Let AE; be the change in the system’s internal energy caused by changing
its jth degree of freedom. Then the system is defined to be non-interacting if
and only if AE; for any j is independent of all other degrees of freedom k # j.

For our system of NV distinguishable spins, the only possible change we can
make to a degree of freedom is to negate it, s; — —s;, Which corresponds to
flipping its alignment relative to the external magnetic field. It is easy to check
that the change in the internal energy resulting from such a spin flip satisfies our
definition of a non-interacting system:
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Now let's make things more interesting by considering a different spin sys-

tem that also includes a s_imﬂe‘tm)-_sm_e_o_r_mnuﬂp_njo the internal energy:
N
Ei=-) sjssi—H) sn (111)
n=1

@

The first sum runs over all pairs of nearest-neighbour spins in the lattice, denoted
(jk). What is the change in energy AE; from Eq. 111 upon negating s; — —s;?
Does this indicate an interacting or non-interacting system?
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The pictures on the next page illustrate nearest-neighbour pairs for simple
cubic lattices in d = 2 and 3 dimensions, while also introducing some additional
lattice terminology. Instead of drawing up- and down-pointing arrows, these pic-
tures identify the spins with sites in the lattice represented as points (or larger
filled circles). In simple cubic lattices, all sites are positioned in a regular grid,
separated by a constant distance along each basis vector. We can also draw
links as solid lines connecting these nearest-neighbour sites, with each link cor-
responding to a term in Zm- The picture of a two-dimensional lattice on the left
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highlights the four links (with red hatch marks) that correspond to the four nearest
neighbours (circled in red) of a particular site (circled in blue). For d > 2, an ele-
mentary unit of surface area is called a plaquette, while for d > 3 the elementary
unit of volume is called a cube.
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Computing the energy in Eg. 111 requires determining all of the nearest-
neighbour pairs to be summed in the first term, which is equivalent to all of the
links in the lattice, £ = (jk). When considering a finite lattice, this task is compli-
cated by the need to consider the edges of the lattice. We can avoid this compli-
cation by imposing periodic bou nditions, which remove these edges
by adding links between each site on the left edge of the lattice and the corre-
sponding site on the right edge, and similarly in all other dimensions. This is
illustrated below for the simple case of the one-dimensional lattice, drawn as a
circle to emphasize that all N sites remain separated by a constant distance. In
higher dimensions, periodic boundary conditions produce flat (zero-curvature) d-
dimensional tori that preserve the simple cubic lattice structure.

With periodic boundary conditions, we can easily see that the N-site one-
dimensional lattice drawn above has N links. Each site has two links connecting
it to its two nearest neighbours, and each of those links is shared between two
sites, so that #¢ = wLooking back to the two-dimensional lattice drawn
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farther above, the four links per site produce #£ = 4N/2 = 2N. How many terms
are there in the sum >_ . in Eq. 111 for N-site lattices with periodic boundary
conditions in d dimensions?
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The energy of interacting spins given by Eq. 111, with a lattice structure
defined to specify which spins form the nearest-neighbour pairs (jk), defines a
famous system known as the d-dimensional Ising model. Since the 1960s, the
Ising model has been the basis of thousands of scientific studies analyzing ev-
erything from ferromagnetism to neural networks to urban segregation.’® The
model was proposed in 1920 by Wilhelm Lenz, whose PhD student Ernst Ising
solved the one-dimensional system as a research project in 1924. Exactly solv-
ing the two-dimensional case (with H = 0) took another twenty years, culminating
in renowned work by Lars Onsager in 1944. The three-dimensional Ising model
remains an open mathematical question, with no known exact solution.

In this context, ‘solving’ the Ising model means deriving a closed-form ex-
pression for its canonical partition function,

J-V %
Z(B,N,H) = Zexp —BE(s,)] = Zexp ﬁZsJSL —i—ﬁHan
{sn} {sn} (3k)

As in Section 3.4, the partition function sums over all possible spin configurations
{s,}, which amounts to a sum of 2"V exponential factors for N spins, with O(N)
terms within each exponential. Now that the system is interacting, the partition
function no longer factorizes into the N identical cosh factors of Eq. 41, making
it extremely difficult to evaluate. This is why there is no known exact solution
to the three-dimensional Ising model, and it also makes ‘brute-force’ numerical
computations impractical. Even for a system of N = 1023 spins, twenty orders
of magnitude smaller than our typical N ~ 10%, there are roughly 219 ~ 10310
terms in the partition function, far beyond the Capabllltles of eX|st|ng or foresee-
able supercomputers.

9.2 Ising model phases and phase transition

Despite the insolubility of the Ising model in an arbitrary number of d di-
mensions, we can still make robust predictions for its large-scale behaviour by
considering the simplified limits of high and low temperature, much as we did for
non-interacting spin systems in Section 3.4. We can also simplify the system by

18For a brief discussion, see Charlie Wood, “The Cartoon Picture of Magnets That Has Trans-
formed Science”, Quanta I\@gjgine, 2020.
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setting H = 0.in this section, and considering just

—Zsjsk Zexp ﬁZstk : (112)

G {sn} )

We will see that the behaviour of this zero-field Ising model is qualitatively dif-
ferent at high temperatures compared to low temperatures. In other words, the
system exhibits at least two distinct phases for different temperatures. This is a
necessary but not sufficient condition for there to be a true phase transition — it
leaves open the possibility of a gradual crossover between these two phases, as
opposed to a rapid transition. In this section we will use the Ising model to more
rigorously define what exactly constitutes a phase transition, and how this can be
distinguished from a crossover.

