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Unit 7: Quantum statistics

7.1 Quantized energy levels and their micro-states

Now that we have defined the grand-canonical ensemble, we will apply it to
investigate quantum statistical systems. The first step is to introduce quantum
statistics itself, building on the initial glimpse that we got in Section 4.1. It is
worth reiterating that no prior knowledge of quantum physics is assumed, nor
will this module attempt to teach quantum mechanics. We will simply consider
quantum behaviour as an ansatz (that turns out to be realized in nature), and
analyze the resulting systems by making use of the statistical physics tools we
have developed.

Looking back to our derivation of the canonical partition function for a classi-
cal (that is, non-quantum) ideal gas in Section 4.1, we can recall that we engaged
in slightly circular argumentation. First, because the partition function is defined
as a sum over micro-states w;,

7= eI,
@,

we had to conjecture that the gas particles’ momenta p; are quantized and can
take only particular discrete values, rather than varying continuously. These quan-
tized momenta produce a countable number of discrete energy levels, leading to
a countable number of micro-states and hence a well-defined partition function
that takes the form of a sum over all possible discrete momenta for each par-
ticle. Second, we then argued that when Lv/mT > F, any energy levels with
non-negligible Boltzmann factors are spaced very close to each other. Therefore
the function being summed varies very smoothly, allowing us to approximate that
sum as a multi-dimensional integral. That is, we went right back to working with
continuously varying momenta, despite the formal need to regulate the system by
quantization.

Two changes are required to define quantum statistics. First, not surpris-
ingly, we need to retain discrete energy levels rather than approximating these as
continuous. This will allow our calculations to remain valid even in the quantum
regime where Lv/mT ~ h. The second change is more subtle, and is connected
to the fundamental indistinguishability of identical particles governed by quantum
mechanics — a fact about nature that we will take as given. The issue is how to
handle micro-states in which multiple indistinguishable particles occupy the same
energy level.

To build up to this issue, we will first see what happens when we ignore it
and apply our usual classical approach to compute the grand-canonical partition
function for a system with discrete energy levels. Despite the quantized energy

levels, this calculation will still produce a non-quantum result known as Maxwell—

Boltzmann (MB) statistics, named after James Clerk Maxwell and Ludwig Boltz-
mann. We will then consider how this approach can break down, and use this
insight to develop true quantum statistics in the following sections. Finally, we
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will wrap up this unit by confirming that Maxwell-Boltzmann statistics remains an
excellent approximation to quantum statistics in the classical limit.

7.1.1 Maxwell-Boltzmann statistics

Let’s begin our classical derivation of the grand-canonical partition function
for a system with discrete energy levels by defining some necessary notation. We
label the discrete energy levels & for £ = 0, 1, ---, L, where L can be taken to
infinity while retaining a countable number of micro-states and hence well-defined
partition functions. The energy level £ may be characterized by extra information
in addition to the actual value of its energy, E;. As we saw in Section 4.1, it
is therefore possible for distinct energy levels {&,,, £, } to have the same energy
E,, = E, for m # n. Such energy levels with the same value of the energy are
said to be degenerate. We will label energy levels so that £,, < E, for m < n.
Without loss of generality, we can take F;, > E, > 0. o =

—

Now starting from the general expression for the grand-canonical partition
function, Eq. 74,
Z,(B, 1) = e—ﬂ(Er#»Nf.)’
7
we just need to define the micro-states w; with energy E; and particle number
N;. In the classical Maxwell-Boltzmann approach, we first sum over all possible
particle numbers,

2B = S By 3 B L Y o AE _ﬁ(g -np)

i,N;=0 5N =1 ke, Nj=2
gi=L

where the micro-states labelled {w;,w;,wy,---} are those that have N = 0, 1,
2, --+ particles, respectively. We can recognize N-particle canonical partition

functions Zx () in the expression above:
ZY%(8, 1) = Zo(B) + L B(B) + M Za(B) + - = Y [ Zn(B).  (82)
N=0

This is a general result known as the fugacity expansion, where e?# is called the
fugacity. Organizing the calculation in this way allows us to take advantage of our
experience with the canonical ensemble.

In particular, because we continue to consider only ‘ideal’ systems in which
the particles don't interact with each other, each Zx(5) is simply the product of
the single-particle partition functions Z; () for all N independent particles,

Zy () = 5 B,

with the factor of N! included to correct for over-counting indistinguishable parti-
cles. This is exactly the derivation we performed in Section 4.1, to obtain Eq. 51
for the classical ideal gas. Inserting this Zy into Eq. 82, we have

(o]

WWM=ZWJ§MMMZZ;VMMH—WWE@L

N=( == =

IEEE R
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In the case of a system with discrete energy levels E,, the single-particle partition
function is simply

L
Z1(B) = Ze“ﬁEe,
=0

where each micro-state corresponds to the particle being in a different energy
level. This gives us the Maxwell-Boltzmann grand-canonical partition function

L L
4 IqS‘ ey 2" (B, 1) = exp [BBM ZB_BE[} - 'Z i__ﬁ,(icj)} ' (83)
(=0

=0

7.1.2 Over-counting and quantum statistics

The problem with the derivation above was already mentioned in the foot-
note accompanying Eq. 51. In short, the factor of 3 that we included to fix
the over-counting of micro-states for N |nd|st|ngu|shaW particles is only correct
when each of these particles is in a different energy level. When the particles’

4 <4 LM energies can vary continuously it is effectively impossible for two of them to have
exactly the same energy, making it safe to assume a different energy level for
each particle. More generally, this assumption can remain an excellent approx-
imation whenever there are many more energy levels than there are particles
to occupy them. However, the assumption breaks down when there is a non-
negligible chance of two particles occupying the same energy level, which is what
happens in the quantum regime.

