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Z (1)

Taking the derivative of the resulting entropy with respect to Eiy, keeping
Niot fixed, gives the temperature from Eq. 22. Thanks to Egs. 70 and 71, the
result should simplify in a pleasant way:
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In the same way, the derivative with respect to Ny, keeping Ei fixed, gives the
chemical potential with similar simplifications:
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In the end you should find
ﬂ—? v=Bu=1% (72)
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and the desired result that aII information about the particle reservoir has dropped
out, with no remaining reference to R, Ei Or Niot. This large external reservoir is
still present to fix the temperature 7' and chemical potential 1. that characterize the
grand-canonical system 2, but beyond that nothing about it is relevant (or even
knowable) in the grand-canonical approach.

Every aspect of Q2 can now be specified in terms of its fixed temperature T
and chemical potentlal L, starting with the parameters g = 1/T and y = p/T. n
particular, the probability—in thermodynamic equilibrium—that © adopts micro-
state aﬁwith (non-conserved) internal energy E; and particle number N; is

1 1
o BBi—pNy) _ __ —(Ei—pN:)/T 73
Since the particle number N; is dimensionless, the combination E; — pN; that
v appears here reflects our observation below Eq. 67 that the chemical potential 1

has dimensions of energy.
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These micro-state probabilities are normalized by the grand-canonical par-
tition function

M

Z,(T, ) Z e B(Bi—pNy) Z e~ (Bi—nNi)/T (74)

=1t

Analogously to the canonical partition function, this Z, is a fundamental quantity
in the grand-canonical ensemble, from which many other derived quantities can
be obtained.

6.3 The grand-canonical potential, internal energy, entropy,
and particle number

The development of the grand-canonical ensemble we have seen so far
closely resembles our earlier work setting up the canonical ensemble. We have
generalized the thermal reservoir to a particle reservoir that allows both the in-
ternal energy and particle number of the system € to vary, while keeping its tem-
perature T' and chemical potential 1 fixed. By adapting the replica ansatz to this
setup, we determined the micro-state probabilities p; and grand-canonical parti-
tion function Z,, and found them to be independent of the details of the particle
reservoir.

We now continue by considering a similar set of derived quantities for the
grand-canonical ensemble in thermodynamic equilibrium. In addition to the ex-
pectation value of the internal energy introduced in Section 3.2, the fluctuations
of the particle number mean that we also need to consider its expectation value,

M
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Looking back to Egs. 70 and 71, we can expect both of these derived quantities to
be related to derivatives of the logarithm of the grand-canonical partition function.
In Section 3.3, similar relations led us to define the Helmholtz free energy for the
canonical ensemble, which we can also generalize to the grand-canonical case.

We define grand-canonical potential of a grand-canonical ensemble to be
=, lOg ZQ(ﬁ) H’)

ﬂ )
where Z, is the grand-canonical partition function of the ensemble. In terms of
this free energy, Egs. 73 and 74 are

(T, p) = ~Tlog Z,(T, p) = (75)

Zq e G_Q/T pz 2% e(‘I’_Ei‘HJ-Ni)/T‘
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The grand-canonical potential is sometimes called the Landau free energy,
named after Lev Landau, to highlight its similarity with the Helmholtz free energy.

As mentioned above, we want to consider derivatives of the grand-canonical po-

tential, the simplest of which is with respect to the chemical potential
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The derivative with respect to the temperature is a little messier, but can be simpli-

fied by recalling -2 o
which is again worth collectmg in advance,

= —f?4; from Eq. 35. As in Section 3.3, it involves -2 log Z,,
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You should find
00 @ —(E) + u(N)
or T
which we can connect to the entropy by inserting the probabilities p; from Eq. 73 ( L
into the general definition of the entropy from Eq. 20: Zj

= —log Z, — B(E) + Bu (N},
éﬂfé’k”;’
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From this work we can read off the following relations involving the grand-
canonical potential ®(T, p1):

0

(T, 1) = - (76)
ST, ) = — s (77)
(BYT.) = =T 3] + ) (79)
B(T, 1) = ~T 5+ (B) — () 79)

Finally, the connections between the energy, entropy and particle number
provided by these relations motivate a further extension of the general first law of
thermodynamics we derived in Eq. 63. To make the notation less cumbersome
here, we write (E) and (V) as E and N, keeping in mind that these are properties
of the system’s thermodynamic macro-state rather than its fluctuating micro-state.
In this notation, Eq. 63 reads dE = T'dS — P dV, and relates any changes in the
internal energy of a canonical system to changes in its entropy (heat) or volume
(work).

Extending this to the grand-canonical ensemble, we can express the entropy
as a function of the internal energy, volume and particle number, S(£,V,N), and
consider the change in entropy due to changes in each of these three parameters,

S 0S 0S 1 S

U
dS= 52 B+ SOl dV4 gl AN =B+ | av—Lan.
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We can interpret the remaining partial derivative by considering Eq. 63 in the case
of fixed internal energy E. This equation already incorporates the fixed particle
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number N, since it was derived in the framework of the canonical ensemble:

W= =8Pl == = ==
— =T = W gy T

Putting things together, we obtain the generalized thermodynamic identity

dE =TdS — PdV + pdN. (80)

Due to this result, the term pdN is sometimes referred to as “chemical work”,
in analogy to the mechanical work W = —P dV done on a system by changing
its volume. This thermodynamic identity provides a convenient way to remember
(or derive) relations between the internal energy, entropy, volume and particle
number in thermodynamic equilibrium, by considering processes in which any
two of these are fixed. For example, fixing N and V gets us back to Eq. 22 for the
temperature,

dE=TdS = L ,
T  0E|yy,
while fixing N and S gives Eq. 55 for the pressure,
dE = —PdV — P=—6—E :
OV |y s

If we fix the entropy S and volume V, we end up with another way of under-
standing the chemical potential,

dE = pdN  — 08| <o (81)

L h=oN

A%

That is, the chemical potential is the change in the internal energy when we
change the number of particles in the system, without changing its entropy or
volume. If we consider adding particles to the system, AN > 0, we argued below
Eq. 67 that we should generically expect an increase in the entropy. In order to
keep the entropy fixed in this process, we therefore need the change in the energy
to decrease the entropy by the corresponding amount. For natural systems with
positive temperatures, this requires decreasing the energy, AL < 0. Similarly,
keeping the entropy fixed as we decrease N would require increasing F, so that
Eq. 81 confirms our earlier finding that for natural systems the chemical potential
is negative in general.
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