8.6 Type-Ia supernovas

The positive pressure that remains for a fermion gas even at zero tempera-
ture, Eq. 104, is known as the degeneracy pressure. (This use of the word ‘de-
generacy’ is unrelated to its other use describing multiple energy levels with the
same value of the energy.) The degeneracy pressure plays a key role in a certain
type of supernova explosions of stars — a famous astrophysical phenomenon.

To begin considering this topic, we’ll remark that the temperature doesn’t
need to be exactly zero in order for the degeneracy pressure to be significant. The
temperature just needs to be small compared to the Fermi energy, T’ < Er. From
Eq. 101 we can see that Er o« p?/* increases for larger densities p; = (N), /V.
Not surprisingly, the densities of stars can be very large indeed, due to the enor-
mous amount of matter that is being squeezed together by gravitational attraction.
Everyday matter has densities around 10*-10% atoms per cubic metre (roughly
Avogadro’s number per cubic centlmetre) which corresponds to Fermi energies
Er ~ 10* K, very large compared to everyday temperatures. Fermi energies for
particularly dense stars known as white dwarfs are a hundred thousand times
larger still, Er ~ 10° K, with densities around 10*-10% atoms per cubic metre
roughly equivalent to a mass density of one tonne per cubic centimetre. This is
around a million times more dense than our sun — while white dwarf stars have a
mass similar to our sun’s Mg, their radius is a hundred times smaller, comparable
to the radius of the earth.

White dwarf stars are so dense because they have exhausted the hydro-
gen and helium ‘fuel’ for the nuclear fusion that generates heat and light — and
therefore radiation pressure — in stars such as our sun. For actively ‘burning’
stars, this radiation pressure counteracts the gravitational attraction of the star’s
enormous mass. Without nuclear fusion, white dwarfs end up gravitationally com-
pressed into much denser and more compact objects. The degeneracy pressure,
Eq. 104, coming from the (fermionic) electrons in the white dwarf is what stabilizes
these stars and prevents them from collapsing further into even denser objects
such as black holes.

It is remarkable that even under these extreme conditions the electrons in
white dwarf stars are well described by the non-interacting ideal fermion gas we
analyzed above. In particular, it is crucial that white dwarfs’ Fermi energies are
so large, Er ~ 10° K. Even though white dwarfs have burned all their nuclear
fuel, their interiors remain quite hot by everyday standards, roughly ten million
kelvin (T' ~ 107 K). It is only due to their large densities and Fermi energies that
T < Er and white dwarfs can be treated as zero-temperature objects to a good
approximation.

So far we haven’t encountered supernovas. In isolation, white dwarfs will
happily cool for trillions of years, supported by their degeneracy pressure, until
they reach thermal equilibrium with the low-temperature cosmic microwave back-
ground radiation we discussed in Section 8.2. Things become more interesting
for a white dwarf in a binary system with a companion star. If this companion star
is still burning hydrogen or helium through nuclear fusion, it will emit matter that
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is then captured by the white dwarf, slowly increasing the white dwarf’s mass.
Such a binary system is pictured below, in an artist’s illustration provided by the
European Space Agency.

As the white dwarf accumulates the matter emitted by its companion, its
mass and its density will steadily increase. As the mass of the white dwarf ap-
proaches a value roughly 40% larger than the mass of our sun, known as the
Chandrasekhar limit (named after Subrahmanyan Chandrasekhar), its density
becomes large enough for new types of nuclear fusion reactions to occur. In-
stead of hydrogen or helium, which the white dwarf has already burned, these
new fusion reactions involve carbon and oxygen, which remain present in abun-
dance. In the space of just a few seconds, these fusion reactions run_away,
increase the temperature of the white dwarf to billions of kelvin, and blast it apart
in a supernova explosion about five billion times brighter than the sun.

For obscure historical reasons, these particular stellar explosions are known
as type-Ia (“one-A”) supernovas. They rely on the degeneracy pressure (Eq. 104)
of a low-temperature gas of non-interacting fermions, which allows a specific
amount of mass to build up before the explosion is triggered. The specificity
of the process results in a great deal of regularity among type-Ia supernovas,
which is very useful to astronomers. In particular, these type-Ia supernovas play
a key role in demonstrating that the expansion of the universe is accelerating (a
phenomenon popularly called ‘dark energy’), which was awarded the 2011 Nobel
Prize in Physics.

8.7 Relativistic ideal fermion gas

Although we will discuss them more briefly, gases of relativistic fermions
also play important roles in nature. In fact, by changing units we can see that the
white dwarf Fermi energy discussed above, Er ~ 10° K ~ 0.3 MeV is comparable
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be non-negligible in white dwarfs. Such relativistic effects are indeed crucial to
the computation of the Chandrasekhar limit mentioned above.

While the full calculations required to analyze massive relativistic particles
are beyond the scope of this module, we can take advantage of our earlier anal-
yses of gases of massless photons to briefly consider similar gases of mass-
less fermions. Neutrinos (denoted ‘v’) are physical examples of fermions whose
masses are so small that they can be very well approximated as massless. In
fact, for many years neutrinos were thought to be exactly massless — the discov-
ery that neutrinos have non-zero masses was awarded the 2015 Nobel Prize in
Physics.

In the same way as photons, massless fermions would travel at the speed
of light, ¢, and have energies F = cp determined by their angular frequencies,

B, =hw.

In a volume V = L3, these energies are quantized as usual,
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where k* = k2 + k2 + k2 and k,,,. > 0 are positive integers. Just as for the non-
relativistic case considered in Section 8.4, for each distinct & typical massless
fermions, including neutrinos, have two degenerate energy levels with the same
energy E(k) but opposite spin.

The computations required to analyze a gas of massless fermions are very
similar to the work we recently did for photon gases. In particular, massless
fermions are also easy to create and destroy, and therefore well described by
a vanishing chemical potential,  ~ 0. Again approximating sums over discrete
integer k,, , by integrals over continuous real Em,y,z, and changing variables to
integrate over the angular frequency, we end up with the grand-canonical potential

/T [
f{_)l_:{_ :>—c‘37r2 /0 dw w?log [l@e—ﬁﬁW] . (106)

The only changes here compared to Eq. 94 for the photon @, are a couple of
negative signs, precisely as we would expect from comparing the Bose—Einstein
and Fermi—Dirac grand-canonical potentials in Section 7.5.

Due to these negative signs, when we compute derived quantities by taking
derivatives of the potential,

(B), = 5516%.] ), --La,

we will encounter slightly different but equally enjoyable integrals,
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Using these results, what are the average internal energy density and the average
particle number density for a gas of massless fermions?
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You should again find (E), o (N), T VT4 and by notmg that
o v /NG e T3 '35@)/ = Blw
_V —_ - — o —2 V4 3
T c37r2<h> /0 dl:Llo [1+e ] VT,
we can see that the entropy S, = (F, — ®,) /T is constant when VT = constant.
Applying this, what is the pressure for a gas of massless fermions?
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You should find yet another equation of state with the usual functional form,

1 Tt
BV =Z(E) = NY T,
and just a new numerical factor of
4 *
W) = 3 ) e
540¢ (3 3/4U 6 303)
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