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Unit 6: Grand-canonical ensemble

6.1 The particle reservoir and chemical potential

Now that we have had some fun with applications of the canonical ensemble,
we will complete our more formal development of statistical ensembles by consid-
ering the grand-canonical ensemble. Recall that statistical ensembles are proba-
bility spaces describing the micro-states that a system can adopt as it evolves in
time, subject to certain constraints. Back in Unit 2 we first considered the micro-
canonical ensemble, for which these constraints are conservation of the internal
energy E and particle number N. We then introduced the canonical ensemble in
Unit 3 by allowing the system’s internal energy to fluctuate, while keeping its tem-
perature T fixed through thermal contact with a large external thermal reservoir.

Building on this pattern, the next step is to allow both the system’s energy
and its particle number to fluctuate. Generalizing our earlier work on the canonical
ensemble, these fluctuations occur through contact between the system and a
large external reservoir. This is now a particle reservoir, with which the system

7 M“;’

can exchange both energy and particles. 4 4 /t/] G

In the same way that energy exchange leads to a fixed temperature, we ex-
pect there to be some quantity that will be fixed due to particle exchange. Recall
that we initially defined the temperature in the context of the micro-canonical en-
semble in thermodynamic equilibrium (Eq. 22), as the dependence of the entropy
on the internal energy for a fixed number of degrees of freedom:
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The quantity we are now interested in comes from the complementary analysis
interchanging the roles of £ and N.

In thermodynamic equilibrium, the chemical potential in the micro-

i (67)

This definition is not terribly intuitive, and unlike the temperature the chem-
ical potential is not a familiar concept from everyday experiences. To gain some
insight into the chemical potential, we can first note that i has dimensions of en-
ergy. It is also an intensive quantity, like the temperature — it is independent of
the extent of the system, and remains the same if we consider only a part of a
larger system. Finally, we can expect the chemical potential to be negative, at
least for ‘natural’ systems with positive temperatures. This is because the partial
derivative 93 is generally positive, since systems with more degrees of freedom
typically have more entropy, reflecting the greater amount of information they can
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contain even with the energy fixed. This can be checked explicitly from Eq. 24 for
the micro-canonical spin system we considered in Section 2.3.

The presence of the negative sign in Eq. 67 is really a choice we have made.
The motivation for this choice comes from considering a net flow of particles be-
tween two systems Q4 and Qp with the same temperature T' > 0 but different

9BV (%8s = <
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Due to the negative sign in Eq. 67, the system with the larger partial derivative
has the smaller (more-negative) chemical potential. According to the second law

of thermodynamics, if there is any net flow of particles, it must be from Qpto Q4.
We can see this by considering o

0S oS
ASA— <8—N>AAN > <3]\7> AN = ASB,

meaning that more entropy is gained by adding AN particles to system Q4 than is
lost by removing them from system Qp. This ensures that the process increases
the total entropy of the universe, AS = |AS,| — |ASg| > 0.

In other words, the choice of sign in Eq. 67 ensures that particles flow from
systems with larger chemical potentials fo systems with smaller chemical poten-
tial. This provides a useful analogy to heat flowing from hotter systems with larger
temperatures to colder systems with smaller temperatures, allowing us to reuse
our intuition based on the temperature. Had we instead chosen to make p pos-
itive for natural systems, we would have ended up with counter-intuitive flow of
particles from small to large chemical potential.

We are now able to define the grand-canonical ensemble to be a statistical
ensemble characterized by its fixed temperature T and fixed chemical potential
i, With the temperature and chemical potential held fixed through contact with a
particle reservoir.

6.2 The grand-canonical partition function

Let’s now place the grand-canonical ensemble on a more concrete mathe-
matical foundation, by following the same procedure we used for the canonical
ensemble. That is, we introduce a well-motivated ansatz for the form of the parti-
cle reservoir Qes, then show that the form of the reservoir is ultimately irrelevant.
This will allow us to work directly with the system of interest, (2, independent of the
details of the particle reservoir that fixes its temperature and chemical potential.

As before, our ansatz is to take (it = (es ® Q2 to consist of many (R > 1)
identical replicas of the system ) that we're interested in. All of these replicas are
in thermodynamic equilibrium, and can exchange both energy and particles with
each other. The overall system ( is governed by the micro-canonical ensemble,
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with conserved total energy Fi,; and conserved total particle number Ni. An
extremely small example of this setup is illustrated by the figure below, where the
system of interest is an ideal gas in a volume V. In this unit we will consider only
indistinguishable particles, so that we don’t need to keep track of which particular
particles are exchanged between the replicas, only the overall number.
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Although we draw a box around each replica (and colour one red to pick out
the system 2 we will consider), these boxes are now merely mental constructions,
and don't interfere with particles moving from one replica to another. For example,
we could take our system to be a cubic centimetre of air in a room, with the rest
of the room forming its reservoir. As in Section 3.1.1, we assume that this system

Q = {wy,ws, - ,wp t has a finite number of M possible micro-states, where now
different micro-states may involve different numbers of particles.

