MATH327: Statistical Physics, Spring 2022
Computer Project — Part 1 Solutions

Exercise 1: Pseudo-random numbers

The exact mean for the uniform distribution is

u:(u):/up(u)du:/OIUdu:%[“2](1):%’

at the middle of the interval 0 < u < 1 where p(u) = 1, as we might have guessed
by inspection. The expectation value (u?) is just as easy to compute,

1

<u2>:/u2p(u) dm’:Alugduzé[u‘g]é:B,

and produces the exact standard deviation
1
2 [
=V 3 4

The Python code on the next page estimates the mean and standard de-
viation for the given R, producing the numerical results in the table below. This
portion of the code runs in roughly 0.2 seconds on replit.com.

~ 0.2887.

& 10 100 1000 10,000 | 100,000
ur | 0.5580 | 0.4547 | 0.5026 | 0.4961 0.5003
or | 0.2899 | 0.2923 | 0.2826 | 0.2886 | 0.2888

As R increases, these estimates for both the mean and standard deviation
clearly approach the exact values above, matching them to several significant
figures by the time R = 100,000. Although some small-R results show the larger
discrepancies we would expect, others highlight the possibility of ending up close
to the exact values by chance. In particular, o for R = 10 is much closer to the
exact result compared to R = 100.

In order to get a grip on these fluctuations, we need to repeat these esti-
mates multiple times, which leads us to the next part of this exercise. The 99 ad-
ditional estimates of the mean for each R run in roughly 20 seconds on replit.com,
and produce the plot on the next page. In this plot, all five numerical results fall

in the narrow range 0.068 < R x (ux — p1)* < 0.086 even as R increases by four
orders of magnitude. (Note the logarithmic scale on the x axis) In particular, the
four results for R > 100 are within ~10% of the constant 02 = X ~ 0.083 we would
expect from page 14 of the lecture notes, with the R mr still only ~18%
off. So we can conclude that we do indeed see constant results consistent with
the expectation shown by the orange line.

MATH327 Project Solution 1 1 Last modified 8 Mar. 2022

0.10
x ——
0.08 &
X X
X
. 0.06 1
= 1§
I
Sl
X
« 0.04
0.02 1
X Data
e sy 02
0.00 T v T T T T
10! 102 103 104 10°
R

import random

import time

import numpy as np

import matplotlib.pyplot as plt
secs = -time.time()
random. seed (327)

Set up known results and arrays to store fluctuations around them
mu = 0.5

R_list = [10, 100, 1000, 10000, 100000]

numR = len(R_list)

fluctSq = [] # Fluctuations (u_R - mu)~2

Estimate mean and standard deviation for each R
print(" R u_R sigma_R")
for i in range(numR):

R = R_list[i]

sum = 0.0;

sumSq = 0.0

for r in range(0, R):
u = random.random()
sum += u;
sumSq += u * u
sum /= R;
sumSq /= R
fluctSq.append((sum - mu) * (sum - mu))
print ("%6d %.4f %.4f" % (R, sum, np.sqrt(sumSq - sum * sum)))
print ("First estimates took %.4g seconds" % (secs + time.time()))

MATH327 Project Solution 1 2 Last modified 8 Mar. 2022

Repeat N-1 more times, adding to fluctSq and ignoring st. dev.

N:
for

100
n in range(N - 1):

for i in range(numR):

R = R_list[i]
sum = 0.0
for r in range(0, R):
u = random.random()
sum += u
sum /= R
fluctSq[i] += (sum - mu) * (sum - mu)

Average over five fluctSq and multiply by R

for

i in range (numR) :

fluctSq[i] *= R_list[i] / N

Plot points, which should be constant
For reference, also plot the expected constant, sigma~2=1/12

plt

.plot(R_list, fluctSq, linestyle=’None’, marker="x", label=’Data’)

np.arange (10, 100000, 10)
1.0/ 12.0 + 0.0 * x # Trick to give p and x the same size

.plot(x, p, label=’$\sigma~2$’)

.xlabel (°R>)

.xscale(’log?)

