, are due to its two-dimensional honeycomb lattice structure, while more
elaborate three-dimensional lattices play central roles in the search for materials

exhibiting high-temperature superconductivity.

The figure below shows three simple two-dimensional lattices, each of which
has a different coordination number — the number of nearest neighbours for
each site (with periodic boundary conditions). We have already seen that the
square lattice has coordination number C' = 2d = 4, and generalizes to simple
cubic and hyper-cubic lattices in higher dimensions.
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The honeycomb lattice of graphene has a smaller coordination number C' =
d + 1 = 3, and generalizes to ‘hyper-diamond’ lattices in higher dimensions. Fi-
nally, the triangular lattice essentially fills in the middle of each honeycomb cell,
leading to coordination number C' = 2(d 4- 1) = 6. lts higher-dimensional gener-
alizations are known as A lattices, of which the simplest example is the three-
dimensional body-centered cubic lattice shown below. Also shown below is the
‘kagome’ latfice, which has the same C = 4 as the square lattice, illustrating that
the coordination number is insufficient to completely characterize a lattice.
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Things become more interesting when we consider generalizing the Ising

model to have energy
N
FE= @sjsk —Han,

(J—}g_) n=1
with nearest neighbours (jk) defined by any of the three simple two-dimensional
lattices above. While any positive interaction strength J > 0 can be rescaled
to J = 1 without loss of generality, the case of a constant negative J < 0 is
qualitatively different. Specializing to d = 2 and H = 0, let's consider a couple
of conceptual questions: What are the minimum-energy ground states for each
case J > 0 and J < 0, for each of the square, honeycomb and triangular lattices?
Can you think of an order parameter distinguishing these ground states from the
disordered micro-states that dominate at high temperatures?

Generalizing the Ising model in this way opens up a vast landscape of pos-
sible applications both practical and abstract. As one example (with both practical
and abstract relevance), a spin glass can be modeled by allowing the interaction
strength to vary from site to site,

ESG = Z@Sjsk.

(7F)

Giorgio Parisi was awarded part of the 2021 Nobel Prize in Physics for his work
studying the mathematics of such spin glass systems. In particular, he was able
to solve the so-called Sherrington—Kirkpatrick model

Fsg = — Z k8K,

Jj<k

where the values Jj;, are randomly drawn from a gaussian distribution around
some mean J, and the system is defined on a fully connected lattice (or complete
graph) where every site j is a nearest neighbour of every other site k # 5. (Sum-
ming only over j < k and not j > k avoids double-counting the link j&.) As shown
on the next page, a fully connected lattice with N sites has %N(N— 1) = (§) links.

While we may look a bit more closely at spin glasses if time permits dur-
ing the next couple of weeks, for now let’s consider a simpler Ising system with
constant interaction strength on the fully connected lattice:

7 N
B = N sjsk—Han.
i<k n=1

We normalize the interaction strength by N so that the system retains a finite
energy per spin in the NV — co thermodynamic limit.

Can you compute a closed-form expression for the partition function of this

Ising model on the fully connected lattice? As a hint, it may be profitable to reor-

ganize the calculation into a sum over the N + 1 possible values of the magneti-

zation —1 < m < 1, and counting how many micro-states there are with a given
S—— . . .

magnetization. (This is analogous to the fugacity expansion that reorganizes the
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grand-canonical partition function into a sum over possible particle numbers.) The
energy above would need to be rewritten in terms of the magnetization, which is
easier when summing over all j < k compared to considering only nearest neigh-
bours. Finally, for large N we can approximate the N + 1 possible values of m as
continuously varying, and integrate

Z:/_l1 («++) dm.
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MATH327: Statistical Physics, Spring 2022
Tutorial comments — Lattices

Beginning with the qualitative questions, it’s straightforward to appreciate
that the J > 0 case leads to the same doubly degenerate ground state that we
previously considered, independent of the lattice structure: All of the spins align
with each other, either all s, = 1 or all s, = —1, and the magnetization (m) o
a%F is the corresponding order parameter. Interpreting the spins as molecular
magnetic dipoles, their alignment corresponds to a ferromagnetic phase of the
sort Lenz and Ising initially aimed to investigate in the 1920s.

