Ay /\/IWDL

\__/\

P@cay s
L hw

?b@bm 7. Wﬂﬂkg

Ip’amct S“recfrum F(w\ = W
Q - I
So[ ve s ' MV Cd]tqg]tmv\'\q\‘

/
l/éo!mf V’QO‘iaf/_Ob‘ Tr\ Spf)UOK
CMB pedtation T~ 2,728 K

A1
<E>‘01« = \/‘ —> 6 gy & T3



Looking back to Eq. 94 for the grand-canonical potential, we see

@ h v * . —phw : T3 = n - chtw
@:‘3?/ digolog [~ ‘”]:JQH gaﬂgfo datlog [1 - 7]

N A

changing variables to @ = fhw = hw/T. The final factor in this expression is yet

another delightful integral
’ 22 Mar,
o 5 - n* ,/jfj’
/0 dx x*log [1 —e ] = —2£(_4)“4— T ///
15 Mﬂr.

Since this gives us S « VT?, we can conclude that the condition of constant
entropy for a photon gas is VT® = constant, in contrast to the V72 dependence
of Eq. 53 for classical non-relativistic particles.

At this point it is straightforward to take the derivative of the average inter-
nal energy if we express the constant-entropy condition as 7' = bV ~'/3, with b a
constant:

0 0w b A 2y

T
- L/
3V < Exrk

For the resulting equation of state for the photon gas, you should find

1 7t
PV ==(E),, = —=<(N),, T. 98
FonV = 5 (B 90¢(3) Nen T (98)
The functional form is the same as the (classical, non-relativistic) ideal gas law,
with just an additional numerical factor of

m :C_(él_)
90¢(3)  ¢(3)
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8.4 Non-relativistic ideal fermion gas

For the remainder of this unit we will turn our attention to applying the grand-
canonical ensemble to investigate ideal gases of non-interacting fermions. We
again take the approach of quantum statistics, defining micro-states by summing
over the possible occupation numbers n, for each energy level &, with (possibly
not unique) energy E;,. In contrast to the bosonic case considered above, the only
possible occupation numbers are now n, = 0 and 1, since the Pauli exclusion
principle prevents multiple identical fermions from occupying the same energy
level.

In Section 7.4 we derived the grand-canonical partition function (Eqg. 88)
that defines quantum Fermi—Dirac statistics for such systems of non-interacting

fermions, ~
1

L
ZFD (B, 1) = H +e—/@(Ec u
EZO y)l/o
in terms of the inverse temperature 8 = 1/T and chemical potential ;.. Recall that
it is possible for systems of fermions to have any value for the chemical potential,
either positive or negative, in contrast to the systems of bosons we considered
above. From the corresponding grand-canonical potential,

Brp = —Tlog 7P = TZlocr [1+ B0

we can determine the large-scale properties of the system, including its average
internal energy (E), average particle number (N), entropy S, and pressure P,
along with the Wrelating these quantities.

Concrete calculations require specifying the energy levels of the particles
that compose the gas, including the degeneracies of any distinct energy levels
{Emsy En}y, m # n, with the same energy E,, = E,. In this section we’ll begin by
considering non-relativistic particles, expanding on our review of such systems in
Section 8.1. In a volume V = L3, the energy levels are defined by the non-zero
quantized energies

7i27r2

E(k,) =g (}pQ + l\,2 + AQ) £ = m k:c,y,z = 142_1 U

In addition to the usual degeneracies coming from permutations of (A Ky, k)
that we have already analyzed, for each distinct k k typical fermions such as elec-
trons have two degenerate energy levels with the same energy E(k). This arises
from a quantum property called spin, rather than the two polarizations for pho-
tons discussed in Section 8.1: ‘spin-up’ and ‘spin-down’ electrons with the same
momenta and energies occupy distinct, degenerate energy levels. This property
of spin is related to the spin—statistics theorem mentioned in Section 7.2, and is
another topic we can discuss further in a tutorial if there is interest. For our statis-
tical physics purposes it will suffice simply to incorporate this information into our
ansatz as input.
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The grand-canonical potential for an ideal gas of non-relativistic fermions is
therefore