.ylabel(’$R\\times \overline{(\overline{u} R - \mu)~2}$’)
.ylim([0, 0.11)

.legend(loc=’lower right’)

.savefig(’sol_ex1_const.pdf’, bbox_inches=’tight’)

.clf() # Clear figure

secs += time.time()
print ("Exercise 1 took %.4g seconds\n" 7 secs)

MATH327 Project Solution 1 3 Last modified 8 Mar. 2022

Exercise 2: Inverse transform sampling

Starting from the relation p(u)du = p(z)dz with p(u) = 1, we have
duv d d (. 1
p(z) = == aZu(:z:) = (sm(a:) + 5) = gog(z).
When u = 0 we have F'(u) = arcsin(—1/2) = —x/6, while v = 1 produces F'(u) =
arcsin(1/2) = = /6. Since F(u) is monotonic throughout this domain, we can

s s T
conclude —§ <z < %. g”g)(x) dk = (
'K/(

This is all the information we need to compute the exact mean

fi={E] = /W/6 z p(z) do = /ﬂ/ﬁ % eos(z) dz =0,

—7/6 —7/6
because = cos(x) is an odd function. The standard deviation is therefore just the
square root of the variance

/6
0" =43) = / z? cos(z) dz = [(z* — 2) sin(z) + 22 cos(a:)}i/:/s

—7/6
72 1 T \/g
=2 {(%‘@ <§> T3 (7)] !
which reduces to

B ‘\/7(2+127r\/§—72 _ Vrr4 1273 -T2
a 36 B 6

~ 0.2966.

The Python code on the next page produces Zy = 0.00006 and oz = 0.2965,
again matching the exact values to several significant figures. The code runs in
roughly 5 seconds on replit.com, most of which is spent producing the plot below.
This plot confirms that the (blue) histogram of {z,} matches the distribution p(x)
shown by the orange line.

1.0 1

0.8 1

0.6

0.4 1

0.2 1

0.0 -

n
6

MATH327 Project Solution 1 4 Last modified 8 Mar. 2022

Kl=
\ml::

import random

import time

import numpy as np

import matplotlib.pyplot as plt
secs = -time.time()

random.seed (327)

Initialize array and then fill it
dat = []
R = 1000000
for r in range(0, R):
dat.append (np.arcsin(random.random() - 0.5))
mu = np.mean(dat)
sigma = np.std(dat)
print("u_R = %.4g and sigma_R = %.4g" % (mu, sigma))

Plot the normalized histogram

bins = 51

plt.hist(dat, bins, density=True)

x = np.arange(-np.pi / 6.0, np.pi / 6.0, 0.01)

y = np.cos(x)

plt.xlabel (°x°)

plt.xticks(np.arange(-np.pi / 6.0, 0.53, np.pi / 12.0), \
[$-\\frac{\pi}{6}$’, ’$-\\frac{\pit{12}$’>, °0’, \
"$\\frac{\pir{12}$’, *$\\frac{\pir{6}$°1)

plt.ylabel(’p’)

plt.plot(x, y)

plt.savefig(’sol_ex2_hist.pdf’, bbox_inches=’tight’)

plt.clf() # Clear figure

secs += time.time()
print ("Exercise 2 took %.4g seconds\n" % secs)

MATH327 Project Solution 1) Last modified 8 Mar. 2022

Exercise 3: Random walks

(a) Central limit theorem

In class we saw (pages 23—-25 of the lecture notes) that the central limit
theorem relates

(X(N)) = N =0 to(N) = VNo? = VY (et 1627“/5 -

(b) Fixed walk length

Setting N = 100, we have ¢»(100) = 100 =~ 2.966. The numerical results in
the table below are produced by the following Python code, which runs in roughly
5 seconds on replit.com. Although small R < 100 lead to significant discrepan-
cies, for R = 10,000 the results match a couple significant figures of the large-N
predictions from the central limit theorem.

