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You should find a result proportional to N3/2 but independent of T. The
temperature independence turns out to be the Ieadmg -order behaviour of a more
general result that can be organized in powers of the small temperature, T'/p <
1, through a method known as the Sommerfeld expansion (named after Arnold
Sommerfeld) The 1%/ dependence on the chemical potential is something we
could have predicted before doing the explicit calculation. This is because the
step function in Eq. 100 corresponds to a single fermion occupying each and
every energy level with £, < i, while all energy levels with £, > 1 are unoccupied.
Since E(k) o k?, summing over all k,, ., for which E(k) < u corresponds to
computing (a portion of) the volume of a sphere of radius r, = /p. This volume
is proportional to 7} = u3/2 in agreement with our result above. If we invert that
result, we obtain the so-called Fermi energy as a function of the average particle

number density,
2 2/3
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Like the step-function approximation to the Fermi function, this equality between

the Fermi energy and the chemical potential is only exact at zero temperature,
with T' > 0 introducing small corrections that take some work to compute.

Now we can consider the average energy density of the non-relativistic
fermion gas at low temperatures. Rather than taking another derivative of the
grand-canonical potential, we can note from Eq. 85 and from our work on the
photon gas in Section 8.3 that

_EJ_W/ @F EWE dE. (102)
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That is, instead of simply counting the number of fermions in the system, we need
to add up their energies, introducing an extra factor of £ compared to Eq. 99. Sitill
using the low-temperature step-function approximation for the Fermi function in
Eqg. 100, what is the average energy density?
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You should find .
(B = zn N, (103)

which means that the average energy of each fermion in a low-temperature ideal
gas, (E);/ (N);, is three-fifths of the Fermi energy Er = pu.
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In particular, because Eq. 103 is independent of the temperature, we find
that non-interacting quantum fermions retain a positive energy even as the tem-
perature approaches absolute zero, T — Q.

This can be understood by recalling that the lowest-energy pair of degen-
erate energy levels can each only hold a single fermion, forcing any additional
fermions to fill'_energy levels with larger energies E, > 0, up to the Fermi_en-
ergy set by the chemical potential. This is a stark contrast to the (E) = $NT" we
found for classical ideal gases in the canonical ensemble in Eq. 52, as well as
the (E), ~ 2.7(N);pn T T* we more recently computed in Eq. 97 for a grand-
canonical quantum gas of photons. In both of those cases the average energy
vanishes in the zero-temperature limit. This is because all the particles in those
classical and bosonic systems are able to occupy the lowest energy level at low
temperatures, with only exponentially small probabilities oc e=%#/T for particles to
occupy any energy levels with E, > Ej.

This picture of fermions filling energy levels up to the Fermi energy also
clarifies why the chemical potential for a fermion gas must be positive at low
temperatures. Recalling Eq. 81 for the chemical potential,
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which we derived from the generalized thermodynamic identity in Section 6.3, we
can consider what happens when we increase the number of particles in a zero-
temperature fermion gas. In this limit 7 — 0, there is only the single quantum
micro-state described above, with all energy levels filled below the Fermi energy
and empty above the Fermi energy. Adding particles, AN > 0, doesn’t increase
the number of accessible micro-states, and therefore doesn’t increase the entropy
Si=—2N pilogp; = 0, satisfying the constant-entropy condition required by this
equation. However, this does necessarily increase the energy, because the added
particles must fill the first available energy levels, just above the Fermi energy.
Thatis, AE = ErAN > 0, and we find u = Fr > Fy > 0 as claimed earlier in
this section. It is an interesting but lengthy exercise (discussed in Section 7.3 of
Schroeder’s Introduction to Thermal Physics) to show that controlling the number
of fermions in the gas requires the chemical potential to become negative as the
temperature increases and we approach the classical limit.

1

To get the rest of the way to the low-temperature equation of state for ideal
gases of non-relativistic fermions, we need to compute the pressure

0
Pf:_a_V"<E>f
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As we just discussed, the single accessible micro-state for 7" — 0 automatically
satisfies the condition of constant entropy, St = 0. Applying Eq. 101 relating the
chemical potential to the average particle number density, we have

- o= (2) () "o
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This is all we need to determine the pressure, which we can relate to the energy
density, the Fermi energy Fr = 1 and the particle number density:
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In particular, we can see that the pressure (like the energy) remains positive even
as the temperature approaches absolute zero, with

2
P = (32%)*° %pf’/ s (104)

where we define the density p = (N);/V. This positive pressure in the zero-
temperature limit is not due to any direct force between the fermions, which re-
main non-interacting in this ideal gas. Instead, it is a purely quantum effect result-
ing from the Pauli exclusion principle.

As we saw earlier in this section, the temperature independence of the pres-
sure F; is due to approximating the low-temperature Fermi function as a step
function in Eq. 100, and systematic corrections to this approximation can be com-
puted through a Sommerfeld expansion. Even without getting into such detailed
calculations, we know that in the high-temperature classical regime the quantum
ideal gas of massive fermions will be well approximated by the classical ideal gas
we considered in Section 4.4, with equation of state

PV = NT — P:‘E/T:Q. (105)
In words, at high temperatures the pressure depends linearly on the temperature,
with the slope corresponding to the density p. The plot below (produced by this
Python code) shows how the pressure changes from a positive constantas 7" — 0

to this linear behaviour at higher temperatures.
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