MATH327: Statistical Physics, Spring 2022
Tutorial problem — Lattices

In the module we are focusing on simple cubic lattices with periodic bound-
ary conditions, but other lattice structures play important roles in both nature and
mathematics. Some of the remarkable electronic properties of graphene, for ex-
ample, are due to its two-dimensional honeycomb lattice structure, while more
elaborate three-dimensional lattices play central roles in the search for materials

exhibiting high-temperature superconductivity.

The figure below shows three simple two-dimensional lattices, each of which
has a different coordination number — the number of nearest neighbours for
each site (with periodic boundary conditions). We have already seen that the
square lattice has coordination number C = 2d = 4, and generalizes to simple
cubic and hyper-cubic lattices in higher dimensions.

The honeycomb lattice of graphene has a smaller coordination number C =
d +1 = 3, and generalizes to ‘hyper-diamond’ lattices in higher dimensions. Fi-
nally, the triangular lattice essentially fills in the middle of each honeycomb cell,
leading to coordination number C' = 2(d + 1) = 6. lts higher-dimensional gener-
alizations are known as 4} lattices, of which the simplest example is the three-
dimensional body-centered cubic lattice shown below. Also shown below is the
‘kagome’ latfice, which has the same C = 4 as the square lattice, illustrating that
the coordination number is insufficient to completely characterize a lattice.
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Things become more interesting when we consider generalizing the Ising

model to have energy
N
E= {]Zsjsk —Han,

(]—L) n=1
with nearest neighbours (jk).defined by any of the three simple two-dimensional
lattices above. While any positive interaction strength J > 0 can be rescaled
to J = 1 without loss of generality, the case of a constant negative J < 0 is
qualitatively different. Specializing to d = 2 and H = 0, let’s consider a couple
of conceptual questions: What are the minimum-energy ground states for each
case J > 0 and J < 0, for each of the square, honeycomb and triangular lattices?
Can you think of an order parameter distinguishing these ground states from the
disordered micro-states that dominate at high temperatures?

Generalizing the Ising model in this way opens up a vast landscape of pos-
sible applications both practical and abstract. As one example (with both practical
and abstract relevance), a spin glass can be modeled by allowing the interaction
strength to vary from site to site,

ESG = — Z@sjsk.

(7k)

Giorgio Parisi was awarded part of the 2021 Nobel Prize in Physics for his work
studying the mathematics of such spin glass systems. In particular, he was able
to solve the so-called Sherrington—Kirkpatrick model

FEsg = — g Jik8iSk;

i<k

where the values Jj; are randomly drawn from a gaussian distribution around
some mean J, and the system is defined on a fully connected lattice (or complete
graph) where every site j is a nearest neighbour of every other site k # j. (Sum-
ming only over j < k and not j > k avoids double-counting the link jk.) As shown
on the next page, a fully connected lattice with N sites has 1N (N —1) = (}) links.

While we may look a bit more closely at spin glasses if time permits dur-
ing the next couple of weeks, for now let’s consider a simpler Ising system with
constant interaction strength on the fully connected lattice:

7 N
E = N apdp— H E Si
i<k n=1

We normalize the interaction strength by N so that the system retains a finite
energy per spin in the N — co thermodynamic limit.

Can you compute a closed-form expression for the partition function of this
Ising model on the fully connected lattice? As a hint, it may be profitable to reor-
ganize the calculation into a sum over the NV + 1 possible values of the magneti-
zation —1 < m < 1, and counting how many micro-states there are with a given
magnetization. (This is analogous to the fugacity expansion that reorganizes the
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grand-canonical partition function into a sum over possible particle numbers.) The
energy above would need to be rewritten in terms of the magnetization, which is
easier when summing over all j < k compared to considering only nearest neigh-
bours. Finally, for large N we can approximate the N + 1 possible values of m as
continuously varying, and integrate
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en.wikipedia.org/wiki/Complete_graph
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MATH327: Statistical Physics, Spring 2022
Homework solutions 1

Question 1: Drift and diffusion

Modeling the motion of each oil droplet as a random walk, 10/1000 = 1% of
the oil will be in the marine protected area (MPA) when there is a 1% probability
of this random walk covering a distance of at least X = 1 km. Mathematically, this
probability is

o] 1 [es} . 2
P= / p(z) do = exp [—:i—vd;) ] dx
X Vv 2wt D? X 2tD

where P = 0.01 and we have used the central limit theorem in the form of Eq. 17
in the lecture notes. We need to solve this equation for the time ¢. We proceed by
substituting

" T — V4t d dx
= — U =
v/ 2tD? V2t D2
to find
1 *° 52 3 X — Udrt
= e ™ du with U= ) 1
v J2iD? M)

The key step is to relate this integral to the gaussian integral and the error
function, which are respectively

1 I 2 [ _p
el v gy — 2 —u — s
L wm g T an
erf (U) = 1 /U —u? g — 2 /U —u? g
CI = ﬁ - e U = \/7—{‘ e U.

We can do this by splitting the (0, co) integration domain into two pieces:

== / 4y = —— 7 / du+% /U e du = exf(U) + 2P.

