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What are the corresponding results for the case of distinguishable particles,
where the partition function Zp, is given by Eq. 507

Fp= -3 mT L
A/flﬂzw)

N

<E>D =

Nlw

8 = %Mf ﬂ//a}(&%

You should find that the energy is insensitive to whether or not we can label the

particles:
3 a4
(E)p = (B); = NT. (52)
This is in contrast to the spin system we considered in Section 3.4.° The entropy,

however, does reflect the extra information that distinguishability provides:

S N+ N1 ¥ S —5N N1 ——/ e
= N o8 A?h I_ ?,_ " o ‘Z_\l)\gh

Because NlogN > N for N > 1, we have Sp > S, as expected. We can
also note that Ay, — oo as the temperature approaches absolute zero, T' — 0,
apparently producing negative entropies for fixed V. This is a warning sign ign that
our classical assumptions are breaking down in this regime, and quantum effects
would need to be taken into account.

w

(53)
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4.3 The mixing entropy and the ‘Gibbs paradox’

Back in Section 2.4 we considered what would happen if we allowed two
micro-canonical systems to exchange energy, and then re-isolated them. We
saw that this procedure obeys the second law of thermodynamics — the entropy
never decreases, though we have to be careful to account for all of the entropy
after re-isolating the two systems.

We can now carry out a similar thought experiment of allowing two canon-

ical systems to exchange particles, and then re-separating them. We demand

9The ultimate origin of this contrast is that each ideal gas micro-state w; in the indistinguishable
case corresponds to N! micro-states in the distinguishable case, independent of the energy F;.
For the spin system this factor is ( ) and varies with the energy £,
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that both canonical ensembles are in thermodynamic equilibrium with each other,
for instance by sharing the same thermal reservoir with temperature 1. This
procedure is illustrated below, where we simplify the setup by taking the two ini-
tial systems to have equal volumes, V4 = Vp = V, and numbers of particles,

Ny=Ng=N.
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We can represent the process of combining and then re-separating these

systems by writing

Qi+ O — Qg — 10, + 0L

What is the entropy for each of these three stages? Since the entropies depend
on whether or not the particles in the gas are distinguishable from each other,
let’s first consider the case of indistinguishable patrticles.
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The initial entropy is the sum of the contributions from the two canonical
systems, S, + Sp, both of which are the same thanks to our simplification above,
and are given by Eq. 53:

SA+SBZZSI(A//V): SN /1/’7 /!/Am)>
51+ 2 )y

To find the entropy S¢ of the combined system, we just need to consider what
happens when we double the volume and also double the number of particles:

5 (20 V) = &) « (2] ’7(-"1—23

0,
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You should find wﬁhwhlch is consistent with the second law of thermo-
dynamics.

Things are more complicated when we re-separate the systems. Analo-
gously to our considerations in Section 2.4, we need to_sum over all the possible
ways of dividing the 2N indistinguishable particles between the two re-separated
boxes. In particular, we need to perform this sum at the stage of computing the
partition function Z’ for Q/, +Q'g, smce this is the fundamental quantity from which
the entropy is therm = 2 (T'log Z'). In other words, we have to con-
sider a logarithm of a sum rather than a sum of logarithms.

If v particles end up in system 2, then the other system Q7 must contain
the remaining Martioles, giving us

J BENA/A VNS W AUA SRS S (A S
ZL( ) ZV—Q<A_35> N =) <A‘Z’h> ~ V(2N —v)! (Aiﬁ) '
0 £/
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Summing over all possible values of 0 < v < 2N,

2N 2N

3o () S (8) ok ()

(V)]

7
:>SQ+SB—2N & T'log l3— — log[(2N)!] + log
£ —= oT A

This is a complicated expression. We can simplify it with an approximation con-
sidered by J. Willard Gibbs in the 1870s, which we have already motivated in
some of our tutorial discussions. For large N > 1, we saw that the entropy of two
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subsystems in thermal contact is nearly saturated by the case in which the energy
is divided roughly evenly between the two subsystems, rather than being mostly
in one of them. The same thing happens for two systems that are allowed to
exchange particles: there are far more micro-states with particles divided roughly
evenly between the two subsystems, N/, ~ Nj ~ N, compared to the particles
being mostly in one of them. -

So we declare N, = N, = N, as drawn in the illustration above. This
suffices to establish O/, = Q4 and Q' = Q, producing a final entropy of S +.S55 =
S4 + Sp that satisfies the second law of thermodynamics:

Si;"’f—SlB:SC:SA-{—SB.