When we consider instead J < 0, we can note that each pair of aligned
nearest-neighbour spins would now make a positive contribution to the energy.
To lower the energy and reach the ground state, we want all of these pairs to be
anti-aligned instead, which is possible for the square and honeycomb lattices as
illustrated below. (In the honeycomb case, think of the green and purple sites as
respectively representing s,, = 1 and s, = —1.) These patterns correspond to an
anti-ferromagnetic phase.
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These ground states are also doubly degenerate, with the same energy
if all anti-aligned spins are simultaneously flipped. Although the magnetization
vanishes for these micro-states, (m) = 0 as in the disordered phase, the clear
order they exhibit suggests that it should be possible to define a correspond-
ing order parameter. This turns out to be the staggered magnetization m, =
% SN (~1)"s,, where the site indices n are assigned in such a way that even
and odd sites alternate in the patterns shown above. For the staggered magneti-
zation to be a true order parameter, it should be related to a derivative of the free
energy, which we can ensure by generalizing the internal energy to be

N N
E = —JZsjsk — Han — HSZ(—l)nSn,
(jk) n=1 n=1

so that (m,) o ()%F and we typically turn off this ‘staggered magnetic field’,
B, =

Things are more complicated for the triangular lattice, because there is no
way to assign indices so that even sites only have odd neighbours and vice-versa.
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In technical terminology, the triangular lattice is non-bipartite. As illustrated be-
low, it is not possible to obtain negative contributions to the internal energy from
all three links in the elementary unit cell. There are instead six degenerate config-
urations, with one of the spins aligned against the other two, that all produce the
same minimum energy. Generalizing this situation to a lattice with N >> 1 sites,
there is no regular order, no order parameter, and a large number of degenerate
micro-states — implying to a non-zero entropy even at absolute zero temperature,
as first reported by G. H. Wannier in 1950.

l? L \

: NAVAVAVAVAVE
NAVAVAYAYAVAYA
NVAVAVAVAVAVAYAVA
VAVAVAVAVAVAVAVAY
\VAVAVAVAVAVAVAVA
LA)LQ//
cond-mat/0408370 / \ / / \ é H. Wannier, 1950

This system is known as a frustrated anti-ferromagnet, ‘frustrated’ in the
sense that its lattice structure obstructs the anti-ferromagnetic ordering it ‘wants’
to achieve in order to minimize its energy at low temperatures. Such systems
can be extremely difficult to analyze, as Matthias Troyer and Uwe-Jens Wiese
discussed (for an Ising spin glass) in work from 2004 that has motivated quantum
computing in recent years. In the language of theoretical computer science, the
task of finding the ground states of these frustrated spin glasses falls in the non-
deterministic polynomial (NP) complexity class. Roughly speaking, given any
particular spin configuration it is quick and easy to check whether its energy is
smaller than any given E,, but it requires exponentially large computing resources
to search through the 2V possible spin configurations for minimum-energy micro-
states.

Turning now to the Ising model on a fully connected lattice, we begin by fol-
lowing the hint to rewrite the energy in terms of the magnetization m = ij:l s
This is possible thanks to the presence of links connecting all pairs of distinct
sites, which allows us to replace the sum over these links by sums over site:

i<k J#k J=1

since s7 = 1. Inserting this into the energy, we have

= __ZSJS" — HZSH = _JNm + g — HNm = ~% (Nm2 — 1) — HNm.

<k
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We can now express the partition function as a sum over the N + 1 values
—1 <'m < 1that correspond to 0 < ny < N with multiplicity (," ):

Z = Z( )exp {ﬁJ (Nm2—1)+BHNm]

n4=0

_>/ ( )exp|: J(Nm2—1)+BHNm] .

In order to integrate over the magnetization we need to express the binomial
coefficient in terms of

N
Mem——=l=]la—em =5 niZE(lim).

With a plan to combine this factor with the exponential, let's express it as

N N! N!
<n+> = RPN = exp [log <n+! n_!>] = exp [log(N!) — log(ny!) —log(n_1)].

Applying Stirling’s formula as usual, the linear terms cancel and the argument of
the exponential becomes

Nlog N — gu )l <%(1 + m)> _ %(1 )l ( (1— m)>

The only terms that don’t cancel in the expression above are
Nl 4 + le 1—m
9 B\ \1T 2 2 ®\1ym)"

Inserting these back into the exponential in the partition function, and pulling
out the m-independent factor, we have

1 1
7 —e—BI/2 / NI = =PI/ / [6f(m)]N i
1 4 1—m BJm?
f(m):§lob<1_m2>+2l <1+ >+ 5 + SHm.