R 10 100 1000 10,000

» | 0.2068 | -0.4556 | 0.0362 | 0.0122
(L) | 40841 | 2.9126 | 2.8573 | 2.9582

import numpy as np
secs = -time.time()
random.seed (327)

Fix Nstep=100 and consider several R
Nstep = 100
print(" R X_R 12_R")
for R in [10, 100, 1000, 10000]:
X =0.0; X8q = 0.0

for r in range(0, R):
d =0.0
for i in range(0, Nstep):
d += np.arcsin(random.random() - 0.5)
X +=4d
XSq +=d * d
X /=R
XSq /=R
1 = np.sqrt(XSq - X * X)
print ("%5d %2.4f %.4f" % (R, X, 1))

secs += time.time()
print ("Exercise 3b took %.4g seconds\n" 7 secs)

MATH327 Project Solution 1 6 Last modified 8 Mar. 2022

(c) Diffusion constant

Following the hint to ignore potential correlations allows us to use the trick
mentioned in the demo — treating the first N steps of each 500-step walk as an
N-step walk. The plot below is produced by the following Python code, which
runs in roughly 40 seconds on replit.com. In the plot there is no visible tension
between the numerical data (blue points) and the fit (orange line) that produces

C = —0.0054 D = 0.2950.

As usual, these results match a couple significant figures of the analytical Cexact =
0 and

(N _ V72 +12m/3 — 72

=0

JN 6

Everything works as expected when the central limit theorem is applicable.

~ 0.2966.

D exact —

0 100 200 300 400 500

import random

import time

import numpy as np

import matplotlib.pyplot as plt
secs = -time.time()

random.seed (327)

MATH327 Project Solution 1 7 Last modified 8 Mar. 2022

Fix R=10000 and consider every Nstep = 1, ..., 500
Use a single loop to accumulate 1(N) after each step
Nstep = 500
R = 10000
X = np.zeros(Nstep)
XSq = np.zeros_like(X)
1 = np.zeros_like(X)
for r in range(0, R):
d =0.0
for i in range(0, Nstep):
d += np.arcsin(random.random() - 0.5)
X[i] += 4
XSq[i] +=d * d

for i in range(0, Nstep):
X[i]l /=R
XSql[il /=R
1[i] = np.sqrt(XSql[i]l - X[il * X[il)

Now fit 1(N) = C + D * sqrt(N)

This is a linear fit vs. sqrt(N)

steps = np.arange(1l, 501, 1) # Count 1--500 rather than 0--499
sqrtN = np.sqrt(steps)

output = np.polyfit(sqrtN, 1, 1)

C=output [1]

D=output [0]

print("C = %.4g" % C)

print ("D = %.4g" % D)

Plot both data and fit

plt.plot(steps, 1, linestyle=’None’, marker=".", label=’Data’)
x = np.arange(l, 500, 0.1)

p = C + D * np.sqrt(x)

plt.plot(x, p, label=’Fit’)

plt.legend(loc=’lower right’)

plt.xlabel (CN?)

plt.ylabel (’$\overline{\ell _2}$’)
plt.savefig(’sol_ex3_fit.pdf’, bbox_inches=’tight’)

plt.clf() # Clear figure

secs += time.time()
print ("Exercise 3c took %.4g seconds\n" 7 secs)

MATH327 Project Solution 1 8 Last modified 8 Mar. 2022

e Data e Data
- Fit 04 e == Fif
100 200 300 400 500 0 100 200 300 400 500

N N

MATH327: Statistical Physics, Spring 2022
Computer Project — Part 2

Instructions

In this second part of the computer project you will humerically analyze
anomalous diffusion in a one-dimensional random walk, building on the numerical
methods you developed for ordinary diffusion and checked against exact analytic
predictions in the first part of the project.

