Unit 4: Ideal gases

4.1 Volume, energy levels, and partition function

We now apply the canonical ensemble to investigate non-relativistic, classi-
cal, ideal gases. Using statistical physics we will explore how the large-scale be-
haviours of such gases emerge from the properties of the particles that compose
them. The key particle properties are specified by the adjectives listed above:

« Classical systems are those for which we can ignore the effects of quantum
mechanics. Among other things, this allows us to simultaneously define
both the position (z, y, z) and the momentum p’ = (p., p,, p..) of each particle
with arbitrary precision.

« Non-relativistic particles move with speeds small compared to the speed
of light, which allows us to ignore small effects due to special relativity. The
particles are therefore governed by the laws Isaac Newton published all the
way back in 1687. In particular, the energy of each particle of mass m is
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where p2 = P, - P = (p2)2 + (py)2 + (p.)2 is the inner (or ‘dot’) product of the
momentum vector for the nth particle in the micro-state of interest.

« Ideal gases are those whose constituent particles don'’t interact with each
other. As a result, the total energy of the gas is simply the sum of the
energies of the N individual particles,
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As usual for the canonical ensemble, we consider the gas to be in thermody-
namic _equilibrium, and in thermal contact with a large external thermal reservoir
with which it can exchange energy but not particles. To prevent particle exchange,
we can specify that the gas is enclosed in a cubic box with volume V = L3. The
thermal reservoir fixes the temperature T of the gas.

The starting point for our analysis is to compute the partition function

Unfortunately there is a challenge confronting this sum over all possible micro-
states w; of the N-particle system. These micro-states depend on the momenta p,,
for all N particles, and it's intuitive to suppose that each component of (pq, py, p2)n
is a continuously varying real number that can (in principle) be distinguished with
arbitrary precision. This implies an uncountably infinite set of distinct momenta
and hence an uncountably infinite set of micro-states, making the summation
above ill-defined.
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To proceed, we need to regulate the system so that there are a countable
number of micro-states we can sum over to define the partition function. We do
this by positing that the particles’ momentum components can take only discrete
(or ‘quantized’) values that depend on the volume of the box. Specifically, we
declare that the possible momenta are
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Each component of the non-negative-integer vector k= (ks ky, k) is indepen-
dent. The constant factor A (“h-bar”), known as the (reduced) Planck constant
(named after Max Planck), simply converts units from inverse-length (1) to mo-
mentum (p). Very similar discrete momenta turn out to be realized in nature,
thanks to quantum mechanics—if you have previously studied quantum physics,
you may recognize the momenta for a particle in a box, but for the purposes of
this module we can just adopt this result as an ansatz.

What are the energies that correspond to these discretized momenta?
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You should find energies that fall into discrete energy levels, somewhat similar to
the spin system considered in Section 3.4. Unlike the spin system, in this case
the energy gaps between subsequent energy levels are not constant.

Even though there are still an infinite number of possible momenta and en-
ergy levels for each particle in the gas, these are now countable, making our
partition function well-defined. Let’s start by considering the partition function Z;
for a single particle in the box. The micro-states for this single-particle system are
completely specified by that particle’s momentum p,
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We can separately sum over each of the independent (k,, k,, k), and recognize
that all three summations are identical:
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For non-relativistic classica/ga s we can assume that Planck’s constant
is extremely small compared to Lv/mT,’” so that

h2r?
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L Ly

This means that the function being summed varies very smoothly as the integer k;
increases, for any k; small enough to leave the exponential factor non-negligible.
We can therefore accurately approximate each sum by an integral over continu-

ous real E so that
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The final equalityAsimply notes that the integrand is an even function of %, as it
depends only on k7.

Since we’re back to working with continuous real variables, we may as well
use Eq. 47 to return to the original momenta dp; = hidk;,
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So we end up with the single-particle partition function
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again with p* = p2 + p2 + p2. We can now account for all N particles in the
ideal gas, which are completely independent and don’t interact with each other.

Assuming we can distinguish these particles from each other, then each of them
simply contributes an independent factor of Z; to the overall par}ition function
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where the subscript reminds us of the particles’ distinguishability. We will consider
the indistinguishable case below.

We can recognize that each of the 3N independent integrations in Eq. 48 is
a gaussian integral,
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In the last step we have made the notation more compact by defining the thermal
de Broglie wavelength (named after Louis de Broglie),
-‘_—__‘_’__.-—-"—‘.—_

Aen(T) = .,/22_3;2. (49)

71f m is too small, effects due to special relativity become non-negligible. If T' is too small, ef-
fects due to quantum physics become non-negligible. If L is too small, we don’t have a sufficiently
large-scale (macroscopic) system to justify analysis via statistical ensembles in the first place.
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Performing all 3N gaussian integrals,
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since the volume of the box is V' = L3. It is worth emphasizing here that the

partition function depends on the volume of the gas, in addition to the fixed tem-

perature 7" and conserved particle number N. This dependence may persist in

other quantities derived from the partition function, which we will consider in the

next section.

First, let's determine what we would have with indistinguishable particles.
For a classical gas, distinguishability means that we can label the particles and
use those labels to tell them apart as they bounce around inside the box. In
the simple two-particle example illustrated below, these labels mean we have a
different micro-state w; when particle A has momentum p; while particle B has
momentum p,, compared to micro-state wy in which particle A has momentum pj
while particle B has momentum 7.

Distinguishable Indistinguishable
2 | |
T )

o4 >4
uﬁ: ﬁ O’—iﬁ

If the particles are indistinguishable, no such labeling is possible, and there is
only one micro-state for these {pj,p>}, rather than two. This factor of 2 is not
accidental, as you can explore by counting how many micro-states there are for
three distinguishable particles with momenta {p1, p», p3}, compared to the single
micro-state for the indistinguishable case:
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Generalizing to N particles, we find that ideal gases with distinguishable
particles have N!times more micro-states compared to otherwise-identical ideal
gases with indistinguishable particles: There are N possible ways to label the par-
ticle with momentum p3, then N—1 possible labels for 5, and so on.? The partition
function sums over these micro-states, but depends only on their energies, which
are independent of any labeling. Therefore this factor of N!is the only difference
between Eq. 50 and the partition function for indistinguishable particles,
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4.2 Internal energy, and entropy

Now that we have the canonical partition function, let’s apply our work from
Unit 3 to predict the large-scale behaviour of the ideal gas it describes. Our first
targets are the average internal energy (E) and entropy S for the gas, as functions
of its fixed temperature T', conserved particle number N, and the volume V = L3
of the box in which it is contained. Let’s begin with the slightly more complicated
case of indistinguishable particles, Eq. 51. Recalling the derivatives in Egs. 38—
39, we should keep the temperature dependence explicit in our workings, rather
than hidden inside the thermal de Broglie wavelength Ay, (7).

Starting by writing down the Helmholtz free energy,
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we can quickly extract the internal energy,
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This in turn provides the entropy
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We can clean this up by reintroducing the thermal de Broglie wavelength,
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and by applying Stirling’s formula to find 7
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We can interpret N3, as the volume ‘occupied’ by the N particles.

8This argument assumes the momenta themselves are distinguishable, 7; # ), for any i # k.
This is a reliable assumption for classical gases with LvmT > h, but will need to be revisited
when we consider quantum statistics.
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