Along the same lines as the Sommerfeld expansion we considered in Section 8.8,
we will expand the integrand around the m for which f(m) is maximized. This
maximum value is exponentially preferred in the partition function above, with a
further enhancement by N > 1. Although our approach involves an expansion,
it is possible to show that the solution is exact in the thermodynamic limit — see
Statistical Mechanics of Lattice Systems by Sacha Friedli and Yvan Velenik for
more formal proofs. In that book, this Ising model on the fully connected lattice is
called the Curie—Weiss model.

[a

Anyway, the first step is to find extrema of f(m), by considering its derivative

1 _ 2
ﬁ:i ~§log(1—m2)+ml g<1 m>+BJm + BHm| .

om  Om 2 14+m 2
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After some nice cancellations,

of 1, (L=m -

Perhaps taking inspiration from our mean-field analysis, we can recognize
so that

1 1 1 1—
sctanh(on) = 3 log (7 ) =~ s =
o/

e B(Jm + H) — arctanh(m) = 0 = m = tanh [(Jm + H)]|.
m

We have reproduced essentially the same self-consistency condition that we de-
rived for the mean-field approximation! This shouldn’t be surprising, because we
are considering a system in which every site has N >> 1 nearest neighbours, the
regime in which the mean-field approximation should be a reliable guide.

We have already considered the solutions to this self-consistency condition
in some detail. Let’s consider expanding f(m) around one of these solutions,
which we’ll call m, (and can be either zero or non-zero). Let m, be a solution
to the self-consistency To ensure we have a maximum, we need to consider the
second derivative, which will also make an appearance in the eventual expansion.

0% f o [1 <1—m 1
—log

om?  om 1+m>+ﬁjm]:w—1—m2’

. . o2
so in order to have a maximum, we need fJ < 1_1mg so that gn—j; < 0. For the
0

disordered solution my = 0, this requires f < 1/J — this is a more analytical
way of determining the mean-field critical temperature T, = J compared to the
graphical approach we went through earlier this week. This critical temperature
is sometimes called the Curie temperature due to the equivalence between the
Curie—Weiss model and the mean-field approximation. For lower temperatures,
the (unstable) disordered solution is a minimum of f(m), and instead we need
to consider non-zero mg, which allows us to find a maximum at arbitrarily low
temperatures (small 8) as |mg| — 1.

Focusing on my # 0, we can expand around either of the two equivalent
minima, and simply double the resulting partition function to account for them
both. Starting from

y 02

f(m) = f(mo) + 1 (m — mo)

1
2510g<1_ >+mo

we know that m, is a solution to the self-consistency condition

m=mg

<1 —mo> 1 5J2mo +[3H}
mo

9 1
+t3 (m — my) <BJ— 1—m2> :

0

1 1—my
=1 ! H=0
2 Og(1+mo) +pImo+f
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which significantly simplifies the result:

4 BIm3 1 5 1
1—m(2)>— 5 +§(m—m0) pJ — :

2
1_m0

f(m) ~ %log (

In particular, the self-consistency condition removes all dependence on the ex-
ternal magnetic field H, though there is still implicit dependence on H through its
effect on the precise value of m.

Inserting this back into the partition function, we can pull out all the m-
independent factors and repeat our earlier trick of extending the integration do-
main to include the negligible tails for |m| > 1:

7 = 9~ BIA+NMG)/2 _4 s /oo exp . (m—m )? S BJ )| dm
1—m2 2 0 \1-m2 '

—00

We are now left with a gausSian integral that we know how to do, obtaining

N/2
7 — 9p—BI(1+Nm})/2 4 i 27 (1 —mj)
1—m3 N(1—p8J+pJmd)

As for the simple one-dimensional Ising model, this closed-form expression for
the partition function doesn't itself give us clear intuitive physical insight into the
system. However, it can be used to predict observables, including the magne-
tization — for which we have already found that the result is a transcendental
equation that behaves as

(m) = LB p T2 for TET
N 0 for T > T,

around the critical temperature T, = J, with critical exponent b = 1/2.
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