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The key factor is the probability for the system to be in one of these micro-states,
which depends on the value of the energy F; for the first excited energy level.
What is this E; for the N-site Ising model in d dimensions?

5= 2= (40-2) = V- 1)

1 Trom 20/ /‘mlu 601441,(,/@[} Ty ;((WJ r'qiq
S T all ot dN=2] lhs

Let's bring everything together by computing the relative probability for the d-
dimensional Ising model to be in its ground state with |m| = 1 compared to its first
excited state with |m| = 1 — %. This probability is the product of the degeneracy
of each energy level times the Boltzmann factor that governs the probability of the
system adopting any of these degenerate micro-states:

P () J-exp[BBN]  _ exp[4Bd

P(Ey) 2N -oxpB(@N—4d)] N

For any fixed N, a Wwill cause the ground state to dom-
inate, with exponentially suppressed contributions from higher energy levels, just
as we previously found for simpler non-interacting systems. This characterizes an
ordered phase with essentially all spins aligned in the same direction, producing
a large expectation value for the magnetization, (|m[) — 1.

We have now seen how the behaviour of the magnetization (|m|) distin-
guishes the high- and low-temperature phases of the zero-field Ising model in
d dimensions. In the high-temperature disordered phase, the magnetization is
small and (_IT_n_Dj_O_iﬂ the thermodynamic limit N — co. In the low-temperature
ordered phase, the magnetization is large and (|m|) — 1 as T' = 0.

This contrast between ordered and disordered phases is typical behaviour
for interacting statistical systems. These two phases are distinguished by an or=.
der parameter — an observable (related to a derivative of the free energy) that
is zero in the disordered phase but non-zero in the ordered phase.'* The mag-
netization is the order parameter for the Ising model, which we will connect to the
free energy in the next section. Note that the order parameter need not reach
its maximum value in the ordered phase — in the case of the Ising model, we
don't need complete domination by the fully ordered ground state. So long as
there is a tendency towards order, mathematically defined by a non-zero order

14There are atypical (but interesting and important) topological phase transitions that are not
characterized by such an order parameter. The most famous example is the BKT phase transition
named after Vadim Berezinskii, J. Michael Kosterlitz and David Thouless, which was awarded the
2016 Nobel Prize in Physics. It is also possible for a single system to have multiple distinct phase
am———————— n .
transitions, each characterized by a different order parameter.
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parameter, the system is in the ordered phase. The details of how the order pa-
rameter changes between zero and non-zero values are what distinguish gradual
crossovers from rapid phase transitions.

A phase transition is defined by a discontinuity or divergence.in the order
parameter or its derivative(s), in the N — oo thermodynamic limit.. The value(s)
of the control parameter(s) at which the discontinuity occurs define the critical
point(s) corresponding to the transition.

For the zero-field Ising model, since we have set H = 0, the only remaining
control parameter is the temperature T'. Any phase transition would therefore oc-
cur at a critical temperature T,;. The sketches below illustrate the most common
types of phase transitions. When the order parameter (OP) itself is discontinuous
(shown by a dashed line), the transition is said to be a first-order phase transi-
tion. When the order parameter is continuous at T but its first derivative with
respect to the control parameter is discontinuous (typically divergent), the transi-
tion is said to be a second-order phase transition. This naming scheme can be
generalized to higher-order phase transitions, for which discontinuities don’t oc-
cur until higher derivatives of the order parameter are considered, but in general
any phase transition with a continuous order parameter is called a second-order
transition.

<m7
OP OP A Dh-
2nd Order Phase . Ist Orde 01‘d.e1 Phase
PR Transition
Transition
' d i&m{'"“#‘/
_ ;
div ps.uci.edu/~cyu TC T TC T

In practice, any system with a finite number of degrees of freedom will not
exhibit a true discontinuity or divergence in any observable. As a result, itis some-
times said that true phase transitions only occur in the N — co thermodynamic.g
limit, but | consider this excessively pedantic, especially given the finite number of
atoms in the universe. We are still able to distinguish crossovers from true phase
transitions when considering a finite number of degrees of freedom, by analyzing
the way in which the system approaches the thermodynomic limit. If there is time
and inclination, we may explore such finite-size scaling, but first we will develop a
useful approximation technique, and apply it to the Ising model to investigate its
(dimensionality-dependent) phase transition in more detail.
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9.3 The mean-field approximation

Having identified the ordered and disordered phases of the zero-field Ising
model, respectively at low and high temperatures, let's now restore a non-zero
external magnetic field, H > 0. This will allow us to gain a deeper appreciation of
the magnetization — now with no absolute value — by noting that Eq. 113 means
the magnetization is just the average spin.

