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re-separate them. Due to the second law of thermodynamics, processes that
produce an increase in entropy are irreversible.

4.4 Pressure, ideal gas law, and equations of state

Below Eq. 50 we emphasized that the ideal gas partition function depends
on the volume of the gas, V, in addition to the fixed temperature I" and conserved
particle number N that always characterize systems governed by the canoni-
cal ensemble. Parameters like V that appear in the partition function are called
control parameters, with the idea that they can (in principle) be controlled in
experiments. Control parameters generally enter the partition function through
the definition of the energies E; for the micro-states w;. Another example is the
magnetic field strength H for the spin systems we considered earlier.

Focusing on ideal gases for now, we see that all dependence on V' drops
out in our results for the average internal energy, Eq. 52. On the other hand, the
entropies in Eq. 53 do depend on the volume. For both cases of distinguishable
and indistinguishable particles, the entropy S depends on the same combination
of volume and temperature: V);® o« V32 If we keep N fixed and consider
using our experimental control to change the volume and the temperature of the
system, the entropy will typically change as a consequence, unless the following
relation is satisfied:

VT3/2 = constant = S = constant.

Such constant-entropy (or isentropic) processes will be important in our
upcoming analyses of thermodynamic cycles.’® These cycles will involve mak-
ing changes to control parameters, which is a topic we have already started to
consider through the micro-canonical temperature (Eq. 22) and the canonical
heat capacity (Eq. 36). The pressure of an ideal gas is similarly connected to
a change in its volume, which we can motivate by thinking about squeezing an
inflated balloon into a small box.

The pressure is defined to be

0
=N
v

~

P—- (55

with constant entropy S. In words, the pressure is the isentropic response of the
system’s internal energy to a change in its volume.

In Unit 5 we will look in detail at processes that change some or all of the
pressure, volume, temperature, or internal energy of an ideal gas, with N fixed.
Although changing the temperature departs from the assumptions of the canon-
ical ensemble, we will be able to understand such a process as a change from

10The term isentropic is based on the Greek word oo (“isos”), meaning “equal”.
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one canonical system (in thermodynamic equilibrium with a thermal reservoir that
fixes the initial temperature 73) into another (in thermodynamic equilibrium with a
different thermal reservoir that fixes the final temperature T%).

If we consider an isentropic process with N fixed, then the temperature and
volume are related,

yTir =g T=cy, S ww’[‘mf

with ¢ a constant. By inserting this into Eq. 52, we can relate the average internal
energy to the volume,

3 3
(B) = SHL= —QENKEB for constant entropy.

Using this constant-entropy expression what is the pressure for the ideal gas?

P=- av %A/ . /A/\/—(LV‘%) ~ A/%

%

You should find the ideal gas law,

PV = NT, (56)

which is an example of an equation of state.

The “state” being referred to by this terminology is different from the micro-
states that we have mostly discussed up until now. Whereas each micro-state
is defined by detailed information about the microscopic degrees of freedom that
constitute the system, this thermodynamic state or macro-state concerns only
the large-scale (macroscopic) properties of the system, such as its pressure,
volume, temperature, or internal energy. Equations of state are relations between
these large-scale properties.

Historically, equations of state were observed empirically and studied exper-
imentally well before the mathematical development of statistical physics. In the
1660s, for instance, Robert Boyle experimented with changing the pressure of a
gas while holding its temperature fixed, finding a special case of the ideal gas law,

PV = constant for constant N and 7,

which became known as “Boyle’s law”. (I include the quotation marks to acknowl-
edge the limitations of assigning individuals full credit for advances arising from
the work of broad scientific communities.)
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Other equations of state reflecting different aspects of the ideal gas law were
uncovered during the Industrial Revolution:

/
. ‘T = constant for constant N and P (1787, “Charles’s law”)
P 113 ) »
C T = constant for constant V-and V (1802, “Gay-Lussac’s law”)
. % = constant for constant P and T (1812, “Avogadro’s law”) ~/013

In the 1830s Emile Clapeyron combined these empirical results into the ideal gas
law itself, which August Krénig and Rudolf Clausius independently derived on
the basis of statistical physics in the 1850s. These historical data are useful to
illustrate how progress in scientific and mathematical understanding went hand-
in-hand with industrial developments, including the design of engines and related
machines, which are connected to our next topic of thermodynamic cycles.
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Unit 5: Thermodynamic cycles

5.1 Work, pressure and force

In the previous section we defined the pressure of a canonical ideal gas as
the thermodynamic response of the internal energy to an isentropic change in the
volume (Eq. 55). At the same time, we motivated this definition by thinking about
‘squeezing’ the system—exerting a force on it—which suggests a connection be-
tween pressure and force. Here we make this connection explicit by considering
how the energy of an object changes when a force acts on it.

