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MATH327: Statistical Physics, Spring 2022
Homework assignment 2

Instructions

Complete all four questions below and submit your solutions by file upload
on Canvas.' Clear and neat presentations of your workings and the logic behind
them will contribute to your mark. This assignment is due by 23:59 on Thursday,
5 May, and anonymous marking is turned on.

Question 1: Thermodynamic cycle

Consider the Diesel cycle defined by the PV diagram shown below, in which
the ‘compression’ stage 1 — 2 and the ‘power’ stage 3 — 4 are both adiabatic,
while the pressure is constant during the ‘injection/ignition’ stage 2 — 3.

P
2 3
4
1
| f f >
Va V3 Vi 174

Calculate the efficiency of the Diesel cycle, 7np, in terms of the compression
ratio r = V1 /V, > 1 and the cutoff ratio C = V3/V, > 1, where C < r.
[10 marks]

Fixing the compression ratio r, compare np to the efficiency of the Otto
cycle. Is the Diesel cycle more efficient than the Otto cycle, less efficient, or the
same? How does this depend on the cutoff ratio C'?

[4 marks]

By submitting solutions to this assessment you affirm that you have read and understood
the Academic Integrity Policy detailed in Appendix L of the Code of Practice on Assessment and
have successfully passed the Academic Integrity Tutorial and Quiz. The marks achieved on this
assessment remain provisional until they are ratified by the Board of Examiners in June 2022.
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Question 2: Mixed ideal gases

Consider a mixture of two ideal (non-interacting) gases in thermodynamic
equilibrium in a container of volume V' at temperature T, like that illustrated below.
Let N; and N, be the fixed particle numbers of the two gases. Within each gas the
particles are indistinguishable, but particles of one gas are distinguishable from
particles of the other gas. In particular, they have different masses m; and ma,
implying different thermal de Broglie wavelengths and single-particle canonical
partition functions:

N(T) = JZT; 201 = 55
@ ©
o %¢
o ©
vi © ©

(a) Calculate the canonical partition function Z and the Helmholtz free energy
of the (N + N)-particle mixture, approximating log(N;!) ~ N;log N; — N;.
[4 marks]

(b) Calculate the internal energy (E) and the entropy S of the mixture. What is
the condition of constant entropy?
[4 marks]

(c) Calculate the pressure P of the mixture, and relate it to the pressures P,
and P, of each gas in isolation (as illustrated below).
[4 marks]

o )
o © ®)
V.T @ @ V.,T
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Question 3: Particle number fluctuations

Consider the fugacity expansion of the grand-canonical partition function
(Eq. 82),

Zo(T,m) = ) € Zn(T),

where the fugacity ¢ = e## = /T and Zy(T) is the N-particle canonical partition
function (which is independent of €). Recall that ®(T, 1) = —T'log Z,(T, 11) is the
corresponding grand-canonical potential.

(a) Derive a relation between the average particle number (N) and the deriva-

; 0 3} -
tive 810g§<1> . fa—gcb.
[4 marks]
o 2
(b) Derive a relation between ((N — (N))*) and <§a—£> .
[4 marks]

(c) Specializing to Maxwell-Boltzmann statistics, for which the fugacity expan-
sion simplifies to Z)B(T, 1) = exp[¢Z1(T)], show

[4 marks]

As an aside, this final result means that the relative fluctuations in the parti-
cle number vanish in the thermodynamic limit (N) — co. That is, when (N) is
large it is approximately constant, which allows the grand-canonical system to be
approximated by the corresponding canonical system with fixed N.
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Question 4: Magnetization

Consider a system of N (distinguishable) non-interacting ‘spins’ in a lattice
at temperature 7', where the value s; of each spin can vary continuously in the
range —1 < s; < 1. In an external magnetic field of strength H > 0, the internal

N
energy of the system is E = —H ) _s;.

=1

(a) Calculate the canonical partition function Z and the Helmholtz free energy
of the system.

[4 marks]

(b) Calculate the magnetization (m) of the system. For finite # > 0, what are
its low- and high-temperature limits, lim (m) and lim (m)?
T—0 T—co
[4 marks]

(c) Calculate the leading T-dependent correction to each of the low- and high-
temperature limits from the previous part.

[4 marks]
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Unit 9: Interacting systems

9.1 The Ising model

So far in this module we have considered ‘ideal’ systems composed of con-
stituent degrees of freedom that do not interact with each other. While we have
seen that this approximation of non-interacting particles can produce excellent
mathematical models for real physical systems ranging from the low-temperature
heat capacities of solids to solar radiation and the cosmic microwave background,
there are crucial statistical physics phenomena that this approach fails to predict.

An important class of examples, which we investigate in this unit, are phase
fransitions. These occur when interactions allow extremely different large-scale
behaviours to arise from the same set of degrees of freedom, depending on con-
trol parameters such as the temperature or pressure. Phase transitions occur in
both everyday and extreme situations. Everyday examples include the liquid—gas
transition of H,O molecules from water to steam upon boiling a kettle, as well as
the transition from liquid water to solid ice as the temperature decreases. In the
extreme conditions following the big bang, the matter in the universe existed as
a charged plasma of quarks and gluons. Once the universe was a few micro-
seconds old, it cooled enough for this matter to transition into the protons and
neutrons we are made out of today.

