MATH327: Statistical Physics, Spring 2022

Tutorial comments — Einstein solid

The heat capacity for a solid of non-interacting spins is

oFE g 0 NB2H?

Cy = ﬁ = —ﬂ 5‘5 [—NHtELHh(,BH)] = m,

which is pon-negative, as required. Clearly when H = 0 the heat capacity van-
ishes exactly, but even with H > 0 this prediction is qualitatively different than
the experimental data. For low temperatures § — oo our result vanishes expo-
nentially rapidly. While the experimental heat capacities also vanish as 7' — 0
(this is sometimes called the third law of thermodynamics), we will see that this
happens polynomially rather than exponentially. The big problem appears at high
temperatures, 8 — 0, where cosh(8H) — 1 and ¢, « B? vanishes quadratically
in the inverse temperature, rather than approaching the roughly constant value

measured experimentally. The full behaviour vs. T'/H is shown below.
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Moving on to the Einstein solid, there is an elegant way of computing the
total number of micro-states, by viewing the K units of energy as indistinguishable
balls to be divided among N distinguishable boxes representing the oscillators
that can be identified by their location in the solid. We can represent each unique
division of balls into boxes by drawing a sequence of K dots separated by N — 1
walls between the boxes. For example, eee|e||e|eeeee|e correspondsto N = 6
boxes with £ = (3,1,0,1,5,1) units of energy. The number of different sequences
is given by the possible ways of choosing K of these K + N — 1 symbols to be
balls, which fixes the remaining N — 1 walls. In other words,

v (KFN-1 _ (K+N-1)
B K - OKY(N-1)

For a minimal system with N = 3 oscillators, we can explicitly list all possible
micro-states k = (ki, ko, ks) when K = )" k; is reasonably small. For I = 0, there
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is only (2) = 1 possibility, k = (0,0,0). K = 1 is equally easy,
k= (1,0,0) (0,1,0) (0,0,1)

with A/ = 3 matching the () from our computation above. With K = 2 we finally
get behaviour distinct from the spin system,

k= (2,0,0) 0,2,0) (0,0,2)
(1,1,0) (1,0,1) 0,1,1)

with M = 6 = (}) = 4. Finally, when K = 3 we have
k= (3,0,0) (0,3,0) (0,0,3) (1,1,1)
(2,1,0) (2,0,1) (0,2, 1) (1,2,0) (1,0,2) (0,1,2)
and M =10= (3) = 2.

Returning to our usual domain K > 1 and N > 1, we can approximate

(K+N-1)! (K+N)!
M = o~
KI(N —1)! K! N!

with entropy

S =log M ~ (K + N)log(K + N) — Klog K — Nlog N,

To determine the temperature we need to consider the derivative with re-
spect to the energy E = Khw,

1 88 1 8
7= 25 = 2o LK+ M)Iog(K + N) — K log K — Nlog N]
- N

1 1
= — [log(K + N) +\{ ~log K ] = ——log (1 + E)

—

Rearranging, the temperature is

Tw hw

T = 0
log (1 + %) log (1 + Eg—“’-) A

Because both N and K are large positive numbers, log (1+ %) > log(1) = 0
and we find a ‘natural’ positive temperature. This reflects the fact that larger
amounts of energy ‘open up’ a larger number of micro-states for the Einstein
solid, in contrast to the spin system we considered in Section 2.3.

It is now straightforward to invert the result above to express the energy as
a function of the temperature,

E 7 =P E = T

Nhw\  w Nhw g Nhw
log ( 1+ —— = =
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Taking the derivative, we obtain the heat capacity

or
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changing variables to z = fhw = hw/T.

To compare this with the experimental data, we should again consider the
low- and high-temperature limits, just as we did for the simpler spin system above.
As T — 0 and z — oo, we again find a vanishing heat capacity, as required by the
third law of thermodynamics:
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As T — oo and x — 0, we can expand the exponentials,

g, & . }2(1) _q
N (e”“ o 1)2 (,L\)g .