Let’s begin by considering a single object at position 7 = (z,y, 2), and sup-
pose it is displaced by a vector di*due to a force E‘_(ﬁ) The work done by this force
is defined to be the resulting change in the energy of the object. Infinitesimally,
W =dE = F'. d7, which generalizes to the line integral W = AE = fﬁ(r) - dr.

A famous example is an object falling due to the force of the Earth’s gravity.
That force is ' = (0,0, —mg), where m is the mass of the object, g ~ 9.8 m/s’
(metres per second per second) is the strength of gravity near the surface of
the Earth, and the negative sign indicates that the gravitational force is directed
downward. Suppose the object starts from rest, with initial kinetic energy Eq = 0,
and falls downward, parallel to 7, from a height h. Its final energy E; upon hitting
the ground comes from the work done by the Earth’s gravity:

. 0
I/V=/M=—mg/ dz =mgh >0
b
2
Ef:E\o—I—é‘E:OjL_VY:?_nih:;;l — P, = —my/2gh,

where § = (p,, py, p.) is the momentum introduced in Eq. 46.

Generalizing to N >> 1 objects in a statistical system governed by the canon-
ical ensemble, we define the work done by a force to be the resulting change in
the system'’s average internal energy due to that force, W = A(E)ce- In practice,
the volume is the control parameter that such a force will change.

This change in (E) due to a change in volume suggests that the work is re-
lated to the pressure defined by Eq. 55. We can formalize this relation by consid-
ering the setup shown below (from Schroeder’s Introduction to Thermal Physics).

Piston area = Ji

ThY

--37<a— Force = F

AV = -AlAx

— e
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Here we have an ideal gas in a container of volume V, with one wall of
that container being a piston that we can move by applying a force F'. Lets
demand that this process is isentropic—it does not change the entropy of the
gas. The displacement Az shown in the figure reduces the volume of the gas, by
AV = —AAx < 0 where A is the surface area of the piston. Since the force F’
is parallel to the piston’s displacement Az, it does positive work W = FAz > 0.
Therefore the internal energy of the gas increases by A(E) = W, at the same
time as its volume decreases isentro@,,sa(from Eq. 55 we have

0 | @_F r F 57
E:#A—V(_ AN A (57)

P=——(F
P=—% (E)
This identifies the pressure of an ideal gas i(/w a container as the force per unit
area that the gas exerts on the container wall, reassuringly consistent with our
everyday experiences.

Rearranging the expressions above, we can obtain an expression for the
work put into the gas by its surroundings — that is, by the external force applied
to move the piston and change the volume. Still assuming an isentropic process,
this input work must match the increase in the gas’s average internal energy,

W = A(E) = PAV for constant entropy.

If the entropy is allowed to change, this relation between work and pressure will
still hold. However, as we will see in the next section, the non-constant entropy
will introduce an additional change in the average internal energy unrelated to a
force, leading to W # A(E) and leaving only the relation

W = —PAV more generally. (58)

Later we will be interested in using the gas as a thermodynamic engine that does
work on its surroundings. This removes energy from the gas, corresponding to a
negative W < 0, and we will need to be careful to keep track of the negative signs
and their physical meaning.

Of course, as we change the volume of the gas, the pressure itself may
change as described by the gas’s equation of state—such as the ideal gas law,
Eq. 56. Recall that we are fixing the particle number N in order to work with the
canonical ensemble. With the equation of state providing an expression P(V') for
the pressure as a function of the volume, Eq. 58 generalizes to

v
W=— / P(V) dv.. (59)
V

5.2 Heat and entropy

Now let’s switch things up by changing the temperature T of an ideal gas
while keeping its volume V and particle number N constant. Since the volume is
constant, Eq. 59 indicates that no work is done, W = 0. Even so, from Eq. 52 we
have (F) = %NT and can see that the average internal energy still changes,

d(E) = %NdT. (60)

MATH327 Unit 5 70 Last modified 23 Feb. 2022



