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z and p, are defined. Since the particle is within a volume V = L3, we know
Az < L. Therefore the uncertainty principle requires Ap, = h/L, which is only

possible if p, is non-zero, corresponding to k, > 1. Note that smaller lengths L
imply larger momenta and therefore larger energies.

With this adjusted ansatz, k,,. > 1, we can adapt an exercise from Sec-
tion 4.1 and ask: What are the lowest energies and the degeneracies of the
corresponding energy levels?
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8.1.2 Massless photons

Now we will build on our experience with massive bosons to consider a
gas of photons, massless bosonic quantum particles of light. For our purposes,
with no prior knowledge of particle physics, we can define photons simply by
specifying their energy levels. Clearly E o 1/m from Eq. 91 is problematic for
massless particles with m = 0. Instead, a photon’s energy is proportional to the
magnitude of its momentum,

Eon(p) = ¢4 /0% + 02+ p2 = cp.

Here the speed of light c is really just a unit conversion factor (like the Boltzmann
constant) that we could set to ¢ = 1 by working in appropriate units.

This relation is connected to the non-relativistic energy £ = ;’% that we
considered in Section 4.1 through the general expression ‘ £
T

B = (me)” + (pe)’, "
pC

which is sometimes called Einstein’s triangle. When m = 0, or m < p/c more
generally, this reproduces the ultra-relativistic relation above. For stationary par-
ticles with p_ = 0 it reduces to the famous ‘mass-energy’ E = mc?, while the
non-relativistic kinetic energy is recovered for m > p/c
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Another feature of photons’ energy levels is that each momentum (p., py, p-)
corresponds to two degenerate energy levels with the same energy L(p). This
arises from photons’ connection to electric and magnetic fields, which allows each
photon to be polarized in two different ways. If there is interest we can discuss
this further in a tutorial, but it is not relevant to the statistical physics of photons,
for which we can take this double degeneracy as input. Note that this factor of two
multiplies all other degeneracies, for instance from permutations of (p.., py, p)-

For photons in a volume V = L3, only the same discrete momenta as in the
massive case are allowed,

pzh%,/kg+kg+kgzh
so that the quantized photon energies are

Fion(k) = he—k
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Because light is an electromagnetic wave, it is convenient to work in terms of
photons’ wavelength \ and angular frequency w = 2xf (not to be confused with
generic micro-states w;). Together, the wavelength and frequency determine the
speed of the wave’s propagation, in this case the speed of light
Aw
cC= —.
= 27
In quantum physics, a particle’s momentum is related to its de Broglie wave-
length, implying that in a volume V = L? the wavelengths are also quantized as il-
lustrated in the picture below (from Schroeder’s Introduction to Thermal Physics).
Specifically, the length L must be an integer multiple of half a wavelength,

A Lw w T A
= — :} = —_—— = = G
L 2 “Tkn zk’ W L
and we can rewrite Eqg. 92 as
Epn(w) = hw. (93)

With \ oc c/w, this incorporates the relation between length and energy scales
that we noted above. Low (infrared) frequencies correspond to small energies
and long wavelengths, while high (ultraviolet) frequencies correspond to large
energies and short wavelengths.

TER

2L

=g
oL
Az = ——2—

M =2L

MATH327 Unit 8 105 Last modified 17 Mar. 2022



Penetrates Earth's

Atmosphere?
Radiation Type Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m) ~ 10° 1072 107 05x107° 107 1072 10712
w "2 8
o A
Approximate Scale _&Tw‘___;_w 4l
of Waveiength — ﬂ_.w_‘ W

Buildings Humans  Butterflies Needle Point Protozoans Molecules  Atoms  Atomic Nuclei

Frequency (Hz)

-

104 108 102 1% 1p'° o e

Temperature of
objects atwhich
this radiation is the
mostintense
wavelength emitted

1K 100K 10,000 K 10,000,000 K
=242 °C =1 F3C 9. 527°C ~10,000,000 °C

commons.wikimedia.org/wiki/File:EM_Spectrum_Properties_edit.svg



We are now ready to write down the grand-canonical potential for a photon
gas:

L
Pop =T log [1 — e PE=1] = 27 "log [1 — ¢ BEnE-1)] |

where the factor of 2 in the final expression accounts for the doubly degenerate

energy levels. We can simplify this expression by appreciating that photons are
easy to create and destroy. Every time a light is switched on, it begins emitting
a constant flood of photons (with wavelengths of several hundred nanometres).
Food in a microwave oven gets hot by absorbing many lower-energy photons
(with longer wavelengths around 12 centimetres). In both cases an enormous
number of photons is required to make even a small change in energy, so that
Eq 81 implies the chemical potential of a photon gas must be negligible,

oK BB (k)
M:@Sr\; — ®th2 ;log[l—e ph }
Since we have k,, . > 1, the strictly positive energies Epn(k) o< k/L > 0 ensure
Bose—Einstein statistics is still convergent even with p = 0.

Another simplification comes from considering the photon gas in a large

volume, so that the energies Epn(k) o k/L are very closely spaced and we can
approximate the sum over integer k., , by integrals over continuous real k.,

Ppn ~ QT/dEm Cﬁn’\'y Cﬁu:z log {1 — e‘ﬁEPh@)] .

Since the energy Eph( ) depends only on the magnitude %, we can profit from
converting to spherical coordinates. When we do so, we have to keep in mind
that k, ky,z > 0 corresponds only to the positive octant of the sphere,

/2 oo
/dk/ dk/ dk—/ dl»lf/ d()sm()/ daﬁ:%/ dk k%,
£ Jo

so that

Do~ 7T | df Plog |1 - e PE®)| .
—Jo

We can finally change variables to integrate over the photon angular frequency
W= c@ with EPJLi@J to find

LYe pee
<I>ph~7rT< )/ dww log [1 — — e ]

= c37r2/ dw w’ lo<T e“ﬁh“’] , (94)

recognizing L? = V. With this grand-canonical potential derived, we just need to
take the appropriate derivatives to determine the thermodynamics and equation
of state for the photon gas.
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8.2 The sun and the void

It will be very interesting to use the grand-canonical potential in Eq. 94 to
analyze the average internal energy for a photon gas. With p = 0, Eq. 78 from
Section 6.3 becomes

o [® 0
2 ph| _ 9
Ehon = =157 [ T } OB [5®pn]-
To begin, we will consider the energy density expressed as an integral over photon
frequencies,
<E>ph *
G _ [ )

where the function P(w) is known as the spectral density, or simply the spectrum.
(It's not the pressure!) What is the spectrum for a photon gas?

-F‘gw—(—m -
= 2/ dww—log[ ﬂfw = g dw W ,Jz)fﬂ,/
en T
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cC 1T ‘e ’(
4w
— _/.; ——
::E) ?(W) 03ﬂ gw'/
You should find . s
P(w) = <c37r2> eﬁﬁ:)_ 1 (99)

which is known as the Planck spectrum, named after Max Planck. We can equally
well consider the Planck spectrum P()\) as a function of the wavelength \ =
2mc/w, by changing variables in the expression above:
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