MATH327: Statistical Physics, Spring 2022
Tutorial problem — Stirling’s formula

We have already made use of Stirling’s formula in the following form:

log(N!) = NlogN — N + O(log N) ~ NlogN — N for N > 1,
which implies

N N

N!=~exp[NlogN — N] = <—> .

e

This can be made more precise:

N!:\/27r_N<g>N<1+@+@+@+m> (1)

— N N2 ' N3

with calculable coefficients 4, B, C, etc.! By performing a sequence of analyses
of increasing complexity, we can build up these results.

First, derive the bounds
Nlog N — N < log(N!) < Nlog N 2)

for N > 1. The second bound is the easier one. There are multiple ways to obtain
the first bound. One pleasant approach is to consider the series expansion for e*.
Together, these bounds establish

1 <log(N!)
logN NlogN

<1 = log(N!) ~ Nlog N

Second, consider the gamma function

(N +1) E/ Ve dz.
0

—

integral (of the second kind)
Nl= / zNe ™ dx. (3)
0
Again, this can be done in multiple ways, including induction with integration by

parts or by manipulating
,d (/ e—a:l) d.’]} — -a/-—i
da ' Jo
"

and then setting o = 1.

1James Stirling computed the /27 while Abraham de Moivre derived the expansion in powers
of 1/N. An interesting aspect of this expansion is that it is asymptotic — it has a vanishing radius
of convergence but can provide precise approximations if truncated at an appropriate power.

MATH327 Tutorial (Stirling) 1 Last modified 25 Feb. 2022

The next step in this second analysis is to approximate the gamma func-
tion as a gaussian integral. Show that the integrand zVe=® = exp [Nlogz —a] is
maximized at z = N. -

Finally, change variables to y = = — N and expand the logz up to and
including terms quadratic in y < N. You should be left with a factor that can be
approximated by a gaussian integral (note the lower bound of integration):

/ " e g o, / e VION) _ o N
—N —00 =

The error introduced by extending the integration from (—N, oco) to (—oo,0) is
exponentially small and could be captured by computing the series of corrections
suppressed by powers of - in Eq. 1.

This leads us to the third and final analysis, which is to compute some of
the leading power-suppressed corrections in Eq. 1. Again, there are many ways
to achieve this, including higher-order expansions of the log z considered above.
One pleasant approach is to compare N!and (N + 1)!, now that we have derived

the series prefactor /27 N (%)N

MATH327 Tutorial (Stirling) 2 Last modified 25 Feb. 2022

MATH327: Statistical Physics, Spring 2022

Tutorial comments — Stirling’s formula

For the first analysis, deriving bounds related to Stirling’s formula, we can
begin by noting

N-1 N-1
N=][W-k<]J[N=N"
k=0 k=0

for N > 1, implying log(N!) < N log N. For the other bound, we can consider the
Nth term in the power series

°°Nk NN
N .__
¢ _kz_% KN

because every term in the series is positive. Rearranging, this is

N N
N!> <?> — log(N!) > Nlog N — N.
Putting these together gives the desired result

Nlog N — N < log(N!) < Nlog N

(1)
that establishes log(N!) ~ Nlog N for N > 1.

Moving on to the second analysis, we can consider what happens when we
take the derivative of both sides of the equation

o
/ e dy = a7t
0

with respect to a. The first derivative gives

JZI/ (/ " e d = 4a~2,>

with negative signs that we can cancel out. Repeating, we have

/ x2e % dy = 2473
0
a/lt/

[oe]
/ —23e " dy = —6a*
0
¥ .

i !