There are two exercises below, which include some background information
on the Cauchy—Lorentz distribution and anomalous diffusion. While the exercises
mention some syntax specific to Python, you may use a different programming op-
tion if you prefer. This demo illustrates all the Python programming tools needed
for the project. Even running slowly in the cloud via replit.com, the computing for
each exercise should complete in a few minutes or less.

This part of the project is due by 23:59 on Thursday, 24 March, and anony-
mous marking is turned on. Submit it by file upload on Canvas.! Both your an-
swers to the questions below and the code that produces your results must be
submitted. These can be uploaded as separate files or in a tar/zip archive, as you
prefer. With the exception of Mathematica .nb files, it will be quicker for me to
check code submitted in its native format (for example, a . py file for Python code
or a .m file for MATLAB code).

Exercise 4: Cauchy-Lorentz distribution

Background

The first part of this project involved the distribution cos(z) for —% < z < %,
for which we were able to apply the central limit theorem based on its mean 0 and

standard deviation ————V”Q“i“‘/g"” We now consider a more interesting distribution,

e = (5 T8 veR (1)

which is known as the Cauchy (or Cauchy—Lorentz) distribution. Here b is a con-

stant parameter that controls the width of the peak in pc(z) around = = 0. The

figure below illustrates this by plotting the Cauchy—Lorentz distribution for each of

b T 1/2, b =1and b = 2, comparing them to the normal (or gaussian) distribution
—x2/2

e
\ 2T

1By submitting solutions to this assessment you affirm that you have read and understood
the Academic Integrity Policy detailed in Appendix L of the Code of Practice on Assessment and
have successfully passed the Academic Integrity Tutorial and Quiz. The marks achieved on this
assessment remain provisional until they are ratified by the Board of Examiners in June 2022.

MATH327 Project Part 2 1 Last modified 10 Mar. 2022

0.7 T T T T T
Cauchy,b=05 - - -

\ Cauchy, b= 1.0
0.6 ! Cauchy,b=2.0 ------
' Gaussian, 0 = 1 ————

p(x)

The figure shows how the peak of the Cauchy—Lorentz distribution around
z = 0 becomes higher and narrower as b decreases. Even when its peak is
very narrow, as |z| increases p¢(z) again becomes larger than the gaussian dis-
tribution, simply because the latter decreases exponentially quickly while pc(x)
decreases only ~ 1/2%. These “fat tails” at large |z| make the Cauchy—Lorentz
distribution both interesting and challenging to analyze.

Task
Fix b = 2 in the Cauchy—Lorentz distribution, so that Eq. 1 becomes
1 2
pc(z) = <;> e z eR. 2)

What is the integral of this distribution over its full range,

I = 2) do = — 7
[() e

The usual starting point to analyze a probability distribution is finding its mean
and standard deviation, by evaluating

(z) = /zp(@) dx (@) = /x2 pla) da.

For the Cauchy—Lorentz distribution in Eq. 2, consider instead the functions

f@= [srotao= [(1) 3o
s = [o= [(1) 2o

How do f(a) and g(a) behave in the limit a — co?

[6 marks]

MATH327 Project Part 2 2 Last modified 10 Mar. 2022

Turning to a numerical analysis of the Cauchy—Lorentz distribution, the first
step is to determine the transform F(u) that will map the uniformly distributed
pseudo-random numbers u to z = F(u) € R. Recall that the uniform distribution
implemented by the Python function random.random() is

= 1 for0<u<l1
PW=90 otherwise ‘

What is the transform F that provides z = F(u) distributed according to pc(z) in
Eq. 27

Hints: Guided by the relation

pe(z) =])('L[,)%F”l(:z:),

it will suffice to propose an ansatz for F(u) based on integrating pc(z), and then
follow the steps in Exercise 2 to confirm that this ansatz produces the desired
distribution. Integrating will introduce a constant of integration, which can be
chosensothatz - —ccasu—0andz — ocoasu — 1.