(
Bl
First, though, let's consider the high-temperature limit 3 — 0, where the
Ising model partition function becomes extremely simple:
hm Z(B,N QX%

B

In this limit, all 2~ spin configurations are adopted with the same probability p; =
1/27, regardless of their internal energy from Eq. 112. In effect, that energy “has
become negligible compared to the temperature,

Rather than computing the expectation value of that internal energy, there is
a simpler observable that we can consider to characterize this high-temperature
phase. This is the magnetization M/ = n, — n_, retaining our definition of n.
as the number of spins with value £1, even without an external field for them to
align with or align against. It is convenient to normalize the magnetization by the
number of spins,

M ny—n_

m=— = ,

i\/'_ N4 +n_

so that —1 < m < 1 for any value of N. In addition, without an external field
to distinguish between +1 spins, it is also convenient to consider the absolute

magnitude 0 < |m| < 1.

(113)

Our task is now to determine the expectation value of the magnetization
at high temperatures. Above we found that all spin configurations are equally
probable in this regime, so (|m|) will be determined by how many of these equally-
probably micro-states have a particular magnetization. For example, there are
only two micro-states with |m| = 1, corresponding to (n.,n_) = (IN,0) and (0, N).
In general, just as we saw in Eq. 23, there are T -

N\ (N} N
nye) \n-) nyln_!

——
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equally probable micro-states with a given n, = N —n_. For large N >> 1 this
binomial coefficient has a factorially narrow peak around

1
Ny =n_ = §N — |m| = 0.

This characterizes a disordered phase with similar numbers of up- and down-
pointing spins producing a small magnetization. In the thermodynamic limit N —
oo, the expectation value of the magnetization in the disordered phase vanishes
exactly, {|m|) — 0.

We next need to determine (|m|) in the low-temperature limit 3 — co. In
this regime, as we saw in Section 3.4.1, the Boltzmann factor exp [ﬁ 26K sjsk}

makes it exponentially more likely for the system to adopt micro-states with lower
energies. In particular, we can expect the ground state to dominate the expecta-
tion value of the magnetization, (|m/|), up to exponentially suppressed corrections
from higher-energy excited states. With H = 0, the Ising model has two degener-
ate ground states corresponding to the two ways all the spins can be aligned with
each other: (n;,n_) = (N,0) and (0, N). What is the ground-state energy of the
N-site Ising model in d dimensions?

Eoz—ZSjsk: = 2_ (3l)¢ i ’(/}/\/
| ¥VU’V\ e,v{y/ lilu[‘L

As mentioned above, both of these degenerate ground states have the
maximal magnetization |m| = 1. Let's check what effect the first excited state
would have on the overall magnetization of the system. The first excited energy
level is obtained by flipping a single spin — negating its value. Starting from
the two degenerate ground states, this produces all possible micro-states with
(ny,n_)=(N—1,1) and (1, N —1). Because any one of the N spins in the lattice
could be flipped, the degeneracy ?Jthis first excited energy level grows with N:

/ .

<]1V> " <N]i 1> e

At the same time, as N increases the magnetization of each of these micro-states
gets closer to that of the ground state,
— ol

m|=——=1-

N

T
N

—
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The key factor is the probability for the system to be in one of these micro-states,
which depends on the value of the energy [, for the first excited energy level.
What is this F; for the N-site Ising model in d dimensions?

Bi=2d - (dN-2)) = r(g-/T—lfd)
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Let’s bring everything together by computing the relative probability for the d-
dimensional Ising model to be in its ground state with |m| = 1 compared to its first
excited state with [m| = 1 — %. This probability is the product of the degeneracy
of each energy level times the Boltzmann factor that governs the probability of the
system adopting any of these degenerate micro-states:

P(Ep) _ 2-exp[B&N]  _ exp[4pd]
P() W epB@AN-4d)] N

For any fixed N, a sufficiently low temperature will cause the ground state to dom-
inate, with exponentially suppressed contributions from higher energy levels, just
as we previously found for simpler non-interacting systems. This characterizes an
ordered phase with essentially all spins aligned in the same direction, producing
a large expectation value for the magnetization, {|m|) — 1.

We have now seen how the behaviour of the magnetization (|m|) distin-
guishes the high- and low-temperature phases of the zero-field Ising model in
d dimensions. In the high-temperature disordered phase, the magnetization is
small and {|m|) — 0 in the thermodynamic limit N — oo. In the low-temperature
ordered phase, the magnetization is large and (|m|) — 1 as 7' — 0.

This contrast between ordered and disordered phases is typical behaviour
for interacting statistical systems. These two phases are distinguished by an or-
der parameter — an observable (related to a derivative of the free energy) that
is zero in the disordered phase but non-zero in the ordered phase.' The mag-
netization is the order parameter for the Ising model, which we will connect to the
free energy in the next section. Note that the order parameter need not reach
its maximum value in the ordered phase — in the case of the Ising model, we
don’t need complete domination by the fully ordered ground state. So long as
there is a tendency towards order, mathematically defined by a non-zero order

4There are atypical (but interesting and important) topological phase transitions that are not
characterized by such an order parameter. The most famous example is the BKT phase transition
named after Vadim Berezinskii, J. Michael Kosterlitz and David Thouless, which was awarded the
2016 Nobel Prize in Physics. It is also possible for a single system to have multiple distinct phase
transitions, each characterized by a different order parameter.
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