(
Setting a = 1, we obtain the desired result,

N!= / aNe=e dp. v (2)
0
MATH327 Tutorial (Stirling)

1 Last modified 25 Feb. 2022

Of course, this is just the first step in the full derivation of Stirling’s formula.
The next task is to show that the integrand Ve = exp [N log » — z] is maximized
at z = N. Demanding that its derivative with respect to z vanishes, we have

d . .
ZZE:L e mzN:rN”le\Y“—xNe\“=0 = NagN=t = N
or in other words 2 = N. Considering the second derivative at = = N,
2
%m 2= N(N—-1)zN 2 - NgV1le™® — NzVNle™® 4 gV oy
=N [N =)NV BNV L AV = -2 <,
confirming a maximum.
Changing variables to y = z — N, we have
M= [oxp N logly-+ N) = (y+)] .
pn— _N //\
Expanding the argument of thls exponential for |%| < 1 around this maximum i
identified above gives | - O?(ltx X x«,’S_
| 2 5
" , - o v _ Yy
Nlog(y+ N) — (y+ N) —\NlobN+N (% - 2N2> ~Y-N+0 <N3> € .

2 y3
—\NlogN> N—W+O (]\73>

Reinserting this into the integral above, we obtain the advertised result,

N!~ NVe N/ _y/(QN)dy VorN ‘ ’ (3)

Finally turning to the third analysis, we start with Eq. 3 and assume that the
approximations leading to it can be captured by a power series in + < 1,

N\ A B ¢
s = = 2
movEw (V) (1A B),
The defining property of the factorial means (N + 1)! = (N + 1) N!, so that
N+1\" A B @) 1
27(N +1 <——e) [1+N+1+(_J\Lilf+(1\’+l) +O<N4>]

=(N+1)M=(N+1)\/2W<g>]v[1+%+%+§3+0<Jé4>}.

Rearranging,

(Hi‘/)wx (v

et Ay B, C vo(L
— W0 N+1 (N+1)2 (N+1)3 N*

A/ Last modified 25 Feb. 2022

We need to reorganize the left-hand side of this equation in terms of i,

which we can do in two stages. First, for the terms in the square brackets we can
apply the geometric series ﬁ =Y e o(—x)* to find

A —é 1_i+i _|_(’) L —é_i+_j_4_+(9 L
@hl“N N N2 Nt/ N N2 N3 N4
B B 2 1 B 2B 1
+2N+1—m<1“ﬁ>+0<7\72>—m—mw(m)

= C _£+O L
W+3N2+3N+1—N3 N4)

and all together

Ay B O o(L
N+1 (N+1)2 " (N+1) N4

A B—-A C-2B+A 1
Cir Ay BA O A (1)

Second, the overall factor can be handled by exponentiation,

1\ V12 X) 1 1
(1o3)"" =l o)
1 1 1 1 1 1
—e1 Nl) e — el
¢ K = 2) <N ONZ T 3N 4N4) +10 <N4>]
= ex L L +0 2 v
~ P o T 12nE N Ko lex+ dx
1 1 1
=1 o8 T +O<ﬁ> '
Bringing things back together,

- 11 1+£+B—A+C—2B+A " 1
=" 12N2 12N3) \— N2 N3 N4

1

TR
Voo () N . [AA B C 1
(&(/N{)_,_ _1+(/Nl+_N2+_N3+O =

The terms proportional to 5 require 1 = 1 while those proportional to +- indicate
A = A, both of which are self-consistent but not useful. Interesting things happen

when we equate the > terms:

1 1
ﬁJFB—A_E - A=

Similarly, from the ﬁ terms we can determine B,
/A A1
7$+E+Q—ZB+A/:ZS = B=—

So in the end we find

n=van (Y " e = (4)
T e 12N 288N? '

with a clear procedure to compute higher-order terms.

MATH327 Tutorial (Stirling) 3 Last modified 25 Feb. 2022

og() = Mgl -V Lglomh) Ly ([« 25 ¢ o)

How much should we care about these corrections? You can check that
although our usual approximation log(N!) ~ Nlog N — N deviates from the exact
result by ~36% for N = 5, it quickly becomes more accurate as N increases.
Already for N = 100 (still tiny compared to the typical N ~ 10% of statistical
physics), it brings us within 1% of the exact value. In addition, even for minuscule
N = 5, adding in Stirling’s V2N factor recovers the true log(N!) to better than
percent-level precision.

The main challenge in the table below is to include enough significant figures
to observe any discrepancy between the direct result and the approximations we
computed above!

