


way will be aligned either anti-parallel or parallel to the magnetic field. The canon-
ical system therefore has M = 2" distinct micro-states w; with energies E; and
probabilities p; = Le /T, each defined by the orientations of all N spins.

To streamline our notation, we can represent the orientation of the nth spin
as sy € {1, —1}, where s, = 1 indicates alignment parallel to the field and s,, = —1
indicates alignment anti- parallel to the field. Since the spins don’t interact with
each other, the internal energy of the system in micro-state w; specified by the N
spins {s,} is therefore

—

— 'S V5, (40)

To compute the canonical partition function Zp, where the subscript reminds us
of the spins’ distinguishability, we have to sum over all 2" possible spin configura-
tions {s,}. In this process we can save some space by defining the dimensionless
variable z = fH = 7

2= T T T e lzl

sl =+1 sSN= :i:l &y=:1 sn=:=%1

- T 3T .m_(Ze )(Ze>

s1==+1 5N~i1 s1==+1 sy==+1
_ (Z ot (" + =)™ = [2.cosh (BH))", (41)
s==+1 T e

distributing the summations since all the spins are independent of each other.

The corresponding Helmholtz free energy

Fp(6) = _log g(ﬁ) __Nlog [2 c;sh(ﬂH)] (42)

is all we need to compute the average internal energy:

(B)p = —(8Fo(8) = N 59} o L2 cosh ()]

26
‘xo,gwf (2 iy (o)
= =Y fau(PH)

¥

]

From this we immediately obtain the ent%py

Sp = B({E)p, — Fp) = —NBH tanh (8H) + Nlog[2cosh (BH)].  (43)
These results for (Tand Sp are plotted below as functions of § = g. Since
both these quantities are extensive, we normalize them by showmg —2 and SD
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Let’s check the asymptotic behaviour of these functions, starting with low
temperatures. In contrast to the micro-canonical Eq. 25, in the canonical en-
semble there is no issue with taking the independent variable 7" — 0. This corre-
sponds to SH — oo and tanh (8H) — 1, approaching the “ground-state” energy
Emin = Fy = —NH you computed in Section 2.3. This energy is only produced
by the single micro-state in which all the spins are aligned with the magnetic
field, s, = 1 for all n (or n, = N and n_ = 0 in the notation from Section 2.3).
Correspondingly, log [2cosh (BH)] — loge?” = BH and the two terms in Eq. 43
cancel out, so that Sp — 0. This vanishing entropy is a generic consequence of
temperatures approaching absolute zero.

For low but non-zero temperatures, (E), and Sp will be affected by the
non-zero probability for the system to adopt micro-states w; with higher energies
E; > E,. These higher-energy configurations are often referred to as “excited
states”, with the drawback that a single excited state may correspond to many
different micro-states. For example, in Section 2.3 you also computed the energy
B, = —(N — 2)H of the first excited state, which is realized by N distinct micro-
states (with n_ = 1). In the case of spin systems, we can instead refer to energy.
levels that are all separated by a constant energy gap AE = E, 1 — B, = 2H.
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We can compute the effects of the higher energy levels at low temperatures
BH > 1 by expanding (E),, in powers of e ## < 1. What is the first temperature-
dependent term in this expansion?

= -t P rﬁ(@lw) 4e-2h

= -]+ ZQ'AE/r t J(ng)

~ -7pNH . B .
97 - L e )
[€ ¢ 7

You should find that the excited-state effects are exponentially suppressed by the
energy gap AFE at low temperatures,

B _
NH

] o GREH o (e#QﬂAE) )

This is a generic feature of canonical systems with a non-zero energy gap, and
is due to the exponentially suppressed probability for the system to adopt any of
the micro-states with the higher energy, ~BE;

feoe
l‘e_ﬂEn_+1
Z

1 ,—BEa_
Ze

= ¢ PAE,

The low-temperature expansion of Eq. 43 for the entropy Sp in powers of
e PH <« 1is similar:

B (46, - F) =12 (A2 A0l < g9

]
V= [P0+ ) ezt « 2,
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Here the leading term includes a linear factor of BAE >> 1, but this can’'t overcome
the now-expected exponential suppression:

Sp

W — BAEe—ﬂAE 4 e~ﬁAE + O (e~2ﬂAE) '
A o -
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In the limit of high temperatures we should instead expand in powers of
the small factor SH < 1. This is straightforward for (£) ;:

(E) (BH)® 5
N—]-}D = —tanh (8H) = —BH + r + O ([BH]"),
which vanishes N% as T — oo. This matches the micro-canonical behaviour we

saw for this system from Eq. 25, where the derived temperature diverged as the
conserved energy approached zero.