Solving for U, we have U = erf (1 — 2P) = exf'(0.98) ~ 1.64498, where the
numerical value can be obtained using SciPy, as special.erfinv(0.98).

Now all we need to do is solve Eq. 1 for ¢. Squaring both sides produces the
quadratic equation

vat? — (2Xvg + 2U2DHt + X% = 0.

We are interested in the smaller of the two roots:

2 ry2
= g | PXv 207D - VA vy + U2D2)2 — 4X 202,
_ Xovg + U?D? —UDV2Xvy, + U2D2

Udl
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Plugging in
X = 1000 m D =2m/vmin vay = 1 m/min U ~ 1.64498,

with consistent units, produces ¢ ~ 863.3 minutes, a little under 14.4 hours.

Something interesting happens when we now consider how much additional
time it will take for the amount of oil inside the MPA to double to 2% of the total.
This only changes P = 0.02 and U = erf (1 — 2P) = erf '(0.96) ~ 1.45222, pro-
ducing t ~ 878.3 minutes. That is, while it takes almost fifteen hours for the first
10 tonnes of oil to enter the MPA, an additional 10 tonnes enters within another fif-
teen minutes! Once the oil starts arriving the situation rapidly deteriorates, calling
for quick action.

Finally, note that the calculation above accounts for the non-zero probability
that each oil droplet can randomly walk into the MPA, and then randomly reverse
its direction to walk back out again — reducing the amount of oil in the MPA. Such
behaviour would not be possible if the droplet were instead ending its random
walk by washing onto a shore. That is, the oil would accumulate more quickly on
a shore compared to an MPA, meaning that it would take less time for the same
amount of oil to wash up.

Question 2: Negative temperature

In the micro-canonical ensemble, and assuming thermodynamic equilibrium
as always in this module, the entropy is S = log M (N, E), where the fixed energy
is E = nye. The number of micro-states with energy F is

N N! N!
]\/[ - — = ,
n1 nll(N—nl)! % (N—%)'

plugging in n; = £. Taking the log and approximating log(n!) ~ nlogn — n for
n > 1, the constant terms N —n; — (N — n,) all cancel, leaving

E FE E E
S%NlogN—;log—— (N—;) log <N——>

£

Any of the three expressions above is satisfactory. | find it easiest to take the
derivative of the third, while the first simplifies standard sanity checks for the
entropy: Because we assume N > < Eand N > (N ) we can see S > 0 as it
should be. When E — N (so that no — 0, violating our assumption ny > 1), the
first and second terms cancel while the third term vanishes, recovering the trivial
limit S — 0. Similarly, when £ < — 0 (so that n; — 0, violating our assumption n; >>
1), the first and third terms cancel while the second term vanishes, recovering the
other trivial limit S — 0.
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Moving on to the derivative that provides the temperature, it is

1 388 -N N e (M) . 2 Ne
—= = | == =log | —— 0
T 0E 1-Z\ Ne/ e "\ E e 1\ E?
N N N

N Lo (B or) - g (%)

Inverting, the temperature is

Sy oy

and we can see that this is negative when % < 2, which corresponds to n; =
% > & As for the non-interacting spin system, this is the ‘unnatural’ regime in
which increasing the amount of energy in the system decreases the number of
accessible micro-states and hence the entropy.

Finally, when we consider bringing two such systems into thermal contact
with each other, conservation of energy demands

1 1
— — — | AFE 0
<TA TB) A > U,

as we derived in Section 2.4 of the lecture notes. Supposing 7's > 0 while Tz < 0,
the expression in the parentheses is clearly positive, requiring AE,4 > 0. In other
words, energy flows from the negative-temperature system Qp into the positive-
temperature system Q4. In this way, negative-temperature systems behave as
though they are ‘hotter’ than positive-temperature systems!

Question 3: Heat capacity

There are two terms in the given derivative:

1<, g, 197 b5,
E;Eﬁe l :_<ZOT> ZZE@ +28—TZE -

Using the gap on page 48 of the lecture notes, the first term is

Cy =

aT

0 0
—(B) grlogZ = (B) 551087 = =’ (E ).

Similarly, the second term is

Py P L R = (),

Putting them together,

o= LI _ L)) = £ (B - (B,
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>0

T/’

Since the expectation value is a sum over all accessible micro-states,

(B (B = 5> (BB e = pi(Bi-

we see that the heat capacity is a sum of squares with positive coefficients p;.
Therefore the only way ¢, can vanish at finite temperature is if £; = (E) for every
accessible micro-state w;. That is, the micro-state energies must all be identical,
with no fluctuations around the expectation value (£), in order for ¢, = 0.