[6 marks]

Now initialize the random number generator with seed s = 327. Gener-
ate R = 1,000,000 pseudo-random numbers z, = F'(u,) using the transform you
found. Plot the histogram of these million {z,} and check whether it agrees with
the Cauchy—Lorentz distribution shown above.

Hints: You will need to set an appropriate range for the x-axis of this his-
togram. A range —10 < z < 10 with roughly 200 bins should suffice to show all
the interesting features. In Python this can be done by providing

bins = np.arange(-10.0, 10.0, 20.0/201.0)
to the Matplotlib hist function used previously. In this exercise it is optional to
plot pc(x) itself on top of this histogram—if you choose to do so, you may need to
adjust its normalization (and you should think about why this is needed).
[8 marks]

Exercise 5: Anomalous diffusion

Background

The “fat tails” of the Cauchy—Lorentz distribution mean that pc(z) provides
larger probabilities for rare events (with large |z|) to occur, compared to the gaus-
sian distribution. This feature of the distribution is illustrated in the figures below,
each of which shows a thousand-step random walk in two dimensions—randomly
selecting both the size of each step and the direction 0 < ¢ < 27 in which to step.
The walk shown on the left uses step sizes drawn from a gaussian distribution.
Even in two dimensions, random walks of this sort obey the law of diffusion, with a
diffusion length growing proportionally to the square root of the number of steps,

0N = XY — (X (W) & V.

MATH327 Project Part 2 3 Last modified 10 Mar. 2022

T T
0 o= —
- 0 B
S5 _
I -100}
-10+ =
-15F } -200}
20+ _
i -300}
25k |
_30) 1 ' 1 ! | ‘ 1 s {) i 4()) | \ { .] 1 1
20 -15 -10 -5 0 5 10 -9100) 300 -200 -100 0

The walk shown on the right instead uses step sizes drawn from a Cauchy—
Lorentz distribution. Note that the axes for this figure cover a much larger range!
The fat tails of the Cauchy—Lorentz distribution result in occasional very large
jumps, leading to random walks that do not obey the law of diffusion.

Returning to one-dimensional random walks, some of the results from Exer-
cise 4 motivate defining the generalized diffusion length

ta(N) = (I X (V)27 (3)
which depends on a positive real parameter § > 0. Since 6 is not necessarily
an integer, the absolute value is needed to ensure £, € R, rather than becoming
complex valued. If (X(N)) = 0 and ¢, is well-defined with § = 2, then this gener-
alized diffusion Iengmproduce the standard deviation £, and exhibit the
ordinary law of diffusion, £, oc N'/2,

For the Cauchy—Lorentz distribution, ¢, is ill-defined for any 6 > 1. This
parameter 6 can take only values 0 < 6 < 1. The resulting ¢, exhibits anomalous
diffusion,)

ly(N) ox N,
where the exponent is either o > £ (called super-diffusion) or 0 < o < 3 (called

sub-diffusion). This exercise investigates the exponent « for the distribution po(z)
in Eq. 2, and checks whether or not o depends on 6.

o«=‘,’: JY()r ﬂrtJlMQV)‘ 0(‘.7[)“‘(.0»‘

MATH327 Project Part 2 4 Last modified 10 Mar. 2022

Task a: Fixed humber of steps
Reset by initializing the random number generator with seed 327. With fixed
N = 100, generate R 100-step random walks,

N
X (N) =) r=1,2---,R,
=1

for each of the five R = 10, 100, 1000, 10,000 and 100,000. Use the resulting X, to
numerically estimate

LR 1/6
lo(N) , = = > |X,.(N)|”]

pesl
for three values of § = 0.25, 0.5 and 0.75. (Hint: NumPy provides both an abs
function to take the absolute value, and a power function to compute non-integer
powers.)

