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In light of this result, it isn’t surprising that the mean-field approximation
producing Eq. 115 makes it very easy to compute the corresponding canonical
partition function

z'\-LF = Zexp [—BE(sp)] = exp [ Bd- N (m (z Z exp [—stn}

{sn} 1=+1  sy=+1
= exp [~Bd - N (m)?] (2 C_O_Sl_l[ﬁﬂeff@
=exp [-Bd- N (m)Q] (2 cosh [B (2d (m) + H)])V , (116)
where we defined 2 = —fHg to put the sums into the same form as in Eq. 41.
Although this factorized result is far simpler than the partition function for the full

Ising model, it does involve some complicated dependence on (m) — especially
when we recall that (m) itself is related to a derivative of log Zyr. With

log Zyme = N log cosh [ (2d (m) + H)] + { H-independent terms} ,
the relation we derived above gives us

1 a 1 1 9
{m) = N5 am 282 Beosh [ (2d (m) + H)| 0H o OB (2dm) + H)].

Simplifying, we obtain a self-consistency condition for the Ising model magne-
tization in the mean-field approximation:

(m) = tanh [B (2d (m) + H)] . (117)

Solving this equation for (m) is equivalent to finding the roots of the equation
tanh [8(2d - 2 + H)] —z = 0.

log Zmr =

A straightforward way to inspect such solutions is by plotting both

f({m)) = (m) 9((m)) = tanh [5(2d (m) + H
and monitoring the intersections of these two functions. Fixing d = 2 dimen-
sions, the plot below considers the simplest case 8 = 1 and H = 0 for which
g((m)) = tanh [(m)] (the solid line). There is only a single intersection between
this function and f({m)) (the dashed line), at (m) = 0, which we should interpret
as a disordered phase.

my - - = 57 ’
tanh((m)) ——— S
s S e i inanerets o)
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To confirm our interpretation of this result, let's check how the intersections
depend on B and H. In the next plot below we keep the same temperature
T = 1/B8 = 4 while comparing two non-zero values for the external magnetic
field. A positive H = 2 simply shifts g((m)) to the left (the green line), while a neg-
ative H = —2 shifts it to the right (the blue line). In both cases there is still only
a single intersection, at (m) ~ +0.88 for H = £2. We can interpret this non-zero
result as an indication that the system is in an ordered phase where the spins
tend to align with the external field.

~_ (my - - - ,
=91 tah,H>0
tanh, H < 0

S v
" / z Zmp

=099

From our work in the previous section, we can expect that the spins’ align-
ment will increase — approaching the minimal-energy ground state — as the
temperature decreases. Decreasing the temperature increases S, which causes
the argument of the tanh to vary more rapidly with (m), making g({m)) a steeper
function that more rapidly approaches its limiting values 1. The plot below illus-
trates this for T = 1/8 = 2, so that 8 =  is doubled. Already for this temperature
and magnetic field H = +2, the intersection is (m) =~ %1 to a very good approxi-
mation. We can also appreciate that —1 < tanh 2 < 1 ensures that the mean-field
self-consistency condition can only ever be satisfied for —1 < (m) < 1, reassur-
ingly consistent with the definition of the magnetization. -

— (m) - - -
l - l tanh, H > 0
tanh, H <0
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Also in the previous section, we saw that the Ising model spins should align
at low temperatures, even without an external field to promote one direction over
the other. We hope to see this behaviour captured by the mean-field approxima-
tion, which we can check by considering the self-consistency condition for various
temperatures with # = 0. The plot below shows the results, considering a low
temperature T = 2 with 8 = 3 (the blue line), the same green curve forT =4
shown in the first plot above, and a high temperature 7' = 8 with 3 = % (the
red line). While the (m) = 0 expected in the disordered phase is always a pos-
sible solution, something interesting happens at lower temperatures, where the
steeper tanh function introduces two additional solutions at non-zero (m) = £tmg
corresponding to the ordered phase. As ' — 0, this magnetization approaches
its maximum value my — 1.

(m) - - - 5.7
tanh, T =2 ——— .
tanh, T = 4 ——— Wi /’

Zmd

When there are three solutions (m) = {—mg,0,mo} at low temperatures,
we can determine that the (m) = 0 solution is actually unstable. Here we are
venturing briefly into non-equilibrium territory, and thinking of the mean-field sys-
tem as a ‘blind’ process.that attempts to satisfy the self-consistency condition
(m) = tanh [28d (m)], based only on knowledge of whether the expectation value
of the magnetization is too small or too large compared to the tanh. Once the
magnetization is self-consistent, the system can happily settle into thermody-
namic equilibrium.

From the figure above we can see that (with H = 0) we can have three
solutions only when the slope of the tanh at (m) = 0 is greater than 1. Any positive
value (m) = ¢ > 0 would then produce tanh [24d (m)] > (m), which the system
‘feels’ as a magnetization that is too small to be self-consistent. This drives the
system to continue increasing its magnetization, until it eventually settles at the
non-zero solution (m) = my. Similarly, any negative magnetization (m) =—€<0
would drive (m) away from zero and to the (m) = —m, solution.

This argument can be visualized more easily by plotting tanh [28d (m)]— (m)
vs. (m) as shown in the final plot below. Whenever this difference is negative, it
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implies (m) is larger than the self-consistency condition allows, driving the system
to smaller (m) as shown by the arrows pointing to the left. Conversely, whenever
the difference is positive, the system ‘seeks’ self-consistency by increasing {(m)
as shown by the arrows pointing to the right. For the low temperature T" = 2, we
see that the arrows move the system away from the unstable solution (m) = 0
and to the stable solutions (m) = £my.

tanh — (m)

~N~S
mwnn
o0 BN

So in the end we can conclude that the non-interacting mean-field approxi-
mation successfully captures at least the high- and low-temperature limits of the
interacting zero-field Ising model that we determined in the previous section. For
high temperatures the mean-field self-consistency condition demands (m) = 0
consistent with the disordered phase, while for low temperatures it produces
|(m)| = mq > 0 consistent with the ordered phase.

