Here we have an ideal gas in a container of volume V, with one wall of
that container being a piston that we can move by applying a force F. Let’s
demand that this process is isentropic—it does not change the entropy of the
gas. The displacement Az shown in the figure reduces the volume of the gas, by
AV = —AAz < 0 where A is the surface area of the piston. Since the force F'
is parallel to the piston’s displacement Az, it does positive work W = FAz > 0.
Therefore the internal energy of the gas increases by A(E) = W, at the same
time as its volume decreases isentrop’ﬁc/alwﬂ(from Eqg. 55 we have

p—— 2 p _ W) rxe_r (57)
T v g AV(_AA A

This identifies the pressure of an idé’m ilzn a container as the force per unit
area that the gas exerts on the container wall, reassuringly consistent with our
everyday experiences.

Rearranging the expressions above, we can obtain an expression for the
work put into the gas by its surroundings — that is, by the external force applied
to move the piston and change the volume. Still assuming an isentropic process,
this input work must match the increase in the gas’s average internal energy,

W = A(E) =CPAV for constant entropy. JCE) =W + e

If the entropy is allowed to change, this relation between work and pressure will
still hold. However, as we will see in the next section, the non-constant entropy
will introduce an additional change in the average internal energy unrelated to a
force, leading to W # A(E) and leaving only the relation

W =—-PAV~= ~de more generally. (58)

Later we will be interested in using the gas as a thermodynamic engine that does
work on its surroundings. This removes energy from the gas, corresponding to a
negative W < 0, and we will need to be careful to keep track of the negative signs
and their physical meaning.

Of course, as we change the volume of the gas, the pressure itself may
change as described by the gas’s equation of state—such as the ideal gas law,
Eq. 56. Recall that we are fixing the particle number NN in order to work with the
canonical ensemble. With the equation of state providing an expression P(V') for
the pressure as a function of the volume, Eq. 58 generalizes to

v
W=— / P(V) dv..
o !

0

5.2 Heat and entropy

Now let's switch things up by changing the temperature T of an ideal gas
while keeping its volume V" and particle number N _constant. Since the volume is
constant, Eq. 59 indicates that no work is done, W = 0. Even so, from Eq. 52 we
have (E) = %NT and can see that the average internal energy still changes,

—

3
d(EB) = SNdT. (60)
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In order to remain consistent with our discussion in the previous section, we
should expect a change in the entropy to accompany this change in the internal
energy that occurs with no work done. Indeed, for both cases of distinguishable
and indistinguishable particles, the temperature dependence of the entropy in
Eqg. 53 is the same:

S = Nlog (\y) + T-independent = N log (T%?) + T-independent.

What is the change in entropy that results from changing the temperature by d7'?

dSZZ;J('%N/o«yT)’ %A/i/;_- - %{f_\)

Looking back to Eq. 60, you should find d(E) = T'dS, which leads us to another
important definition.

The heat added to or removed from a statistical system is defined to be
Q=T4ds, (61)

and corresponds to the change in the average internal energy of the system when
the volume and particle number are kept constant.

As for the work W considered in the previous section, we can generalize
this infinitesimal definition to

S
o= [ 1(s)as (62)
So

with @) = A(E) when the yolume is constant. Here we assume it will be possible
to invert the usual canonical relation that expresses the entropy as a function of
the temperature, S(T). (Some textbooks refer to infinitesimal heat and work as

" and “dIV”, but this is easy to misread as a ‘change’ in heat or work, while the
heat and work are themselves changes in the internal energy.)

Also like the work, the heat @ is positive when energy is added to the sys-
tem to increase (F), and negative when energy is removed. Recalling that the
canonical ensemble involves placing the system in thermal contact with a large
external thermal reservoir, we can recognize that this energy is not being created
or destroyed, but is instead flowing back and forth between the system and the
reservoir. When considering heat, we will also demand that no entropy is created

or destroyed — a positive d.S will indicate entropy flowing into the system from the
reservoir, while a negative change reflects entropy moving from the system to the
reservoir. Because the total entropy of the system plus its reservoir is constant,

MATH327 Unit 5 71 Last modified 23 Feb. 2022



these processes are reversible, making it possible for the system to return to its
starting macro-state.’

We have already considered isentropic processes with dS = 0, for example
in the definition of pressure in Eq. 55. With our assumption of reversibility, the
definition of heat provides a new perspective on such processes:

We define an adiabatic process to be a change in the control parameters
of a system that occurs without transferring heat, @ = 0. When this process is
reversible, Eq. 61 guarantees that it also does not change the system’s entropy.

Since the canonical ensemble requires thermal contact between the system
and its surroundings, the practical way to avoid heat exchange is to change the
control parameters quickly. That is, adiabatic processes are_fast enough that
the system does not have time to exchange heat (and hence entropy) with its
surroundings. The opposite extreme would be a process slow enough that any
and all possible heat exchange can be completed while it is underway. Based
on our work in Section 2.4, we can see that such heat exchange will keep the
system’s temperature equal to the temperature of its surroundings. Taking that
surrounding temperature to be constant, we reach the conclusion that constant-

temperature (or isothermal) processes are slow. Real processes generally

exist in between these two extremes, usually closer to the adiabatic limit.

