7’ MW(L

—_—m

RtCQP" l/',uywd[yww;c CJC_IZ_S (}0/(301( ﬁQSQS [(;am)m?cq( msmLM)

Fv O( :‘a&xmmg

Cafwo’/r CYC(‘( ]’wa" Lmﬁ { Co((} eSerioi -
igfLQ/ws i q{/(vl;qﬁ(

. Wy,
E%m wly m = é\,\ha

F.rJ {aw ; 0 < /M,é l //cq,,f# w‘m\\



ingredients to address the question of how much net wark (if any) this cycle can
do on its surroundings, compared to the amount of heat it would transfer from the
hot reservoir to the cold reservoir. It will simplify this calculation to use the fol-
lowing positive_quantities, with subscripts (rather than negative signs) indicating
whether energy is flowing into or out of the gas:

« When work is done on the system by its surroundings, Wi, = W > 0 from
Eq. 59 -

« When work is done by the system on its surroundings, Wy = =W >0

—

* When heat enters the system, Qi, = @ > 0 from Eq. 61

+ When heat leaves the system, Qo = —Q >0
We can now define a convenient combination of heat and work to consider.

The efficiency  of a thermodynamic engine is defined to be
5 Waone % Wout — Win
Qin Qin ,
where Wyone = Wout — Win is the net amount of work done by each repetition of

the cycle, while Qi, is the total amount of heat that enters the system in each
repetition.

(64)

By specifying a thermodynamic engine, we assume Wy, > Wi, so that
the overall cycle does more work on its surroundings than it requires as input to
operate. This corresponds to > 0, and we can also put an upper bound on the
efficiency, due to the first law of thermodynamics, Eq. 63. Because the system
returns to its initial macro-state after each repetition of the cycle, we have

A<E> =0= Qin - Qout + Win — Wout
= M/out — VVIn = Qin - Qout S @_na (65)

or n < 1, with equality occurring when no ‘waste’ heat is expelled by the system
throughout the entire cycle, Qo = 0. All together, 0 < n < 1 lets us interpret the
efficiency as the fraction of the input heat that the engiﬂe is able to use to do work
on its surroundings. Cle1L Wi

Let’s illustrate these ideas by computing the efficiency of the Carnot cycle.
We can divide this calculation into smaller pieces by considering the contributions
to Waone and Qi from each of the cycle’s four stages.
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First, in the isothermal expansion from point A to point B, the ideal gas law

provides P(V) to insert into Eq. 59:

WAB:—/VA (V) dv = ~NTS {

= )

- AVIO?( )@

You should find W45 < 0, meaning the system does work on its surroundings
during this stage. At the same time, the constant temperature means A(F) «
AT = 0 from Eq. 52, so that Q45 = —W4p > 0, in agreement with our earlier

observation of heat flowing into the system during this stage.

Next, in the adiabatic expansion from point B to point C, we know @pc =0,

which lets us use the first law of thermodynamics to compute the work:

Woe=ALE> = 2 JAT = Zy(T, ’TH)

it

T, (2 -

\

XA U\;B T“ (]«v

You should find that the system continues doing work on its surroundings during

this stage, Wpc < 0.

Finally, the computations for the two compression stages are directly analo-
gous to those above. For the isothermal compression from point C' to point D, we

have

won == [P av = T,y (/H - %M (6
- ()0

Now you should find Wsp > 0, meaning this compressions requires work to be
done on the system by its surroundings, while Qcp = —Wep < 0 means heat

flows out of the system. For the adiabatic compression from point D to point A,
we know @ p4 = 0 while the change in temperature is exactly opposite the AT of
the B — C adiabatic expansion. Therefore Wp4 = —Wpe > 0 and more work

has to be done on the system to complete the cycle.
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Putting everything together,
Wou = —Wap — Wpe 29
Win = Wep + IiV_Df} =Wep — Wae
Qin = QAB = —Wyp

yo War=Woo—WoptWoo | Wen | To o
’ —Was Wap Ty
We can check that our result n = 1 — 7= for the efficiency of the Carnot cycle

makes sense. Since T}, < Ty, we have g > 0. If the temperatures of the hot
and cold reservoirs approach each other, Z- 7~ = 1, then the cycle would collapse

to a single isotherm with W, = W, and vamshmg efficiency n. — 0. In the

opposite limit of a large difference in the temperatures T, < Ty, the efficiency
would improve, with  — 1 as 7= — 0.