N
M 1 1
b b A R P

—

m

We can benefit from this observation in two ways. First, we can recognize the
magnetization in the internal energy of the full Ising model with H > 0:

N
&:—Zsjsk—Han:—Zsjsk—H&m:—ZSjsk—Hi\:[_.
n=1

D) n=l__ (5%) (k)
. . . - i ~JE
The corresponding canonical partition function is Z -z
Fi= Zexp [5Zsjsk +ﬁH]_\_4 :
{si} (%)

Based on this expression, and our earlier experience with the entropy and internal
energy, we can anticipate that (m) = (M) /N is related to the derivative of the
Helmholtz free energy F' = —T log Z with respect to the field strength H:

0 2 = o L JF
_ XL 5 BM | BEZ 55 ¢ B
— SFZ %5); CFZE%) h //Ij

= - M = VL)
|
w7 3 by 2

As promised in the previous section, this relation ensures that the magnetization
is an appropriate order parameter for the Ising model phase transition.

The second way we can benefit from relating the magnetization to the aver-
age spin is to express the Ising model in terms of the expectation value

1 N

1
_ ‘_,BE(Sn) —
(m) = 7 5 me =N (sn) -

— —

{sn} n=1

The expectation value of the average spin, % Zle (sn), is independent of the
spin configuration {s,} and is simply a function of the inverse temperature g and
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255 (B H)

magnetic field strength H. By adding and subtracting factors of (m), we can
exactly rewrite each nearest-neighbour term in the Ising model energy, Eq. 111,

s
a 5},
sjsi = (55— (m)) + (m)] x [(s — (m)) + (m)]
= (sj — (m))Xsk — (m)) + (s; + sx) (m) — (m)*. (114)
Vle?[; Lk
This is beneficial because we can note that the factors of (s; — (m)) corre-
spond to the spins’ fluctuations around their mean value (m). By ¢ conjecturing

that these fluctuations are small on average, we can approximate the Ising model
energy by neglecting the first term in Eq. 114 when summing over all links:

ZS]SL—HZSn — EMF——Z sj—l—sk Han

(3k) (5k) n=1__

The sum over the links ¢ = (jk) in d dimensions simply counts d - N factors of
the constant (m)>. Similarly, since the first term includes both spins (s; + sx) on
each end of the link, every individual spin appears 2d times in the sum over links.
Therefore this term just gives us 2d {(m) times another sum over the spins s,
which we can combine with the final term above:

By = d- N (m)? — (2d (m) + H) an_d N (m Hefstn (115)

n=1

In this expression we define an effective magnetic field Her = 2d (m) + H
that depends on the mean spin. This is a way to remember that this approach of
neglecting the squared fluctuations (s; — (m)) (sx — (m)) is known as the mean-
field approximation. In essence, this approach supposes that we can average
over all 2d nearest neighbours of each spin and end up with an approximately
constant factor that behaves like a modification of the magnetic field. Given the
resulting mean-field energy Eur from Eq. 115, let's check the change in this en-
ergy, AE;, upon negating any s; — —s;:

Eur ~ (/WWL ~ ey (s ki’fi) ) A8, = LAy,
= - Lm) = Hp (-5 4 . 5%.) .

V/Ll/ldwdﬁ/l// "§ Si ¥0'/ }L“Z') e < ﬂOw’.Mﬁ’rqcF{w?}
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In light of this result, it isn’t surprising that the mean-field approximation
producing Eq. 115 makes it very easy to compute the corresponding canonical
partition function

IMF = Zexp [—BE(sn)] = exp [ Bd- N (m (Z Z exp [—st,{l

T () si=£1  sy=+1
= exp [~fd - N (m)?] (2 cosh [5He,f§'D
=exp [-fd- N <m)2] (2 cosh [B (2d (m) + Y, (116)
where we defined 2 = —fHey to put the sums into the same form as in Eq. 41.
Although this factorized result is far simpler than the partition function for the full

Ising model, it does involve some complicated dependence on (m) — especially
when we recall that (m) itself is related to a derivative of log Zyr. With

log Zur = N log cosh [ (2d (m) + H)] + { H-independent terms} ,
the relation we derived above gives us

o 1 | o
(m) = Npam 08 dur = Bosh [B(2d (m) + H)| 0H e ont [ Odmy -5l

Simplifying, we obtain a self-consistency condition for the Ising model magne-
tization in the mean-field approximation:

(m) = tanh[B (2d (m) + H)]. (117) A
Solving this equation for (m) is equivalent to finding the roots of the equation j ﬂ *
tanh [8(2d - 2 + H)]| —z = 0. //
A straightforward way to inspect such solutions is by plotting both
f({m)) = (m) g9({m)) = tanh [8(2d (m) + H)]

and monitoring the intersections of these two functions. Fixing d = 2 dimen-
sions, the plot below considers the simplest case g =  and H = 0 for which
g({m)) = tanh [(m)] (the solid line). There is only a single intersection between
this function and f({m)) (the dashed line), at (m) = 0, which we should interpret
as a disordered phase.

(my - - - e
tanh({m)) ——— .
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