. e
o

This again allows us to analyze the overall system of R replicas in terms of
occupation numbers n; and the corresponding occupation probabilities p;. Recall
that n; is the number of replicas that adopt the micro-state w; € Q in any given
micro-state of the overall system O, so that ), n; = R. Similarly, p; = n;/R is the
probability that a randomly chosen replica will be in micro-state w;, with Yupi=1
as usual. In terms of n; and p;, the total number of micro-states of O, and the
corresponding entropy, are the same as we derived in Section 3.1.2,

M

R!
Mo =gy S(Fou Not) = —ﬁ;pilogz@,
assuming R>> land n; > 1foralli =1,---, M. In this expression, the depen-

dence on both Ei and Ny now enters through the occupation probabilities p;,
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since the micro-states w; may involve different numbers of particles in addition to
different energies.

Continuing as before, we want to determine the (intensive) temperature and
chemical potential of Qi through Eqgs. 22 and 67, which requires expressing
S (Eigt, Nigt) directly in terms of Eix and N. We again do this by maximizing
the entropy subject to the constraints on the conserved quantities of the micro-
canonical overall system . Labelling the energy and particle number of each
replica F, and N,., respectively, as in Eq. 27 we can again rearrange sums over
replicas into sums over the micro-states of :

M R M M
1= pi Bo=) E.=) mBE=R) pF
i=1 r=1 i=1 =1

ey R M M
Na=Y Ne=YmNi=RY pN, (69
r=1 i=1 i=1

where E; and N; are the energies and particle numbers of the M micro-states
w; € . The first two constraints, on the occupation probabilities and the total
energy, are the same as we had in Section 3.1.2. The third constraint, on the total
particle number, is the new ingredient for us to incorporate.

Writing everything in terms of occupation probabilities, we see that we need

to maximize the modified entropy

M M
Be= _Rzpilogpi o Q_»(Zpi, = 1>
=1 i=1

M M
— ‘ RZPz‘Ei - Etot) + L(RZPiNi - Mot) ,
i=1 i=1

adding the Lagrange multiplier y to the « and (negative) 8 we previously had in
Section 3.1.2. What is the occupation probability p; that maximizes S?
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You should find a probability of the form

O o (69

g

defining Z, = exp [1 — 2] to work in terms of the parameters {Z,, 8, v}. As usual,
we fix these three parameters by demanding that the three constraints above are
satisfied. Using the first constraint, what is Z, in terms of g and v?

M Ty _ ~}55(*7//[
13- g T =2
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Analogously to Eqg. 31 in Section 3.1.2, the other two constraints
Eiot = RZPz‘Ei Niot = RZPiNz

now produce complicated relations between {3, v} and { Eit, Niot }:

Zl\/j E 6~ﬂEl+’le R 0 M _BE: 7. 0
E = BEAYN: — _R_log Z 70
= Zﬁl —PE;+aN; = Z,0p ;e 9B —2 5(87) - (70)

M
N; e 8E+N:i R 9 _BE 4N, 0
Nt = %M%“W Zﬁzwmmﬂ%mmmy (71)
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Here we take the opportunity to relate Ei,x and Ny to partial derivatives of log Z,,
which will prove useful when we consider the partial derivatives of the entropy that
define the temperature and chemical potential. Of course, in order to consider
those partial derivatives, we need to express the entropy itself in terms of Eiq,
Nyt and the parameters

{Z,(8,7), B(Eiot, Niot), ¥(Erot, Niot) }

that we have now related to Ey and Nyt. What do you obtain upon inserting
Eq. 69 for p; into the formula for the entropy?

M
S(Buot, Nio) = =R ) _pilogpi = WM
i=1

= [ ic P (, [‘72} —}Eg*i/VZ)
- R]972} tBEpt Y Wr
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Z (1)

Taking the derivative of the resulting entropy with respect to Fi, keeping
Nyt fixed, gives the temperature from Eq. 22. Thanks to Egs. 70 and 71, the
result should simplify in a pleasant way:

1_ 08
T 8Bt|y,
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DEI\TE)’L )+ EGF “F //aE P

In the same way, the derivative with respect to Ny, keeping Ei; fixed, gives the
chemical potential with similar simplifications:

oS
= —T =
M 8Nt0t Eot

In the end you should find

_ L iy =
B=7 7=Bp=r7 (72)

and the desired result that all information about the particle reservoir has dropped
out, with no remaining reference to R, Eiy Or Niot. This large external reservoir is
still present to fix the temperature T' and chemical potential i that characterize the
grand-canonical system 2, but beyond that nothing about it is relevant (or even
knowable) in the grand-canonical approach.

Every aspect of (2 can now be specified in terms of its fixed temperature T'
and chemical potential u, starting with the parameters g = 1/T and v = p/T. In
particular, the probability—in thermodynamic equilibrium—that Q2 adopts micro-
state w; with (non-conserved) internal energy E; and particle number N; is

p; = ie_ﬂ(Ei_ﬂNi) — Zie_(Ei_#Ni)/T' (73)

Zg 9

Since the particle number N; is dimensionless, the combination E; — uN; that
appears here reflects our observatlon below Eq. 67 that the chemical potential
has dimensions of energy.
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