Going further, now that we have a more tractable non-interacting system
we can consider the value of the temperature at which the (m) = 4my solutions
appear and the (m) = 0 solution becomes unstable. As described above, this
occurs whenever the slope of the tanh function at {m) = 0 is greater than 1.
Let’s call the corresponding temperature T, though it remains to be determined
whether it is really a critical temperature of a true phase transition. Expanding
tanh(z) = z + O (23) for 2 = 0, what is ..

(}d (ﬁmh(zﬁ()CWD) = Zﬁo’{hzb « (f(<m§”’))

dm b0

2pd=1 — 'ﬂ‘zd’é:

You should find that the change from the high-temperature disordered phase
to the low-temperature ordered phase occurs at T, = 2d in d dimensions, or equiv-
alently 8. = 2171 — corresponding to the green lines in the two figures above with
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d = 2. In order to determine whether or not this is a true critical temperature,
we need to check whether the order parameter (m) or its T-derivatives are dis-
continuous at 7.. We can do this by considering the self-consistency condition
for a temperature T lower than but very near to 7. = 2d, which would produce
0 < | (m)| < 1 and allow us to expand tanh(z) = x — 2 1 O(a®). What is the
resulting prediction for (m)? 2 T.

~ = LN 3
> = Tauh (2)%J<m>) = 2pfLim) ~ Lg(zw(z@) + Meny)
(TN iy = &
3 ?) T o L\
N ‘7/
VAT ) % ()
CVV'S > i/‘}z (T(, - 1 A)/ Te
N
Making the approximation (%)2 ~ 1, your result should resemble
T, T 1/2 <M3—’0 _
(m):j:\/§< T ) for T <T.. as T Te
From this, we can see that the W)_is continuous at 7.
_ /2 <
(m) o (T.-T)"* for TST. (118)
0 for T 2T,
However, its first derivative
d (m) 1

dr * (T, — T)1/2
diverges as T — T, from below. This is the situation we discussed at the end
of the previous section, which predicts a second-order phase transition with crit-
ical temperature T, = 2d in d dimensions. The power-law dependence (m)
(T, — Tg" with non-integer b is a generic feature of second-order phase transi-
tions. The power b is known as a critical exponent, in this case b= 1/2.

At this point we have invested some effort to find that the mean-field approx-
imation of the d-dimensional Ising model, with H = 0, predicts a second-order
phase transition at 7. = 2d with critical exponent 1/2. Let’'s wrap up this section
with some quick comments on the reliability of the mean-field approximation and
the accuracy of these results it has given us.

The accuracy of the mean-field results turns out to depend on the number of
dimensions. For the one-dimensional Ising model that Ising himself solved, there
is no phase transition at all, as we will derive in the next section. In other words,
the mean-field approximation simply fails for d = 1.
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The situation improves for the two-dimensional Ising model. Onsager’s
exact H = 0 solution features a second-order phase fransition, at an inverse
critical temperature . = 3log (1 + \/5) ~ 0.44 that had been exactly deter-
mined a few years before his work. For T < T., the magnetization vanishes
as (m) o (T, — T)*/8, corresponding to a critical exponent 1/8. While the mean-
field prediction of a second-order phase transition is now qualitatively correct, at
a quantitative level its predicted . = 55 = 0.25 is off by almost a factor of 2, while
the mean-field critical exponent b = 1/2 is four times larger than the true b = 1/8.

For higher dimensions d > 3 there is no known exact solution for the Ising
model, but the existence of a second-order phase transition can be established
and the corresponding critical temperature and critical exponents can be com-
puted numerically, as we will discuss in Unit 10. In three dimensions the mean-
field T, = 2d = 6 and b = 1/2 are still significantly different from the true T, ~ 4.5
and b ~ 0.32. The mean-field prediction for the critical exponent b = 1/2 turns out
to be correct for d > 4, while the critical temperature T, = 2d gradually approaches
the true value as the number of dimensions increases. Numerical computations
find T, ~ 6.7, 8.8, 10.8 and 12.9 for d = 4, 5, 6 and 7, respectively, so that the
mean-field result improves from being ~19% too high for d = 4 to only ~9% too
high for d = 7. Formally, the mean-field approximation exactly reproduces the
Ising model in the abstract limit of infinite dimensions, d — co. Roughly speaking,
the greater reliability of the mean-field approach in higher dimensions is due to
the larger number of nearest neighbours for each site, 2d. The larger number
of nearest-neighbour spins produces a more reliable approximation of the mean
spin in the effective field seen by each site in the mean-field approach.

9.4 Supplement: Ising model exact results

If time permits, it is not too hard to prove some of the exact results men-
tioned above, for Ising models in one and two dimensions where the mean-field
approximation is least reliable.

9.4.1 One-dimensional partition function and magnetization

The special property of the one-dimensional Ising model that helps us derive
a closed-form expression for its partition function is the fact that it has exactly as
many links as it has sites. Looking back to the illustration on page 134, we can
rewrite the nearest-neighbour interaction term as

N
§ Sjskr:§ Sndn+1,
n=1

(7k)

where the periodic boundary conditions identify sy41 = s;1. |f we also rewrite
H Zflvzl sn="4 SN (8n + 8nt1), then the full internal energy is

ol o
E’i =l Z |:3n3n+1 + 5 (Sn + 311+1):| .

n=1
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