5.3 Thermodynamic cycles

Now we can generalize our considerations in the previous two sections to
address simultaneous changes in the temperature 7' and the volume V of an
ideal gas, still with fixed particle number N.. We are used to working with the
internal energy (E) (T, V) and entropy S(7', V) as functions of the temperature and
volume. Inverting the latter relation allows us to instead express the temperature
T'(S,V) as a function of the entropy and volume, which carries through to the

internal energy (E) = 3NT,

(B)(T,V) - (E)S,V).

Expanding the internal energy to first order in a multi-variable Taylor expansion,

we have (%( T
N _ oy O4E) AL
B)SV) = (B)(S0, o) + (8 = 80) 5| +(V=Wo) p|

—

!

This approximation becomes exact in the limit of infinitesimal changes

(B)S,V) —{B)(So, Vo) > &E)  S—Sy—dS  V-Vy V.

"In the case of irreversible processes, there must be sources of entropy creation. Adding these
to the heat, Eq. 61 generalizes to the “Clausius inequality” @ < T"dS.
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At the same time, we can recognize the temperature from Eq. 22 and the (nega-
tive) pressure from Eq. 55, to obtain

dE)=TdS—PdV = Q+W. (63)

This is a generalized form of the first law of thermodynamics: Any change in
the internal energy of a statistical system must be matched by (either or both)
heat exchange with its surroundings or work done by or on those surroundings.

We now have all the concepts and key equations needed to consider a
variety of ways to manipulate an ideal gas in a container:

« Eq. 52 for the internal energy: (B) = 3NT
+ Eq. 53 for the condition of constant entropy: VT®/2? = constant
+ Eq. 56 for the equation of state (ideal gas law): PV NT

* Eq. 63 for the first law of thermodynamics: d(E) =TdS —PdV =Q+ W

As examples of manipulations we can carry out by changing the system’s
control parameters, the piston we considered in Section 5.1 allows us to com-
press or expand the gas. This change in volume could be fast to keep the entropy
constant (adiabatic), or slow to keep the temperature constant (isothermal). Al-
ternately, we can clamp the piston in place to keep the volume constant, and add
heat to the gas to increase its temperature — according to the ideal gas law, this
will also increase the pressure of the gas. Or we can add heat while keeping the
pressure constant by applying a constant force to the piston. The ideal gas law
then implies the volume will increase, pushing out the piston — which could be
used as a way for the system to do work on its surroundings.

It's possible to carry out a sequence of such manipulations that cause the
system to end up in the same thermodynamic (macro-)state in which it started,
with the same pressure, volume, temperature and internal energy. This sequence
can then be repeated over and over again, always returning to the same starting
point. Such a repeatable process is known as a thermodynamic cycle. As we
will see in the next section, such cycles can make use of heat to have the system
do work on its surroundings (providing an engine), or make use of work to remove
heat from the system (providing a refrigerator), among other applications.

Thanks to the key equations above, we can specify the full macro-state for
an ideal gas solely in terms of the pressure P and the volume V. With fixed
N, the ideal gas law fixes the temperature T' = %, which then determines the
internal energy (E) o« NT. This makes it convenient to represent the system’s
macro-state as a point in a pressure—volume (or PV) diagram — a graph with
the volume on the horizontal axis and the pressure on the vertical axis. The
manipulations discussed above correspond to lines in PV diagrams. In the case
of a thermodynamic cycle, the lines must meet up to form a closed path for the
system to go around as the cycle is repeated.
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As a first example, the figure below shows the PV diagram for a (slow)
isothermal expansion of the gas.

J j Isotherm

¢
S '

Vg ——> oV

The line in a PV diagram for an isothermal process is known as an isotherm..
As the volume expands from Vj to V;, the temperature (and therefore PV) is
constant. What is the change in pressure AP = P; — Py in terms of Py, V; and
V;? What would it mean if two isotherms were to cross in a PV diagram?
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Similarly, we can consider the PV diagram below for a (fast) adiabatic com-
pression of the gas.
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Q=Td>

In this case both the pressure and temperature change, while the entropy (and
therefore @/Q) is constant. What are AP and the change in the temperature
AT =Ty — Ty in terms of Py, V4, V; and the fixed number of particles N?

Vo,r‘:/i _ VVT% S /’;7 =T v, 2/3
PYOT VF

gr- DL <
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5.4 The Carnot cycle

A famous thermodynamic cycle was proposed by Sadi Carnot in 1824, and
laid the groundwork for subsequent development of engines and refrigerators
later in the nineteenth century. The key idea is to propose that the ideal gas in
its container can exchange energy with either of two different thermal reservoirs:
a ‘hot’ reservoir with temperature T and a ‘cold’ reservoir with temperature 77,.
The Carnot cycle consists of four stages, which are first shown below in the form
of a PV diagram, then illustrated in a sketch (adapted from Schroeder’s Intro-
duction to Thermal Physics) that provides a more concrete picture of the physical
processes, and finally summarized in words.
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