Rather than vanishing, the heat capacity for the Einstein solid approaches a con-
stant at high temperatures, in much better agreement with experiments compared
to the spin system considered above.

Although the asymptotic limits above reveal that the Einstein solid heat ca-
pacity vanishes exponentially quickly at low temperatures, some more work is
needed to see how it approaches that high-temperature constant. We need to
expand the exponentials to higher orders, making sure to retain all terms that ap-
pears with a given power of x in the full expression, not just in the denominator:
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So we find that deviations from the high-temperature limit vanish « 1/7* at lead-
ing order. The figure on the next page shows the full result vs. T'/(hw), which at
least qualitatively resembles the experimental data that motivated this work. (To

quote Murray Gell-Mann, “In our field it is customary to put theory and experiment
on the same piece of paper”, but | will leave that as an exercise.)
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However, there is still room for improvement. As mentioned above, heat ca-
pacities for real materials vanish polynomially in 7', as opposed to the exponential
dependence we have now derived for both the spin system and the Einstein solid.
This is demonstrated by the figure below, which shows ¢, /T varying linearly with
T? at low temperatures T' < 4 K, and (for these three metals) approaching a
non-zero constant value at absolute zero:

Cy

T:ag+yT2 = ¢, = aT +4T°.
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We have actually already derived the linear piece in the supplemental Sec-
tion 8.8 — this comes from the (fermionic) electrons in these metals, treated as
a low-temperature ideal quantum gas. Our calculations identify a = N7*/(2Er),
providing a means to measure the Fermi energy of this electron gas. -

The cubic dependence on T is also related to work we have done, though
less directly. The main problem with the Einstein solid as a model of real materials
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is that it ignores interactions between different oscillators. Recall that each oscil-
lator is attached to two atoms, and assigned with holding those atoms in place
in the solid. If one of these atoms starts to move out of position, the oscillator
exerts a force to restore it. This in turn requires an equal and opposite force to
be exerted on the oscillator, which is passed along to the other atom on the other
side of the oscillator — and then on to the other oscillators that hold that second
atom in place.

Remarkably, it is still possible to model the collective motion of atoms in a
solid in terms of non-interacting degrees of freedom — this produces the Debye
theory of solids (named after Peter Debye), which provides an important foun-
dation for modern solid-state physics. As illustrated by the figure below (from
Section 7.5 of Schroeder’s Introduction to Thermal Physics, which discusses this
approach in detail), this motion can be described in terms of propagating waves —
called phonons — that are similar in some ways to photons. However, there are
some differences in the details, the most important of which is that phonons have
a maximum frequency (i.e., minimum wavelength) proportional to /N where N
is now the number of atoms in the solid, corresponding to 3NV oscillators in three

dimensions.
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If we adapt our computation of the photon gas energy density (from the start
of Section 8.3) to the case of phonons, we end up with an integral of the same
functional form, but now with a high-frequency cutoff:
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making the same substitution z = fhw = hw/T. Here the constant Tp « ¢/N/V
is known as the Debye temperature.
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At temperatures high relative to Tp, the upper bound is Tp/T < 1 and
xz is very small throughout the entire range of the integral. Therefore we can
approximate

TojT .’133 TD 8 d
(E)Docy_ifj/ ?d:voc\_/'\T4 <?> x (VTB)TO({V’Z for T > Tp,
0 ~-
producing a constant heat capacity, just as we found for the Einstein solid. (In
fact, if we were to compute all the constant factors, we would derive exactly the

same result ¢,/(3N) = 1.)

At low temperatures, T' < Tp, the Debye model succeeds where Einstein’s
fails. With T» /T > 1, we can approximate the integral as the full I, = I'(4){(4) =
74 /15 from page 111. This is just another constant factor, leaving -

(E)p oc VT = &y ogfljd for T < Tp,

correctly reproducing experimental data.
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