Building on our work above, it is not too challenging to consider

a 2 2 2 2 2
aT o= = = BB v op [ﬁ (<E>—<E> )]

M

M -
ZE2 PR +B4 [ ZEC }

For the middle term, we can just repeat our computation above with E; — E?:

0
2 BB | _ 3529
$y st - pg

For the final term, it's easier to consider

(B = 25" (B) 5 () = ~26° B) 5 () = 26" (B) (%) — (B)").

~— 25 (%) - (B)) ~ '3

_54

1Ym0t ()= (8 ().

4
T

Putting these together, and plugging in ¢, = 2 ((E?) — <E>2), we have

0

r0n = —2Be, + B ((B%) = 3(E%) (B) + 2(B)") .

We can recoghize
(B — (B))*) = (B®)—3(E2) (E)+3(E) (E)*—(E)’ = (E*)-3(E") (E)+2(E)°,
meaning that we have found

9 {(BE-(B))
2CU + Ta—T‘CU = _——T'S——

We can check that the powers of T' ensure all three terms in this relation are
dimensionless.
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Question 4: Indistinguishable spins

From Eq. 39 in the lecture notes, for the internal energy we just need the
derivative

0 o B P )
(B); = 55 [BF1) = —NH — %log [1 — & 2(N+1)/3H] + %log [1 e 2[3H]
. 2(N + 1)H@—2(N+1)5H 9 o—20H
=N 1 — e~ 2N+1)BH T 1 — e—2BH" (2)

From the same equation, the entropy is

Sp= ﬁ(<E>I _FI)
—28H N 4 1)e—2(N+1)BH 1 — e~ 2N+1)BH
:2ﬂH< € —( +1)e )—l—log[————e ]
1 _ e—28H 1 _ e—2(N+1)BH 1 _ g—2BH

These expressions are a bit lengthy, which motivates investigating how they sim-
plify for low and high temperatures.

For low temperatures SH > 1, we can define e = e=*% « 1 and write

1
l—z8

1
——N+—1+2H6

(E); = —NH —2(N + 1)H5N+11 —

The final term is

2He =2H5+(9(52),

1—¢
while the middle term is negligible,

; 1
2N+ DHe" M —77 = O (")

with N > 1. So, overall,
(B); = —NH +2He " 4 0 (e*77). 3)
In terms of the energy gap AE = 2H, this is
(E); = —NH + AEe P27 4 O (7)),

where the second term differs by a factor of N compared to (E), for distinguish-
able spins at low temperatures.

For the low-temperature entropy, it is again convenient to use the expression
S = B ((E); — Fy), for which we need the low-temperature expansion of

BF; = —NBH —log [1 — EN+1] +log [l —€].

The final term is
log[l —¢] = —e+ O (&),

while the middle term is again negligible,

log [1 _ EN+1] -0 (EN+1) ’
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with N > 1. So for low temperatures
BF; = —NBH — e " + O (e*H),

and we can check that taking the derivative % [BFy] correctly recovers Eq. 3 for
(E),. Putting things together,

Sy =28He™PH 4 ¢7*H 1 0 (BHe M) = BAEe PAP +e7PAP + O (BAEe*P4P)

again differing by factors of N compared to the low-temperature Sp for distin-
guishable spins.

For high temperatures SH < 1, the following expansions for 2 < 1 will be
useful:

1 1 1 1
1ot o-2H{8h . s \1-(5-5+-)
—1 1+ E_l_Q + _ai__x_22+0(2)
T 26 2 6 v
1P el 1 2 L l(@ 2
_x[1+2+m <4 6)}“9(@) s 1/2+(9(:1,)

Applying this to the final term in Eq. 2 for (E),, with = = 28H,
9He2H ) 1 1 BH ) s
m:QH(l—QﬁH—F@) X <2,B—H+§+T> +O(5H)
1 BH?

e = | il 27173
=3 H+ = +0 (B*H?).

The middle term simply involves replacing every H — H(N + 1):

2H(N + 1) 2PHWN+L) 1 BH?(N +1)?
1— 26N+ g (N+1)+ B E—

+ 0 (B°H?).

Subtracting NH from the difference between these two terms produces many
cancellations that leave
BH? N(N +2)BH?

(B), == (1-WN+1)°)+0(FH) = - T tO(FH). (4)

This leading term again differs by factors of N compared to the high-temperature
(E), for distinguishable spins.
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Finally addressing the entropy by expanding SF;, we have

log [1 — e "] =log [28H] — BH + % (BH)? + O ([BHP)
log [1 — e 2NVHDBH] = Jog [2(N + 1) BH]
— (N +1)8H + %(N +1)2(BH)* + O ([BH]?) .

Again taking the difference and subtracting SN H, all that remains is

N(N +2) (BH)?

BFy = —log(N +1) — -

+0(BH]).

We can again check that taking the derivative 'a% [BF] correctly recovers Eq. 4 for
(F);. Putting things together,

N(N +2) (BH)?
6

S;=B({E), — Fy) =log(N +1) — +0 ([8H)),

significantly different from high-temperature Sp, for distinguishable spins.
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