[12 marks]

Task b: Anomalous diffusive exponent

Reset by initializing the random number generator with seed 327. Then fix
R = 10,000 and estimate (4(N), for every N = 1,2,---,250, again considering
6 = 0.25, 0.5 and 0.75. Instead of reporting your numerical results, plot all three
ls(N) vs. N in a single figure. (Hint: You can ignore potential correlations be-
tween £y(N) for different values of N.)

[8 marks]
Now fit your numerical results for each 6 = 0.25, 0.5 and 0.75 to the function
ly(N) = DN*.

Report your results for D and «, and comment on their sensitivity to the value of
0. (Hint: Optionally testing different values of R, N or # may help to distinguish
between real sensitivity vs. statistical fluctuations, if you are unsure whether or
not an observed effect is significant.)

[10 marks]

MATH327 Project Part 2 5 Last modified 10 Mar. 2022

MATHS327: Statistical Physics, Spring 2022
Tutorial comments — Mixing entropy

We are given the initial entropy
14

and the partition function for the combined system

g 1 1 2_11 2N
CTNINU\N)

We could simply repeat the process we went through in class, of using this par-
tition function to determine the Helmholtz free energy F' = —T'log Z, the internal
energy (E) = 2 (BF) and then the entropy S = 3 ((E) — F), but there is a trick
we can use to reuse that work we’ve already done. Specifically, if we rewrite the

combined partition function as
PN AN ENEAN
CT N\, N1\ D3,

we can recognize that it describes two completely independent gases of N indis-
tinguishable particles each in a container of volume 2N. The entropy is therefore

]

2V
Sg = 251(N, 2V) = 5N + 2N log %
N/\th

and the mixing entropy is just

Smix = Sg — So = 2N log 2.

This is exactly the same mixing entropy we computed in class for the case
in which all 2N particles were completely distinguishable! Of course, both S¢
and S, are smaller than what we would have for fully distinguishable particles,
even though the difference between them comes out the same. In a sense, this
single distinguishing feature (colour) between the two sets of indistinguishable
particles suffices to introduce the same relative amount of additional information
upon mixing them.

Before moving on to the final system, let me highlight a more generally trick
that we can use to consider differences of entropies. Recalling

0 0
S = _B_TF_ 8—T(TlogZ),

we can write the difference as

or or

Z, 0
= log—c +T—log é

Zy or 2y

7
Smix = Sc — S = i (T'log Z¢ — T'log Zy) = i <Tlog —C>

MATH327 Tutorial (Mixing) 1 Last modified 4 Mar. 2022

N

38

MATH327: Statistical Physics, Spring 2022
Tutorial problem — Mixing entropy

Let’s consider a slight variation to the particle exchange thought experiment
we worked through in class. Initially, we still have two canonical ideal gases,
initially separated by a wall, each with N particles in volume V at temperature 7.
All 2N particles have identical physical properties, except that those initially in the
left compartment (the “reds”) are distinguishable from those in right compartment
(the “blues”) by their colour. Call this initial system y. We have already computed

its entropy So = 25;(N, V) = 5N + 2N log (ﬁ) where A\, = /2172 (mT).

We then carry out the procedure of removing the wall, allowing the combined
system to reach thermodynamic equilibrium, and then re-inserting the wall to re-
separate the two systems. Call the combined system Qg with entropy Sc. As
discussed in class, it's safe to assume that N particles end up in each of the two
re-separated systems. However, red and blue particles can now appear in either
of the two re-separated systems. Call this final system Q with entropy Sr. The
initial and final systems are illustrated by the figure below.

Initial Final
e © ® g e @ | ® @
& I .
e @ e . o Py
@
vy @ ®vrv vy @ VT,

The first task is to compute the mixing entropy Smix = S¢ — So, where in the
combined system Q- we now have two sets of N indistinguishable particles, but
can distinguish between the two sets. The starting point is the partition function

11 11 /2v\ &
Zo=—tppn = L L2V
NI NI NINUA X3,

where Z; = 2V/X3, is the single-particle partition function.