An intermediate example in between the everyday and the extreme involves
two layers of graphene as illustrated in the figure below.'? Graphene is an amaz-
ing material (recognized by the 2010 Nobel Prize in Physics) that consists of a
single-atom-thick sheet of carbon atoms arranged in a hexagonal ‘honeycomb’
lattice. Under most conditions, graphene is an electrical insulator. However, if two
graphene sheets are stacked and rotated with respect to each other by a small
“magic angle” § ~ 1.1°, the system transitions into a superconducting phase at low
temperatures 7' < 1.7 K. Superconductivity allows electrical current to flow with
no resistance, meaning that no energy is lost to the production of waste heat. If
we could discover or design materials that exhibit superconductivity at everyday
temperatures T' ~ 300 K rather than low 7" ~ O(1) K, it would revolutionize the
energy efficiency of electronics and the power grid.

i:10.1063/PT.3.4384

12Heather M. Hill, “Twisted bilayer graphene enters a new phase”, Physics Today 73:18, 2020.
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With this motivation for investigating phase transitions, let’s step back to
introduce interactions and explore their effects using simple spin systems of the
sort we considered in units 2 and 3. In the non-interacting case we previously
analyzed (Eq. 40), the internal energy of the system is

N
E;=-HY» s, (non-interacting)
n=1

for micro-state w; specified by the N spins {s,} (and, as always for this module, in
thermodynamic equilibrium). Here H > 0 is the constant strength of an external
magnetic field and the orientation of the nth spin, s,,, takes one of only two possi-
ble values: s, = 1 if the spin is aligned parallel to the field and s,, = —1 if the spin
is aligned anti-parallel to the field. The ground state of the system features all N
spins aligned parallel to the magnetic field, with minimal energy Fy = —NH.

In this unit we will only consider systems of distinguishable spins that we
label by their fixed position in a d-dimensional simple cubic lattice. The d =1
case of a one-dimensional lattice is precisely the system of spins arranged in a
line that we analyzed in Section 3.4.1. This and the case of d = 2 are both easy
to visualize and draw on a sheet of paper:

H e’ il
oAby A
Sl (K
Yol
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While we can only have physical lattices with d = 1, 2 or 3 in nature, the mathe-
matical construction works just as well for any integer d > 1.

We can see that the total internal energy of the non-interacting system can
easily be written as a sum over energies ¢, for each individual spin,

N
en=—Hsy, E; = Zen (non-interacting).

n=1

This is a generic feature of non-interacting systems, and an aspect of the fac-
torization that enormously simplifies calculations — in this case by causing the
N-particle partition function (Eq. 41) to take the form of a product of N identical
terms, Z/= [2 cosh (BH)Y = ZN. However, it is possible to have non-factorizable
systems in which the internal energy can be expressed as a sum of this sort. A
stronger condition needs to be satisfied in order to guarantee factorization, and
this conditions rigorously defines what it means for a system to be non-interacting.

MATH327 Unit 9 132 Last modified 25 Apr. 2022



Let AE; be the change in the system’s internal energy caused by changing
its jth degree of freedom. Then the system is defined to be non-interacting if
and only if AE; for any j is independent of all other degrees of freedom k # j.

For our system of NV distinguishable spins, the only possible change we can
make to a degree of freedom is to negate it, s; — —s;, Which corresponds to
flipping its alignment relative to the external magnetic field. It is easy to check
that the change in the internal energy resulting from such a spin flip satisfies our
definition of a non-interacting system:

E = —Hés'm = AH(SS : "LZ;JSL> 7 ~H(~Sj \L 2: Ji)

J

AEJ = Z;L(Sj '”d«fﬂmd@,f @§ 5, Yo Lﬁf)
~ 'WM"Mﬁ&ugj-;? v

Now let’s make things more interesting by considering a different spin sys-

tem that also includes a simple two-spin contribution to the internal energy:

N
E.i:—Zsjsk—HZSW (111)
(G5) n=1

The first sum runs over all pairs of nearest-neighbour spins in the lattice, denoted
(jk). What is the change in energy AE; from Eq. 111 upon negating s; — —s;?
Does this indicate an interacting or non-interacting system?

= "%Z Sh "X SMS)L “"H S)f‘ 5
(E ke(yk) (k) 2> ( éi/ ’z)
« Ae;= 2, [Hf 5 sk>
= SZ 5 — % g5 - H-s ¢ ;) kel
ke (3h) WAER ’ /g Yl i
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7

The pictures on the next page illustrate nearest-neighbour pairs for simple
cubic lattices in d = 2 and 3 dimensions, while also introducing some additional
lattice terminology. Instead of drawing up- and down-pointing arrows, these pic-
tures identify the spins with sites in the lattice represented as points (or larger
filled circles). In simple cubic lattices, all sites are positioned in a regular grid,
separated by a constant distance along each basis vector. We can also draw
links as solid lines connecting these nearest-neighbour sites, with each link cor-
responding to a term in Z(jk). The picture of a two-dimensional lattice on the left

MATH327 Unit 9 133 Last modified 25 Apr. 2022