= . ekt p
O = ~TZlog [1 + e A ‘f_“)] = —_2_1:210;; [1 + exp <—m + ?>] :
=0 i

We can again proceed by considering the gas in a large volume and approximat-
ing the sum over discrete integer k.. by integrals over continuous real k.

ek
ITrep |5 martr

Converting to spherical coordinates and carrying out the angular integrations over
the Z solid angle of the octant of the sphere with &, ,, . > 0, we have
R - b

Rr?k?  p
Ltexp |~ ar T T

In the same spirit as the change of variables we carried out to integrate over

photon frequencies w = Eyn/k, we will now change variables to integrate over the
2.2

_ Rt o, A LAm 7 Lym
fermion energy B = - —k* k s NZE dh = =

BT

(OIS —QT/dEw d?c\y d%z log
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As for the case of a photon gas, Eq. 94, you should find & oc VT It will
be convenient to keep this grand-canonical potential in the form of an integral
over the energy E, which we will evaluate after taking appropriate derivatives to
determine the thermodynamics and equation of state for non-relativistic fermions.

8.5 Low-temperature equation of state

In contrast to the photon gas, we need to retain the chemical potential in
our analyses of non-relativistic fermions, which makes these calculations more
complicated. To achieve a different simplification, we can focus on the low-
We where we expect quantum Fermi-Dirac statistics to differ
significantly from the classical case we considered back in Section 4.1. As we
saw in Section 7.5, it is only at high temperatures, with large negative chemical
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potential, that the classical approach provides a good approximation to the true
quantum physics.

To see how low temperatures simplify the analysis of the non-relativistic
fermion gas, it will prove profitable to first analyze the average particle number

0
Ny = ——®
< )f 8/1‘ fy
using the grand-canonical potential we computed above. In analogy to the Planck
spectrum we derived for the photon gas in Section 8.2, we first express the aver-
age particle number density as an integral over energies,

%_ ﬁgﬁ) / F(E)WVE dE, (99)

—_—

where the function F(E) is known as the Fermi function. In contrast to the Planck
spectrum, some constant factors are kept separate from F(E), so that it more
closely resembles the average occupation numbers (n,) we computed in Sec-
tion 7.5:
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As usual in the grand-canonical approach, the average particle number den-
sity and Fermi function depend on both the inverse temperature 3 and the chem-
ical potential n. Expressing F'(E) in terms of the dimensionless ratios E/p and

T/p,

P(E) =

1 1 B 1
o [P+ exp [ (2-1)] 41 (exp [ —1Df‘f'7+1

we can highlight the two main features of the figure below, which plots the Fermi
function against E/u for various temperatures 7'/u. Here we assume a positive
chemical potential, ;. > 0, which we will soon show is required for low-temperature
non-relativistic fermion gases.

temperature is a threshold at which the & behawour of the Fermi function changes
For larger energies E > pu, the exponential factor exp [% - 1} > 1 and drives
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F(E) — 0 as the energy increases. For smaller energies E < 1, the exponential
factor exp {% — 1} < 1 and vanishes as the energy decreases, leaving F(E) — 1.

These two asymptotic limits reflect the possible energy level occupation numbers
for fermions, n, = 0 and 1. Second, smaller temperatures cause much more
~ rapid approach to these two limits, with the exponential factor either enhanced (if
E > i) or suppressed (if £ < p) by a power p1/T > 1.

Mr =)

. &

1o
100

T=p

0.6
F(E)

Therefore, for small temperatures 7' < pu, we can simplify our calculations
by approximating the Fermi function as a step function,

1 for E<p

= { 0  otherwise (100)

Using this approximation, what is the resulting average particle number density?

— (A
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