For the entropy, there is a similar connection to micro-canonical behaviour
at high temperatures:

D C b F _ Ly )+ G
B Yo I (g (5] + lplredP))
Toad () = Iy 0 glie £pil ﬂ(ﬁi{m

= byl e L (p) < d(ﬁq”l\

F = g [l +d(pe)

As T — oo, the result

2
= = log2 — ([:U;I)

o +0 ([BH]Y)

approaches the asymptotic value Sp — Nlog2 = log M for the M = 2" micro-
states (with different energies). Qualitatively, in this limit the energy of each spin is
negligible compared to the temperature, and the system approximately behaves
as though the energy were zero for all micro-states (and hence conserved).

3.4.2 Indistinguishable spins in a gas

Next, let’'s consider nearly the same setup, with N spins in thermodynamic
equilibrium, in an external magnetic field of strength H. The only difference is
that now the spins are allowed to move, like particles in a one-dimensional gas.
We demand that they move slowly so that we can ignore their kinetic energy and
the total energy of the system continues to be given by Eq. 40. Since the spins
don’t interact with each other, they can freely move past each other, and even
occupy the same space, making it impossible for them to be distinguished from
one another in any way.

To compute the fundamental canonical partition function (Eq. 33), we have
to sum over the micro-states of the system. These micro-states are no longer in
one-to-one correspondence with the full configurations {s,} of the NV spins. Be-
cause the spins are now indistinguishable, certain spin configurations also cannot
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be distinguished from each other. The simplest example comes from the two-spin
system considered in Section 3.1.1, where the configurations |1 and 1| now both
map onto a single micro-state. In this micro-state, we know only that one spin is
s; = 1 while the other is s;, = —1; it’s not possible to distinguish which is which.

Generalizing, we can conclude that a single distinct micro-state corresponds
to all possible permutations of spins with fixed {n,,n_}. This means that each
micro-state is now in one-to-one correspondence with the energy £ = —H (ny —
n_), which we can organize as energy levels separated by a constant energy gap
AE = 2H. As a quick example, enumerate the energy levels when N = 4 and
list the spin configurations associated with the corresponding micro-states. How
many micro-states are there for N spins?

Miow=slshs Coip
E=z-H#H e
Y /M/N, £ Poris,

O A4yt s
2H N\H/ffeyms,
tH Wi

A convenient way to label these micro-states and energy levels is to define
Ey=—-NH+2Hk =—H(N — 2k)

for micro-state wy, with k = n_ = 0,--- N. To compute the partition function Z;,

—-—

with the subscript reminding us about the spins’ indistinguishability, we now have

1 — e 2(N+1)BH

N N
_ _ 9k — k
= Snermn S _ oSy pon =y
k=0 k=0

k=0
The geometric series in the last step can be reconstructed by considering

)
/

N o] e o /

A ; 1 1 pN+1
z:mkzzxk_ Z ok — _x1V+1Zx£: i
k=0 k=0 k=N-+1 L=k =0 l—2 \l-g
S = — =

The corresponding Helmholtz free energy is

log Z () log [1 — e 2NVH+DBH]  og [1 — e 2PH]

Fi(B)=——"L = _NH - +

) =-""3 5 5
In contrast to Eq. 42, F;(B) is no longer proportional to N. In a homework assign-
ment you will use Fy to determine the average internal energy SQ}J and entropy
Sr shown in the figures below, and also check the low- and high-temperature ex-
pansions like we did for the distinguishable case above. Unlike our results for the
distinguishable case, you will find that 22 and 5t depend on N, which requires
us to fix N = 4 in the plots below.

(45)
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The dash-dotted lines in these figures are exactly the distinguishable-spin
results we previously discussed. The solid lines are the new results for indistin-
guishable spins. We see that the same T — 0 limits are approached in both
cases: E — —NH and S — 0. At low temperatures, the indistinguishable results
approach these limits more quickly — they still feature exponential suppression
of excited-state effects by the energy gap, cce #2F, but this now comes with addi-
tional factors of N.

At high temperatures there is an even more striking difference. While the
average internal energy (E), continues to vanish ~z as T — oo (with different N
dependence), the entropy approaches the asymptotic value S; — log (N+1) =
log M for the M = N + 1 micro-states. This logarithmic dependence on N is
very different from the Sp — Nlog2 limit we found for distinguishable spins, and
reflects the exponentially smaller number of micro-states that exist for indistin-
guishable spins, u\ggi

Finally, away from those low- and high-temperature limits, the left figure
above shows a significant difference in the internal energies of the spin systems,
depending only on whether or not the spins can be distinguished from each other
in principle. This is a physically measurable effect caused by the intrinsic infor-
mation content of a statistical system, and a simple illustration of phenomena that
remain at the leading edge of ongoing research. The conclusion was memorably
stated by Rolf Landauer in 1991: “Information is physical.”
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