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statistics. This is actually a question we have already considered, back in Sec-
tion 3.4 (and the first homework assignment). There we used the canonical en-
semble to analyze classical spin systems with discrete energy levels, finding that
at low temperatures the systems are dominated by their lowest-energy micro-
states, with only exponentially suppressed corrections coming from any higher-
energy micro-states. In the present context, this corresponds to a classical predic-
tion of exponentially small probabilities for particles to occupy any energy levels
with £, > E, — effectively guaranteeing that the lowest energy level &, will be
occupied by multiple particles and classical statistics will break down.

In short, the low-temperature regime is where quantum and classical statis-
tics disagree, while high temperatures correspond to the classical limit of
guantum statistics.. If you are not convinced by the argument leading to this con-
clusion, you can find a more detailed derivation based on the equation of state
and thermal de Broglie wavelength in Section 3.5 of David Tong’s Lectures on
Statistical Physics (the first item in the list of further reading on page 5).

For now, we want to consider the grand-canonical ensemble at high tem-
peratures, to see whether the quantum and classical statistics we derived in the
previous sections become equivalent in this regime. However, it can be subtle to
work with the grand-canonical ensemble at high temperatures, due to the depen-
dence of the average number of particles on the temperature. To demonstrate
this subtlety, let's compute the average particle number (N)(T', 1) starting from
the grand-canonical partition function, for both classical and quantum statistics.

For convenience, let’s collect our earlier results for the grand-canonical par-
tition functions corresponding to classical Maxwell-Boltzmann stafistics (Eq. 87),
the quantum Bose—Einstein statistics of bosons (Eq. 86) and the quantum Fermi—
Dirac statistics of fermions (Eq. 88):

L

Z{'JV'B = Hexp [e—ﬁ(Ec—H)]
=0
L 1 L
BE __ FD __ —B(Ee—p)
2y _Hl—erﬂ(Eru) Z _H[He R

=0 =0
Recalling log ([ [, z:] = ) ,loga;, the corresponding grand-canonical potentials
® = —Tlog Z, for these three cases are

—_—

L
Dup = —T S e PEe
£=0

L L
Ppe = TZlog [@_ﬂ(Eﬂ_”)] Prp @Zlog []@—ﬁ(Ee—u)] .
=0 N =0
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We are now ready to compute the average particle numbers. Using the
result we derived in Section 6.3,

what are the average particle numbers resulting from the three grand-canonical
potentials above?

L - -
9 : ~p(€ ) X = BE,-u)
Mg =T 5.e "% = ﬁT% Re L
=0
’—{—,_\ —
= i e % Q’fe B §<M’>1MB
L ﬁ( - ;’(2
0
Nge = -TY —log[l—ePEem] = _ Z =
(N)ge ;auo[ & ] y P
(
= £ = 7
T et~ | T e
L L }S\‘;Kﬁ
(e = Z g[l4ePBm] = 7 f __Al ; {kf‘

=0

You should find that the average particle number in all three cases can be
expressed as a sum over the average occupation humbers,

=2 ),

(=0
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where the average occupation numbers for Maxwell-Boltzmann statistics, Bose—
Einstein statistics and Fermi—Dirac statistics are

1
(nedwe = ZaEm

/ _ 1 ' B 1

(ne)pe = BB _ | {(ne)pp = BEe—m) + 1
Note that 0 < (ng)rp < 1, as required for fermions. From these results it is easy
to see that the classical limit (n,)ge ~ (ne)ep = (ne)yg COrresponds to

——

BE—1) 4 | ay PE—1) _— P Ee—1) > 1.

We can also confirm that this limit corresponds to (n,) < 1 for all energy levels
& and all three types of statistics, connecting to our starting point of very small
probabilities for multiple particles to occupy the same energy level.

Now we can appreciate the subtlety promised above, because

B(E, — p) = Eﬂ;” > 1. (89)

does not look like a high-temperature limit! Indeed, if we consider the naive high-
temperature limit 8 = 1/T — 0 with fixed (£, — 1), we would find large average
occupation numbers,

1
{(ne)ys ~ 1 (ne)gg — 00 (ne)ep = 5.

2
In addition to implying non-negligible classical probabilities for multiple particles
to occupy the same energy level, this result indicates that higher temperatures in
the grand-canonical ensemble lead to larger particle numbers in total — at least
when (E, — p) is fixed.

