8.2 The sun and the void

It will be very interesting to use the grand-canonical potential in Eq. 94 to
analyze the average internal energy for a photon gas. With p = 0, Eq. 78 from
Section 6.3 becomes
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To begin, we will consider the energy density expressed as an integral over photon
frequencies,

\v4 -

where the function P(w) is known as the spectral density, or simply the spectrum.
(It's not the pressure!) What is the spectrum for a photon gas?
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which is known as the Planck spectrum, named after Max Planck. We can equally

well consider the Planck spectrum P()\) as a function of the wavelength \ =

2mc/w, by changing variables in the expression above:
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You should find

2
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which is plotted for three temperatures 7' = 1/ in the figure below, which comes
from Wikimedia Commons. (The plot divides our P(\) by 47 steradian and mul-
tiplies it by c to convert from a spectral density to a spectral power per unit area
per unit of solid angle. For our purposes only the functional form is significant.)
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Considering first the high-energy ultraviolet (UV) limit of small wavelengths
A\, we can see from Eq. 96 that P()\) is exponentially suppressed, which over-
whelms the diverging factor oc 1/)\° in parentheses. In the low-energy infrared
limit, the large \ has the same effect that a large temperature (8 < 1) would
have: 27"/ — 1 ~ 27 kc/\ and
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The connection to large temperatures indicates that this is what classical statis-
tics would predict for the spectrum of light. It is known as the Rayleigh—Jeans

spectrum, named after the third Baron Rayleigh and James Jeans. Recall that
the classical approach sums over all possible energies for each degree of free-
dom, corresponding to a light-emitting object (historically known as a black body)
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emitting light of all wavelengths A. According to the classical Rayleigh—Jeans
spectrum, in the limit A — 0 this light would carry an infinite amount of energy,
an obvious problem that became known as the ultraviolet catastrophe. Planck
described his 1900 derivation of the UV-suppressed P(\) as “an act of despera-
tion” to avoid this problem; it turned out to be one of the first steps towards the
quantum physics.

Another noteworthy feature of the Planck spectrum shown above is that as
the temperature increases, the maximum of P(\) moves to shorter wavelengths
and correspondingly larger energies. The fact that the peak of the spectrum for
T ~ 5000 K falls within the wavelengths of visible light (roughly 400—700 hm) is not
a coincidence. As shown in the figure below, also from Wikimedia Commons, the
amount of sunlight that reaches the surface of the earth is also maximized around
visible wavelengths, which are visible to us because we have evolved to make the
most efficient use of this sunlight.

Taking into account the absorption of some sunlight by molecules in the at-
mosphere, we can see from the figure below that the energy spectrum of the
sunlight reaching the top of the atmosphere is quite close to a Planck (or ‘black-
body’) spectrum with temperature T' ~ 5778 K. The agreement isn’t perfect, which
is to be expected since the Planck spectrum relies on the non-trivial assump-
tion of an ideal gas of non-interacting particles. Despite that caveat, numerically
fitting the measured sunlight to the Planck spectrum is how this ‘effective’ sur-
face temperature of the sun is determined. This same fitting procedure can even
be done for distant stars, with red stars corresponding to relatively low temper-
atures T' < 3500 K and blue stars corresponding to relatively high temperatures
T > 10,000 K.
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Even more remarkably, we can use the Planck spectrum to determine the
temperature of intergalactic space. Rather than being empty, these voids are
actually permeated by a very low-temperature photon gas left over from the Big
Bang roughly 14 billion years ago. This photon gas is known as the cosmic mi-
crowave background (CMB), and carries information about the early evolution of
the universe, including some of the strongest evidence for the existence of dark
matter.

The picture below is a famous visualization of the CMB, provided by the Eu-
ropean Space Agency and produced from measurements taken by their ‘Planck’
satellite. To produce this image, for each point in the sky the satellite measures
the photon spectrum reaching it from that direction. The contributions coming
from stars and galaxies are subtracted, and the remaining data is fit to the Planck
spectrum to find the temperature of the intergalactic CMB photon gas at that
point. From point to point, there are only small temperature fluctuations around
the average Tomg ~ 2.725 K. That average temperature is subtracted and the

fluctuations themselves are shown below, with warmer red-coloured regions only
AT = 0.0002 K hotter than the cooler blue-coloured regions.
IR s ot e S0

The final figure below illustrates such a fit of CMB data to the Planck spec-
trum, using measurements taken by the Cosmic Background Explorer (COBE)
satellite and published in 1990. (This version of the figure is adapted from that
publication, and copied from Schroeder’s Introduction to Thermal Physics.) The
squares are the measured data, and their size represents a cautious estimate
of uncertainties. They are plotted with the frequency f = w/(27) on the hori-
zontal axis, with f ~ 3 x 107!* s7! corresponding to a low-energy wavelength
A = ¢/f =~ 1 mm, roughly 1000 times longer than the wavelengths of visible light.
The solid line is a fit to the data that produces Tous = 2.735 4 0.060 K. While more
recent satellites have increased the precision with which we know Tgug, this first
result was awarded the 2006 Nobel Prize in Physics.
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Even though we derived the Planck spectrum by assuming an ideal gas of
non-interacting photons, we see that it provides an excellent mathematical model
for real physical systems, stretching from the hottest to the coldest places in the
universe.

8.3 Egquation of state for the photon gas

Having looked in some detail at the integrand for the photon gas energy
density, Eq. 95, let's complete the integration, which involves a famous integral
related to the Riemann zeta function:
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Using this result, what is the average energy density for an ideal photon gas?
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You should find a result proportional to 7%, which appears significantly more
complicated than Eq. 52 for the energy of an N-particle non-relativistic ideal gas
in the canonical ensemble. This is related to the fluctuating particle number now
that we are working in the grand-canonical ensemble. It's possible to simplify the
current situation by computing the average photon number from Eq. 76,
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recalling p = 0 for photon gases. The calculation is quite similar to that for the
average internal energy density, now involving the integral

Iy — /Ooo em‘gida; = DE)¢(3) = 20(3).

Using this result, what is the average particle number density ideal photon gas?
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You should find a result proportional to 72 o (E), /T, so that

phl-c
(B),, = 7T—2VT4 _ T (N),, T (97)
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The functional form is the same as Eq. 52, with a larger numerical factor

T
30((3) ~ TR)CE)

compared to the 3 for the classical non-relativistic case.

~ 2T

To get the rest of the way to the equation of state for the photon gas, we
need to compute the radiation pressure

which requires first figuring out the condition of constant entropy S for a photon
gas. From Eq. 79 with ¢ = 0, we have
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Looking back to Eq. 94 for the grand-canonical potential, we see
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changing variables to & = fhw = fw/T. The final factor in this expression is yet
another delightful mtegral
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Since this gives us S « VT?, we can conclude that the condition of constant
entropy for a photon gas is VT8 = constant, in contrast to the V73/2 dependence
of Eq. 53 for classical non-relativistic particles.

At this point it is straightforward to take the derivative of the average inter-
nal energy if we express the constant-entropy condition as 7' = bV ~1/3, with b a
constant:
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For the resulting equation of state for the photon gas, you should find
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The functional form is the same as the (classical, non-relativistic) ideal gas law,
with just an additional numerical factor of

j % (B) = (N) o T. (98)
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