This is just what we would expect from everyday experience: opening a door
between two identical rooms doesn’t produce any dramatic effects, nor does re-
versing that process by closing the door.

Something interesting happens when we repeat this analysis for the case of
distinguishable particles, using our result for Sp(N,V) in Eq. 53. If we consider
the difference between the combined entropy S¢ and the initial entropy S4 + S,

ASyix =S¢ — (Sa+ Sg) = Sp(2N,2V) — 25p(N, V)
/
= 3\(\7 + 2N log (%) - {3\7\\7 + 2N log <1>} =2Nlog2 >0, (54)

3
th >‘th

we find that the entropy increases upon combining the two initial systems. This
ASyix > 0 is known as the mixing entropy.

This result S > S4 + Sp is what we would expect from the second law
of thermodynamics. However, repeating the argument above—that we should
have N, ~ N, ~ N and therefore S/, + S5 = Sa + Sp after re-separating the
systems—would imply S, + S5 < Sg, indicating a decrease in the entropy by
ASnix and an apparent violation of the second law. This is known as the ‘Gibbs
paradox’, though Gibbs himself explained how a paradox is avoided.

The explanation is that because the particles are now distinguishable, N, =
N4 no longer suffices to establish 0, = Q4 and S, = S4. Recovering Q4 would
additionally require that the N’, particles in the re-separated system are the same
distinguishable particles that were initially in Q4. While we can still expect N} ~
N3 =~ N, the vast majority of the resulting micro-states will not correspond to
micro-states of 24 and Q5. Summing over these additional possibilities ensures
S’ + S% > Sa + Sp, and it turns out S, + S > Sc as well, obeying the second
law of thermodynamics. -

These thought experiments provide another example of behaviour that dif-
fers depending only on the intrinsic information content of the system — whether
or not the particles in an ideal gas can be distinguished from each other in prin-
ciple. Mixing gases of distinguishable particles introduces a positive mixing en-
tropy, Eq. 54, but for gases of indistinguishable particles there is no change in
entropy when we let two subsystems mix, or when we reverse that process and
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re-separate them. Due to the second law of thermodynamics, processes that
produce an increase in entropy are irreversible.

e

4.4 Pressure, ideal gas law, and equations of state

Below Eq. 50 we emphasized that the ideal gas partition function depends
on the volume of the gas, V, in addition to the fixed temperature T" and conserved
particle number N that always characterize systems governed by the canoni-
cal ensemble. Parameters like V' that appear in the partition function are called
control parameters, with the idea that they can (in principle) be controlled in
experiments. Control parameters generally enter the partition function through
the definition of the energies E; for the micro-states w;. Another example is the
magnetic field strength H for the spin systems we considered earlier.

Focusing on ideal gases for now, we see that all dependence on V' drops
out in our results for the average internal energy, Eq. 52. On the other hand, the
entropies in Eq. 53 do depend on the volume. For both cases of distinguishable
and indistinguishable particles, the entropy S depends on the same combination
of volume and temperature: V;* oc VT%2. If we keep N fixed and consider
using our experimental control to change the volume and the temperature of the
system, the entropy will typically change as a consequence, unless the following
relation is satisfied:

VT3/%2 = constant — S = constant.

Such constant-entropy (or isentropic) processes will be important in our
upcoming analyses of thermodynamic cycles.'® These cycles will involve mak-
ing changes to control parameters, which is a topic we have already started to
consider through the micro-canonical temperature (Eq. 22) and the canonical
heat capacity (Eq. 36). The pressure of an ideal gas is similarly connected to
a change in its volume, which we can motivate by thinking about squeezing an
inflated balloon into a small box.

The pressure is defined to be

0
P==55(B) (55)

with constant entropy S. In words, the pressure is the isentropic response of the
system’s internal energy to a change in its volume.

In Unit 5 we will look in detail at processes that change some or all of the
pressure, volume, temperature, or internal energy of an ideal gas, with N fixed.
Although changing the temperature departs from the assumptions of the canon-
ical ensemble, we will be able to understand such a process as a change from

9The term isentropic is based on the Greek word too¢ (“is0s”), meaning “equal’.
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