The second task is to compute the final entropy Sz, to see whether S > S¢
as demanded by the second law of thermodynamics. We can break this up into
two steps. The first of these is to compute the partition function Zr of the two
re-separated systems (each with N particles), summing over all ways of dividing

the red and blue particles between them. The following special case of the Zhu—
Vandermonde identity may be useful for this step:

(1) -(V)

Finally, use your result for Zr to determine the final entropy Sp.

MATH327 Tutorial (Mixing) 1 Last modified 4 Mar. 2022

This is useful because there are often many cancellations in the ratio of the par-
tition functions. In particular, in our case the ratio is independent of 7' (which
appears in)\y,), so the second term vanishes and

1 2V —
&—lo AN
Zg =08 1 v N 2
1 |5

reproducing our result above without having to rely on expressions from class.

D = log = 2N log 2.

Now the fun begins. Based on our previous work, we can assume that there
will be N particles in each of the re-separated systems. If v of the N particles in
the left system are red, then the remaining N — v must be blue, leaving N — v red
particles and v blue particles in the right system. The corresponding contribution
to the partition function is therefore

7 <A£> . Wi—w (HW O <w$ D <A1>N

We can relate the factorials to a squared binomial coefficient,

2-mr(s) ()

This will allow us to apply the Zhu—Vandermonde identity when we sum over all
possible values of 0 < v < N that describe how the red and blue particles can be
divided between the two systems:

wegeain) EC)))

V= v=0

Ly =

We can now use our trick above to find Sp = (S — S¢) + S¢. The partition
function ratio is still 7-independent, so

o 2 2N
w |EET]
o, :bg(

N

) — 2N log 2.

Repeating some work from a previous tutorial, we can use Stirling’s formula to
approximate

2N
log <N> = log[(2N)!] —2log(N!) ~ 2N log(2N) —2N —2N log N +2N = 2N log 2,

so that
Sr = (Sp — 8¢) + Sc = (2N log 2 — 2N log 2) + S¢ = S.

MATH327 Tutorial (Mixing) 2 Last modified 4 Mar. 2022

So at this level of approximation, everything remains consistent with the
second law of thermodynamics, as it should:

SF%SC>50.

However, if you extend this exercise by retaining the log (\/QWN) terms in Stir-

ling’s formula, you will find a negative Sr— S¢, which should leave you concerned.
(Try it and see!) The resolution to this extra conundrum is to recall that the full
computation of the entropy still requires summing over re-separated systems with
different numbers of particles, N + k. Those additional contributions will enter
at O (log N), which is usually negligible, but matters when all the larger factors
cancel out in the difference Sy — Sc.

MATH327 Tutorial (Mixing) 3 Last modified 4 Mar. 2022

AP 3

Ignition

4

Exhaust

<V

MATH327: Statistical Physics, Spring 2022
Tutorial problem — Otto cycle

The figure below shows the ‘Otto cycle’ that describes an idealized petrol
engine. The compression and expansion (‘power’) stages are adiabatic, while the
volume is fixed at V; for the ‘ignition’ stage that burns the fuel to produce heat,
and at V7 > V, for the ‘exhaust’ stage that replaces the burnt fuel with cooler,
fresh gas. The compression ratio is defined as r = V1 /V, > 1.

AP 3
Ignition A
Power
2
4
Exhaust
Compression 1
i i -
Vo Vi |4

—
—

The efficiency 7 of the Otto cycle depends only on the compression ratio
r. What is this efficiency? How does it compare to the efficiency of the Carnot
cycle? How should V; and V; be chosen to maximize the efficiency?

Hint: Given the labels in the diagram above, T would be the low temper-
ature of the cold reservoir while 73 would be the high temperature of the hot
reservoir. The corresponding Carnot cycle efficiency is therefore ncamot = 1 — T ,
and the comparison is easiest if the Otto cycle efficiency is expressed in terms of
temperatures rather than volumes.

MATH327 Tutorial (Cycle) 1 Last modified 11 Mar. 2022

