8.8 Supplement: Density of states & Sommerfeld expansion

In Eg. 103 we found that the average internal energy of a non-relativistic
fermion gas becomes independent of the temperature in the limit 7 — 0. This
means that its heat capacity,
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vanishes in this limit, which we could also see by considering the fluctuation—
dissipation relation ¢, = 82 {(E — (E))*) with only a single micro-state.

To derive the non-trivial heat capacity for a gas with a small but non-zero
- temperature, we need to move beyond approximating the Fermi function
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as-a step function, and return to the full Eq. 99 for the average particle number,

(N), =V \/Zf/ F(E)WE dE = /Ooog(E)F(E)dE. (107)

Here we have defined the density of states
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as the number of single-particle energy levels per unit energy. We can read
Eqg. 107 as saying that the total number of particles is given by integrating over the
single-particle energy levels, g(E), times the probability F'(E) that each of these
energy levels is occupied.

The figures below, from Schroeder’s Introduction to Thermal Physics, illus-
trate this integral in the case of T' = 0 (left) and T' > 0 (right). As we have already
seen, when T — 0 all energy levels with F < Er are occupied while all those with
E > Ep are unoccupied. With T' > 0, there is an exponentially suppressed prob-
ability for some energy levels with & > Er to be occupied. Because the Fermi
energy is set by the number of particles,
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having some of these particles occupy energy levels with E > Er requires that
an equal number of energy levels with E < Er be unoccupied.
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Note that £ = y is the point where the Fermi function F(E) = 5. We will see
below that 1 < Er, as shown in the right figure above, with equallfy when T = 0.

In order to determine the particle number and internal energy, we need to
evaluate the integrals

M= [ FE)WE B (Ey=n [ EFBVEW (109

without approximating the Fermi function as a step function. For ' < Er, we can
do this through a Sommerfeld expansion. Let’s begin by considering the particle
number. The first step in the Sommerfeld expansion is integrating by parts:

Changing variables to =z = (F — u), you should find
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This is not obviously simpler than the expression we started with, but has the
benefit of being exponentially suppressed for both
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The additional E3/2 factor is far too mild to overcome this exponential suppres-
sion. In other words, non-negligible contributions to the integral as a whole come
only from a region centered at £ = p, which becomes narrower in E as the tem-
perature decreases (corresponding to larger § = 1/T). This is illustrated by the
plot below, which shows the exponential suppression setting in when |E — p| is
larger than a few times the temperature, and certainly for | — p| 2 5/8 = 5T.
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These considerations justify two low-temperature approximations. First, re-
calling p > 0 at low temperatures, for large 5 we are free to extend the lower limit
of the integral to obtain a more convenient domain of integration,
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Second, we can expand E%? in a Taylor series around E = 1, and truncate after
the first few terms:
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Switching to work with 7' = 1/, the Sommerfeld expansion has given us a
series of manageable integrals we can consider one by one:
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Collecting the results and restoring go = VV%;;; , you should find
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The first term reproduces what we found with the step-function approximation
in Section 8.5, while the second term provides the promised temperature de-
pendence, at leading order in the Sommerfeld expansion. This becomes more
interesting if we rearrange Eq. 101 to work in terms of the Fermi energy:
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can be simplified through one final low-temperature approximation. Because T is

small, just in the second term above we can set Ep ~ p (the zero-temperature
relation). Then

The result
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which confirms our earlier claim ; < Er, and reveals that the leading correction
to the zero-temperature relation is quadratic in 7.

The calculation is essentially the same for the internal energy from Eq. 108.
With E%/2 in place of fi/Q integrating by parts just gives
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with the same 2 = B(E — p) and extended lower limit of integration. The Taylor
expansion
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also produces the same integrals, with different coefficients:
2 5 3N S 2 1/ 2 5p 1 a1
(B) ~ = 9ok \E%I‘F 90T + ZQOT M \UE t: s 90k ZQO'/TI e

I g T
MATH327 Unit 8 128 3 Last modified 1 Apr. 2022



3

Inserting go = 25;’};, we have
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which we can simplify by applying Eq. 109 and dropping O (T®) terms:
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From your result you should obtain the heat capacity
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pacity measurements, as we will see in the next tutorial.

As a final comment in this supplement, let’s consider what would happen
to (N), at higher temperatures 7% ~ FE%, for which the two terms in Eq. 109
would cancel out, leaving O(T*/E%) effects non-negligible. In this regime, there’s
no guarantee that the low-temperature Sommerfeld expansion would even con-
verge, so we need to work with the full integral from Eq. 108. Fortunately, it is
not hard to numerically evaluate this integral, which is done by this Python code.
For the purpose of humerical analysis, it's best to express everything in terms of

dimensionless ratios, such as

T I E
Also inserting go = Sg;’—)g we have
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working with small e ¥ = e~ rather than large e® to avoid numerical overflow.

Asin Eq. 109, (N), drops out, and we end up with the consistency condition
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If we fix the temperature ¢t = T'/Ep in units of the Fermi energy, by repeatedly
evaluating this integral with different values of ¢ = p/Er we can determine the
self-consistent value of the chemical potential, also in units of the Fermi energy.
The red x’s in the figure below are results of such work for eleven tempera-
tures 0.1 < ¢t < 2, compared to the O (¢?) result from the Sommerfeld expansion,
Eq. 109. This leading-order Sommerfeld expansion clearly deviates from the full
results by the time 7' ~ Er. The more interesting result is that the chemical po-
tential continues to decrease as the temperature increases, becoming negative
for T > Er and approaching the expected high-temperature classical limit.
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