and we have now seen how this becomes non-trivial whenever multiple particles

can occupy the same energy level. The quantum approach of summing over the

occupation numbers of the quantized energy levels avoids this issue, and requires /'{ Mar.
no additional factors to correct over-counting. "

/’ 1T Mav,

7.2 Bosons and fermions

In Sections 7.3 and 7.4 we will carry out explicit computations to show how
the quantum statistics defined above work in practice. First, there is one more
fact about nature that we need to take into account. This concerns the occupation
numbers n, that are possible for each energy level &,.

Using quantum mechanics and special relativity, it is possible to prove that
all particles in three spatial dimensions fall into two distinct classes. (More exotic
behaviour is possible for particles confined to two-dimensional surfaces.) This
result is known as the spin—statistics theorem, while the two types of particles it
describes are called bosons (named after Satyendra Nath Bose) and fermions
(named after Enrico Fermi). These two classes of particles obey different rules
for their possible occupation numbers, and therefore give rise to distinct quantum
statistics.

Any non-negative number of identical bosons can simultaneously occupy
the same energy level, corresponding to occupation numbers n, = 0, 1, 2, ---.
Physical examples of bosons include photons (particles of light), pions, helium-4
atoms and the famous Higgs particle.

On the other hand, it is impossible for multiple identical fermions to occupy
the same energy level, meaning that their only possible occupation numbers are
ne = 0 and 1. This behaviour is known as the Pauli exclusion principle (named
after Wolfgang Pauli) and has extremely important consequences, including the

protons, neutrons, neutrinos and helium-3 atoms.

The reason multiple identical fermions cannot occupy the same energy level
is due to a feature of quantum mechanics, and not because they physically re-
pel each other. This paragraph will imprecisely describe that aspect of quantum
physics for the curious, and can be skipped without any problem. Consider a
system of identical quantum particles occupying various energy levels. Loosely
speaking, all observable properties of this system depend on the square of the
quantum function that defines it. Interchanging any pair of indistinguishable parti-
cles must leave all these observable properties unchanged. Just as v/1 = +1,
there are two ways the underlying quantum function can behave to leave its
square unchanged: it can be completely symmetric or completely antisymmet-
ric under all possible interchanges. Bosons correspond to the symmetric case,
while fermions correspond to the antisymmetric case. At the same time, if two
identical particles are occupying the same energy level, then the quantum func-
tion itself must remain unchanged (i.e., symmetric) when they are interchanged.
In the fermionic case, the resulting quantum function must therefore be simulta-
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neously symmetric and antisymmetric, which is only possible if it is exactly zero.
In other words no systems with multiple identical fermions in the same energy
level can possibly exist.

Looking back at the example system of N = 2 particles with five energy
levels in the previous section, all 15 micro-states we wrote down are possible if
the particles are bosons. How many micro-states are allowed if the particles are
fermions?

Vo o, with wetgils 11oco 19901 0loel el
1 lg oo gt ele Qollo
loalo ollod 4,41

This difference in the possible micro-states ensures that bosons and fermions
exhibit different quantum statistics. We will now consider each case in turn.

7.3 Bose-Einstein statistics

The quantum statistics of bosons is known as Bose—Einstein (BE) statis-
tics, named after Satyendra Nath Bose and Albert Einstein. As described above,
to carry out the sum over all micro-states in the grand-canonical partition function

ZQ(B> N) = % @_ﬂ(EiﬂtNi),

we first sum over all energy levels &, and then over all possible occupation hum-
bers n, € N, for each energy level.

Consider first the simple case of a system that only has a single energy level
&, with energy E;. In this case, each micro-state w; is uniquely described by its
particle number N;, which is just the occupation number of &. What is the energy
F; of micro-state w; with occupation number ny = N;?

%: /V( Eﬂ - wc)éz’

Serey )

Summing over all possible occupation numbers for this single energy level, the
Bose—Einstein grand-canonical partition function for this system is

(e e]

& ny 1
BE —B(Eo—p)n =B e — ——_ —
Zg (B, p) = Z e PR = Z [i_ﬂ(__o_i)] T 1 BB (84)

no=0 no=0

—_—

In the last step we recognized the geometric series

1
=1l+a+2°+---,
1—2
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which only converges for z = e #Fo~#) < 1. For natural systems with g = 1/T >
0, this condition requires E, — . > 0 or equivalently p < E,. Since we can take
all E, > 0 without loss of generality, this constraint is consistent with the negative
chemical potential ;. < 0 that we discussed in Unit 6.

At this point, it is straightforward to generalize to multiple energy levels &
with £ =0, 1, - - -, L. Because we consider only ideal systems with non-interacting
particles, the micro-state w; defined by the set of occupation numbers {n,} has
total energy and particle number T

L L
E; = ZENM— N; = Z”f- (85)
o

The general Bose—Einstein grand-canonical partition function is therefore 27 z

ZBE(B, 1) = ZZ ZGXD{[”Z(@—M)@&]-

ng=0 Onl_O nr=0

We can apply the identity e2>:® = [T, % to rewrite

L
exp [—/J‘ Z ) g

=0

— (e—ﬁ(Eo—#)‘no) (e—ﬁ(El—u)ﬁL) (e_ﬁ(EL“‘ﬂ)nL) _

Recalling 1 < E, for all ¢, by rearranging the terms we find

Z5E<ﬁ)/1’) _ <Z e —B(Eo—p 110> <Z 6—5(E1 ;1)711> . <Z e—ﬂ(EL m "L)

no=0 n1 0 ny,=0

L 1
H 1 e [3 Eﬂ l’ (86)