In order to balance this effect, we need to adjust the other parameter offered
by the grand-canonical ensemble: the chemical potential ;. Specifically, in order
to satisfy Eq. 89 in the high-temperature limit, we need E; — 1. > T, requiring that
1 — —oo as T —» oo. Making the chemical potential more negative reduces the
probability of having large numbers of particles in the system, at the same time as
the smaller § increases the number of energy levels that these particles can oc-
cupy with non-negligible probability. Taken together, these two effects guarantee
that there are many more accessible energy levels than there are particles, allow-
ing us to conclude that the true high-temperature limit in which quantum statistics
becomes classical is

E
—pu>T > E = — > 1 (90)
This corresponds to the right edge of the plot on the next page, where we can

confirm excellent agreement between all three predictions for the average occu-
pation number (n;).
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In the low-temperature regime %T—/i < 1 corresponding to the left portion of
the plot, we see dramatically different behaviour for the three cases. The clas-
sical Maxwell-Boltzmann prediction for the average occupation number grows
exponentially, while the quantum Bose—Einstein prediction diverges as E, — p
and the Fermi—Dirac prediction slowly approaches its maximum possible value
(ne)ep — 1. In the next unit we will study in more detail the quantum gases of
bosons and fermions that correspond to these results.
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Unit 8: Quantum gases

8.1 The pﬂg@gn gas

8.1.1 Massive bosons in a box

In Section 7.3 we derived the grand-canonical partition function (Eq. 86) that
defines quantum Bose—Einstein statistics for systems of non-interacting bosons,

1
BE _
T | p——

£=0

Following the quantum approach, we obtained this result by considering in turn
each energy level & with energy FE,, and summing over all possible occupation
numbers that it could have. For bosons, n, € N, produces sums that only con-
verge if u < E, for all £. The corresponding grand-canonical potential is

£
Ppe = —T'log Zy = TZlog [1 — e‘ﬁ(_EA_“)] ,
T =0

from which we can determine the large-scale properties of the system, including
its average internal energy (£), average particle number (N), entropy S, and
pressure P.

To do so, we have to specify the energy levels of the particles that compose
the system of interest, taking care to note potentially degenerate energy levels
{€m, &} With the same energy E,, = E, for m # n. One example of this that we
have already considered is the analysis of non-relativistic ideal gas particles in
Section 4.1. For a single particle with mass m in a volume V = L3, we adopted
an ansatz for the quantized energies,

h m? 2 2 ;2 2 2 ;2 h*r?
u\

where the integers A;L.,y,z specify the possible momenta of the particle,

_ﬁ_: (pa:apy:pz) km,y,z =1,2,---.

Compared to Eq. 47, here we have adjusted our ansatz to require strictly
positive &, .. This adjustment is required by another feature of quantum mechan-
ics, which this paragraph will imprecisely describe for the curious. This descrip-
tion can be skipped without any problem, with the adjusted ansatz simply taken
as input. The feature at play here is known as Heisenberg’s uncertainty princi-
ple (named after Werner Heisenberg), which relates the precision with which the
position and momentum of each particle can simultaneously be defined:

(M) (Ap) 2 h

and similarly for y and 2. The ‘2’ sign here hints that we’re ignoring irrelevant
factors of 2 and 7, while ‘A’ refers to the precision (or uncertainty) with which
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z and p, are defined. Since the particle is within a volume V = L3, we know
Az < L. Therefore the uncertainty principle requires Ap,, ;/ﬁ/_L‘ which is only
possible if p, is non-zero, corresponding to k, > 1. Note that smaller lengths L
imply larger momenta and therefore larger energies.

With this adjusted ansatz, k,, . > 1, we can adapt an exercise from Sec-
tion 4.1 and ask: What are the lowest energies and the degeneracies of the
corresponding energy levels?

( vound s?tf('tz? E, = 3¢ E(‘:((/(/!) #:\
E=le $:3
E = J¢ ¥ 3
g = lle ¥ 3 (3,11) E=02e 1
(2¢2

8.1.2 Massless photons

Now we will build on our experience with massive bosons to consider a
gas of photons, massless bosonic quantum particles of light. For our purposes,
with no prior knowledge of particle physics, we can define photons simply by
specifying their energy levels. Clearly E o« 1/m from Eq. 91 is problematic for
massless particles with m = 0. Instead, a photon’s energy is proportional to the
magnitude of its momentum,

Eoh(p) = c4/p2 + p2 + p2 = cp.

Here the speed of light c is really just a unit conversion factor (like the Boltzmann
constant) that we could set to ¢ = 1 by working in appropriate units.

22 that we

2m

This relation is connected to the non-relativistic energy £ =
considered in Section 4.1 through the general expression

E? = (mé)” + (pe)?,

which is sometimes called Einstein’s triangle. When m = 0, or m < p/c more
generally, this reproduces the ultra-relativistic relation above. For stationary par-
ticles with p = 0 it reduces to the famous ‘mass-energy’ E = mc?, while the
non-relativistic kinetic energy is recovered for m > p/c:
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