We can illustrate the problem by considering a simple system with N = 2
particles that can occupy any of five energy levels, & through &,. For a further
simplification, let’'s suppose that all five energy levels are degenerate, with £, =
0 for £ = 0, ---, 4. This means the canonical partition function simply counts
the (positive integer) number of micro-states. For example, the single-particle

partition function is
4 4
AL NELE
=0 | £=0

forall g =1/T.

Computing the canonical partition function for this system is therefore equiv-
alent to counting the number of ways N = 2 balls can be placed in L+1 = 5 boxes.
We can represent possible micro-states by drawing these balls and boxes, for ex-

ample [ Te] T Je]and[ | Jee] [ ] What is the two-particle partition function
if the balls are distinguishable?
= b
Zp = l{" ;1

For indistinguishable particles, our derivation above would predict the partition
function Z; = %ZD, which is not an integer and therefore cannot be correct.

=11 .5
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We can see where the over-counting correction goes wrong by explicitly writ-
ing down all micro-states in both cases of distinguishable and indistinguishable
particles. In the distinguishable case, we can suppose that the balls are red (o)
and blue (), and compactly label micro-states by recording whether each box is
empty (“0”), contains the red ball (“R”), the blue ball (“B”) or both balls (2”):

[T TeT Ts]=00R0B [T TesT T 1= 00200.

The full set of micro-states is then

RBO00 0R0OBO BR000 0BORO 20000

ROBOO OR00B BOR00 0BOOR 02000 B
R0O0BO 00RBO BOORO 00BRO 00200 =25
RO00B 00ROB BOOOR 00BOR 00020

0RB00 000RB 0BR00 000BR 00002

If we now consider indistinguishable particles where we can only know the
number R = B = 1, we see that the third and fourth columns above duplicate
the first two columns. This is exactly the over-counting that the usual factor of
+1 = 3 corrects. On the other hand, the micro-states in the final column, with
both particles in the same energy level, were not over-counted, and must not be
divided by N!. This leaves us with 15 micro-states, rather than 25/2:

11000 01010 20000
10100 01001 02000
10010 00110 00200
10001 00101 00020
01100 00011 00002

We can generalize this simple exercise by systematically labeling the micro-
states for indistinguishable particles by occupation numbers n,, similar to those
that we encountered when using replicas to set up the canonical ensemble in
Section 3.1 and the grand-canonical ensemble in Section 6.2. In this case the
occupation number n, is simply the number of particles in energy level &. This
change of perspective is the final ingredient we need to define quantum statistics
as opposed to classical statistics.

In quantum statistics, the micro-states are defined by considering each

energy level & in turn, and summing over the possible occupation numbers ny;
that it could have. This differs from the classical approach in which we define the
micro-states by considering each particle in turn, and summing over the possible
energies that it could have.

Because quantum mechanics requires all particles of the same type to be in-
distinguishable, the classical approach requires that we correct for over-counting,
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and we have now seen how this becomes non-trivial whenever multiple particles

can occupy the same energy level. The quantum approach of summing over the

occupation numbers of the quantized energy levels avoids this issue, and requires IL{ Mav.

no additional factors to correct over-counting.
'

7.2 Bosons and fermions

In Sections 7.3 and 7.4 we will carry out explicit computations to show how
the quantum statistics defined above work in practice. First, there is one more
fact about nature that we need to take into account. This concerns the occupation
numbers n, that are possible for each energy level &,.

Using quantum mechanics and special relativity, it is possible to prove that
all particles in three spatial dimensions fall into two distinct classes. (More exotic
behaviour is possible for particles confined to two-dimensional surfaces.) This
result is known as the spin—statistics theorem, while the two types of particles it
describes are called bosons (named after Satyendra Nath Bose) and fermions
(named after Enrico Fermi). These two classes of particles obey different rules
for their possible occupation numbers, and therefore give rise to distinct quantum
statistics.

Any non-negative number of identical bosons can simultaneously occupy
the same energy level, corresponding to occupation numbers n, = 0, 1, 2, ---.
Physical examples of bosons include photons (particles of light), pions, helium-4
atoms and the famous Higgs particle.

On the other hand, it is impossible for multiple identical fermions to occupy
the same energy level, meaning that their only possible occupation numbers are
ne = 0 and 1. This behaviour is known as the Pauli exclusion principle (named
after Wolfgang Pauli) and has extremely important consequences, including the
existence of chemistry and life. Physical examples of fermions include electrons,
protons, neutrons, neutrinos and helium-3 atoms.

The reason multiple identical fermions cannot occupy the same energy level
is due to a feature of quantum mechanics, and not because they physically re-
pel each other. This paragraph will imprecisely describe that aspect of quantum
physics for the curious, and can be skipped without any problem. Consider a
system of identical quantum particles occupying various energy levels. Loosely
speaking, all observable properties of this system depend on the square of the
quantum function that defines it. Interchanging any pair of indistinguishable parti-
cles must leave all these observable properties unchanged. Just as /1 = +1,
there are two ways the underlying quantum function can behave to leave its
square unchanged: it can be completely symmetric or completely antisymmet-
ric under all possible interchanges. Bosons correspond to the symmetric case,
while fermions correspond to the antisymmetric case. At the same time, if two
identical particles are occupying the same energy level, then the quantum func-
tion itself must remain unchanged (i.e., symmetric) when they are interchanged.
In the fermionic case, the resulting quantum function must therefore be simulta-
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