N=5 | N=10 N =50 N =100

NlogN — N 3.04719 | 13.025851 | 145.60115027 | 360.517018599
Add log(v/27N) | 4.77085 | 15.096082 | 148.47610031 | 363.738542225
Add + 4.78738 | 15.104381 | 148.47776559 | 363.739375211
Add &> 4.78751 | 15.104415 | 148.47776697 | 363.739375558
Direct log(N!) | 4.78749 | 15.104413 | 148.47776695 | 363.739375556

In addition to providing continuous functions that are easier to integrate,
differentiate, or manipulate in other ways, these approximations can also improve
upon the capabilities of computers we might try to use to compute log(N!) directly.
The numbers above were produced by the Python code below, which determines
log(N!) by first calculating N! and then taking its logarithm. For N > 170, however,
N! > 103% overflows the standard floating-point precision of modern computers,
and this part of the code breaks down. However, the logarithm itself is ~700, and
remains easy to compute through the simple expression we have derived, which
remains usable for far larger N.

As another application of Stirling’s formula, we can revisit our consideration
of the micro-canonical entropy for a spin system in Section 2.2. Specifically, on
page 30, we computed the entropy S = 2Nlog2 for 2N spins with vanishing
magnetic field H = 0, which reduced to log (%) when H > 0 and we considered
the zero-energy micro-states that remained, with N spins aligned up and the other
N down. We can now apply Stirling’s formula to simplify

N
S =log <2N> =log [(2N)!] — 2log [N]
: 1

~ 2N log(2¥) — 2\Qf t3 log [2m(2N)] — QNM,g/N + QXN — log(27N)

B 2N\ _ 1

=2Nlog?2 — log <m = 2N10g2@§log(wN).
Considering 2N = 8, we found S = log(70) ~ 4.25, which is indeed well ap-
proximated by 8log 2 — log(v/4m) = 4.28. More generally, this result confirms our

expectation that the entropy should decrease when not all 22V micro-states are
accessible, and specifies the particular amount log(v/7N) by which it decreases.

MATH327 Tutorial (Stirling) 4 Last modified 25 Feb. 2022

Some other fun things you can explore with Stirling’s formula include check-
ing how it compares to the result

N 2N (2k — N)?

<k> “ VN [2N }
that we derived using the central limit theorem in Section 2.3 (pages 36—37). In
addition, for the special case p = ¢ = % of the one-dimensional random walk
with fixed step lengths that we analyzed in Section 1.5, you can prove that as the
number of steps N — oo, the walk will return to its starting point infinitely many
times, with 100% probability. This result also holds for two-dimensional random
walks, where the fixed step length corresponds to walking on a square ‘lattice’
of points — stepping either up, down, left or right with equal probability. In the
case of three (or more) dimensions, however, this probability decreases all the
way down to 0%.

Approximations to N!
import sys

import numpy as np

from scipy import special

Parse argument: N

if len(sys.argv) < 2:
print("Usage:", str(sys.argv[0]), "<spins>")
sys.exit (1)

N = float(sys.argv[1])

print ("N = %d" % N)

direct = np.log(special.factorial(N))

approx = N * np.log(N) - N

rel = 100.0 * np.abs(l - approx/direct)

print ("Nlog(N) - N = %.12g (%.2g percent off)" % (approx, rel))

approx += 0.5 * np.log(2.0 * np.pi * N)
rel = 100.0 * np.abs(1 - approx/direct)
print ("Include log(N): %.12g (%.2g percent off)" % (approx, rel))

A = approx + np.log(1.0 + 1.0 / (12.0 * N))

rel = 100.0 * np.abs(1 - A/direct)

print ("Include 1/N: %.12g (%.2g percent off)" % (A, rel))

B = approx + np.log(1.0 + 1.0 / (12.0 * N) + 1.0 / (288.0 * N * N))
rel = 100.0 * np.abs(1 - B/direct)

print("Include 1/N~2: %.12g (%.2g percent off)" 9 (B, rel))

print ("Direct log(N!) = %.12g" 7 direct)

MATH327 Tutorial (Stirling) 5 Last modified 25 Feb. 2022

= 1/\/],71 #
Ve « He0
©
9
)
¥ <\

