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In this case both the pressure and temperature change, while the entropy (and
therefore V1°%/?) is constant. What are AP and the change in the temperature
AT = Ty — Ty in terms of Py, Vo, V; and the fixed number of particles N?
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5.4 The Carnot cycle

A famous thermodynamic cycle was proposed by Sadi Carnot in 1824, and
laid the groundwork for subsequent development of engines and refrigerators
later in the nineteenth century. The key idea is to propose that the ideal gas in
its container can exchange energy with either of two different thermal reservoirs:
a ‘hot’ reservoir with temperature 75 and a ‘cold’ reservoir with temperature Ty,
The Carnot cycle consists of four stages, which are first shown below in the form
of a PV diagram, then illustrated in a sketch (adapted from Schroeder’s Intro-
duction to Thermal Physics) that provides a more concrete picture of the physical

processes, and finally summarized in words.
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The illustration above supposes that the hot reservoir is located to the right
of the system, while the cold reservoir is located to its left. In words, the four
stages are the following:

* From point A to point B the system undergoes slow isothermal expansion,
bringing in heat @i, from the hot reservoir in order to keep its temperature
fixed at T.

+ From point B to point C' the system undergoes fast adiabatic expansion,
with no heat exchange, until its temperature falls from T down to 77.

« From point C' to point D the system undergoes slow isothermal compres-
sion, expelling heat Q. into the cold reservoir in order to keep its tempera-
ture fixed at 77..

* From point D to point A the system undergoes fast adiabatic compression,
with no heat exchange, until its temperature rises from T}, back up to T}.

We need to make sure that these four processes really do produce a self-
consistent closed cycle that our system could repeatedly follow. In a real experi-
ment, we would have full control over the four variables { P4, V4, V3, V} coloured
red in the PV diagram above. Specifically, we can prepare our N-particle sys-
tem in initial macro-state A with our choice of pressure P, and volume V4, which
through the ideal gas law specify the temperature Ty = 5‘%& of the hot reservoir.
We can then freely choose the volume V3 > V4 at which to switch from isothermal
expansion to adiabatic expansion, and similarly choose the volume V,; > V3 at
which we stop expanding and start compressing. (The choice of V is equivalent
to choosing the temperature T}, of the cold reservoir.)

At this point, however, we are no longer free to choose an arbitrary volume
Vp < V¢ at which to switch from isothermal compression to adiabatic compres-
sion — this switch needs to happen at precisely the correct point in order for the
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final stage to bring the system back to its initial macro-state A. While we can
expect that this will be possible for the Carnot cycle, a priori there is no guarantee
that a given sequence of processes will close to form a self-consistent thermody-
namic cycle.

In order to confirm the self-consistency of the Carnot cycle, we need to
express the unknown quantities {Pg, Pc, T, Pp,Vp} in terms of the four (red)
inputs described above, along with the fixed number of particles N. At point B,
we know the system’s temperature remains Ty = PoV4/N. What is is the pressure
Pg in terms of {Pa, Va, Vg, Vo, N}? i

ﬂ7%’% 7? (VB)

At point C, we know the system’s entropy is the same as at point B. What
are the temperature TL and pressure Py in terms of {Pa, Vi, Vs, Vo, N}7?
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At point D, we know the system’s temperature remains 7. We have to
demand that its entropy is the same as at point 4, in order for the final adiabatic
stage to connect points D and A. What are the resulting pressure Pp and volume
Vp interms of {Py, Va4, Vg, Vo, N}? T
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You should find that all of { Pg, P, Ty, Pp, Vp} can be consistently specified
by the (red) inputs under our control, which establishes that the Carnot cycle is a
valid thermodynamic cycle. This is not a surprising result, but does give us the

MATH327 Unit 5 77 Last modified 23 Feb. 2022



ingredients to address the question of how much net work (if any) this cycle can
do on its surroundings, compared to the amount of heat it would transfer from the
hot reservoir to the cold reservoir. It will simplify this calculation to use the fol-
lowing positive quantities, with subscripts (rather than negative signs) indicating
whether energy is flowing into or out of the gas:

« When work is done on the system by its surroundings, Wi, = W > 0 from
Eq. 59 -

« When work is done by the system on its surroundings, Wy, = =W >0

———

« When heat enters the system, @i, = Q > 0 from Eq. 61

« When heat leaves the system, Qo = —Q >0
We can now define a convenient combination of heat and work to consider.

The efficiency 7 of a thermodynamic engine is defined to be
n = Waone o Wout — Win
Qin s o
where Wyone = Wout — Win is the net amount of work done by each repetition of

the cycle, while Qi, is the total amount of heat that enters the system in each
repetition.

(64)

By specifying a thermodynamic engine, we assume Wy, > Wi, so that
the overall cycle does more work on its surroundings than it requires as input to
operate. This corresponds to 7 > 0, and we can also put an upper bound on the
efficiency, due to the first law of thermodynamics, Eq. 63. Because the system
returns to its initial macro-state after each repetition of the cycle, we have

A<E> =0= Qin - Qout + Win — Wout
= Wout — Win = Qin — Qout < Qi,’l’ (65)

or n < 1, with equality occurring when no ‘waste’ heat is expelled by the system
throughout the entire cycle, Qo = 0. All together, 0 < 7 < 1 lets us interpret the
efficiency as the fraction of the input heat that the engine is able to use to do work

on its surroundings. o

Let’s illustrate these ideas by computing the efficiency of the Carnot cycle.
We can divide this calculation into smaller pieces by considering the contributions
to Wyone and Qin from each of the cycle’s four stages.
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