It turns out to be generic for heat engines to operate more efficiently as
the temperature difference between their hot and cold reservoirs increases, and

they always cease performing net work as % — 1. The Carnot cycle is special
T

because its efficiency n = 1 — L is the theoretical maximum allowed by the
second law of thermodynamics. We can show this by using Eq. 65 to rewrite

o
n = Qin - Qout -1 %2 —1_ TLASout
Qin Q THASin ’

where the last equality uses Eq. 62 and the fact that the input heat Q;, = Ty ASi,
enters the engine from the hot reservoir with temperature Ty, while the waste
heat Qo = T1.ASou is expelled to the cold reservoir with temperature T;. After
each repetition of the cycle, the gas returns to its original macro-state, with its
original entropy, after absorbing entropy ASi, from its surroundings and expelling
ASqyt back out again. The second law therefore demands % > ASi,, so that

—

TL ASout TL '
Ty MG £ I_E quf/L LNA)\ eV

in principle, for any thermodynamic engine.

Finally, if we were to operate the Carnot cycle in reverse, with isothermal
expansion at temperature 77, and compression at Ty, we would do work on the
system in order to bring heat in from the cold reservoir (i.e., Qi ~ T1) and expel
it to the hot reservoir (Qout ~ Tg). In other words, we would_ﬁé_v-é‘a' refrlgerator
rather than an engine. The “efficiency’ of a refrigerator is called its coefficient of
performance, and defined as

cope—O0) Q1 1 o n o~
% - I/ngtr Qout — Qin Qout/Qin -1 TH/TL — 1 Tg— 11
which can be greater than one. The reversed Carnot cycle provides the best pos-

sible COP for a refrigerator. Despite its efficiency, the Carnot cycle does not pro-
vide a practical engine or refrigerator, simply because its slow isothermal stages
take too long! Real engines and refrigerators sacrifice efficiency for functionality.
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Unit 6: Grand-canonical ensemble

6.1 The particle reservoir and chemical potential

Now that we have had some fun with applications of the canonical ensemble,
we will complete our more formal development of statistical ensembles by consid-
ering the grand-canonical ensemble. Recall that statistical ensembles are proba-
bility spaces describing the micro-states that a system can adopt as it evolves in
time, subject to certain constraints. Back in Unit 2 we first considered the micro-
canonical ensemble, for which these constraints are conservation of the internal
energy E and particle number N. We then introduced the canonical ensemble in
Unit 3 by allowing the system’s internal energy to fluctuate, while keeping its tem-
perature T fixed through thermal contact with a large external thermal reservoir.

Building on this pattern, the next step is to allow both the system’s energy
and its particle number to fluctuate. Generalizing our earlier work on the canonical
ensemble, these fluctuations occur through contact between the system and a
large external reservoir. This is now a particle reservoir, with which the system

can exchange both energy and patrticles. =

In the same way that energy exchange leads to a fixed temperature, we ex-
pect there to be some quantity that will be fixed due to particle exchange. Recall
that we initially defined the temperature in the context of the micro-canonical en-
semble in thermodynamic equilibrium (Eq. 22), as the dependence of the entropy
on the internal energy for a fixed number of degrees of freedom:

1 0S8

T~ 35|,
The quantity we are now interested in comes from the complementary analysis
interchanging the roles of £ and N.

In thermodynamic equilibrium, the chemical potential in the micro-
canonical ensemble is defined by

oS

s B_NE' (67)

This definition is not terribly intuitive, and unlike the temperature the chem-
ical potential is not a familiar concept from everyday experiences. To gain some
insight into the chemical potential, we can first note that i has dimensions of en-
ergy. Itis also an intensive quantity, like the temperature — it is independent of
the extent of the system, and remains the same if we consider only a part of a
larger system. Finally, we can expect the chemical potential to be negative, at
least for ‘natural’ systems with positive temperatures. This is because the partial
derivative % is generally positive, since systems with more degrees of freedom
typically have more entropy, reflecting the greater amount of information they can
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