=0

~

This grand-canonical partition function defines the quantum Bose—Einstein
statistics of bosons. Its structure as the product of an independent contribution for
each energy level is reminiscent of the result Zy oc Z} for the classical N-particle
canonical partition function discussed in Section 7.1. In such situations we say
that the calculation factorizes into a product of many simpler terms, allowing us
to build up the full result on the basis of much easier computations. Looking back
to Eq. 83, we can also observe factorization in the classical Maxwell-Boltzmann
grand-canonical partition function,

L

L
Zg2(B, 1) = exp {Z e “] [ [ exp [¢ 7] (87)
=0

£=0

In all of these cases, factorization is possible because the particles are non-
interacting. Starting in Unit 9 we will consider non-ideal systems in which the par-
ticles can interact with each other, where the absence of factorization will make
analyses much more difficult.
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7.4 Fermi-Dirac statistics

The quantum statistics of fermions is known as Fermi-Dirac (FD) statis-
tics, named after Enrico Fermi and Paul Dirac. The derivation of the Fermi—Dirac
grand-canonical partition function is very similar to the Bose—Einstein case con-
sidered in the previous section. We again proceed by summing over all energy
levels &,, and just have to account for the more limited possible occupation num-

bers n, € {0,1} for each energy level.

Taking the same approach of first considering a simple system with only a
single energy level, Eq. 84 would just change to

1
208 ) = 3 B = 1 g )

no=0

Generalizing to multiple energy levels & with £ = 0, 1, ---, L, the micro-state
energies E; = Y, E;n, and particle numbers N; = ), n, remain the same as in
Eq. 85, and the computation again factorizes,

ZP (B, p) = %Z > exp [—52(@—;074

no=0n1=0 nr=0 (=0
—_\1 1 1
_ <Z 6~/3(Eo—mn£> <Z e—ﬁ(El—u)u> <Z e—ﬂ(EL—MnL)
no=0 n1=0 ny=0

Il
-

[ 4 e BE=m)] (88)

~
Il

0

—

This grand-canonical partition function defines the quantum Fermi-Dirac statis-
tics of fermions. In both this case and the case of classical Maxwell-Boltzmann

statistics there is no constraint on (2, — p).

In Unit 8 we will take ZgBE and ZgFD as starting points to analyze quantum
gases of bosons and fermions, respectively. Before beginning those more de-
tailed analyses, let’'s quickly compare the three types of statistics that we have
derived in this unit, while they are all close to hand.

7.5 The classical limit

In Section 7.1 we claimed that if the probability of multiple particles occu-
pying the same energy level is negligible, then the classical Maxwell-Boltzmann
statistics can be an excellent approximation to quantum statistics — both bosonic
and fermionic. We will wrap up this unit by demonstrating this result and clarifying
the conditions that correspond to this ‘classical limit’ of quantum statistics.

It is useful to start by asking when we should expect classical statistics to
predict a non-negligible probability_for multiple particles to occupy the same en-
ergy level, leading to the over-counting problems that are solved by quantum
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statistics. This is actually a question we have already considered, back in Sec-
tion 3.4 (and the first homework assignment). There we used the canonical en-
semble to analyze classical spin systems with dis rgy levels, finding that
at low temperatures the systems are dominated by their lowest-energy micro-
states, with only exponentially suppressed corrections coming from any higher-
energy micro-states. In the present context, this corresponds to a classical predic-
tion of exponentially small probabilities for particles to occupy any energy levels
with E, > E, — effectively guaranteeing that the lowest energy level & will be
occupied by multiple particles and classical statistics will break down.

In short, the low-temperature regime is where quantum and classical statis-
tics disagree, while high temperatures correspond to the classical limit of
quantum statistics.. If you are not convinced by the argument leading to this con-
clusion, you can find a more detailed derivation based on the equation of state
and thermal de Broglie wavelength in Section 3.5 of David Tong’s Lectures on
Statistical Physics (the first item in the list of further reading on page 5).

For now, we want to consider the grand-canonical ensemble at high tem-
peratures, to see whether the quantum and classical statistics we derived in the
previous sections become equivalent in this regime. However, it can be subtle to
work with the grand-canonical ensemble at high temperatures, due to the depen-
dence of the average number of particles on the temperature. To demonstrate
this subtlety, let's compute the average particle number (N)(T, 1) starting from
the grand-canonical partition function, for both classical and quantum statistics.

For convenience, let’s collect our earlier results for the grand-canonical par-
tition functions corresponding to classical Maxwell-Boltzmann statistics (Eq. 87),
the quantum Bose—Einstein statistics of bosons (Eq. 86) and the quantum Fermi—
Dirac statistics of fermions (Eq. 88):

L

ZL\AB — H exp [e_ﬁ(Ef'_‘.“‘):l
=0
L 1 L
BE _ N FD __ —B(Ey—p)
Zg *HI—eﬁﬁ(Er#‘) Zg _H[1+e tl]'
=0 =0
Recalling log[[[; 2;] = },loga;, the corresponding grand-canonical potentials

® = —T'log Z, for these three cases are

L
Sy = —T Z e P(Ee—p)

=0

L L
Bge =T ) log [1 — e APe)] Brp = —T Y log [1 + e AE]
=0 =0
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