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By defining a new parameter Z in terms of «, you should find

1
Dk = EG_ﬁEk - (29)

As before, we need to fix the parameters {Z, 8} by demanding that the two con-
straints above are satisfied. The first of these constraints is straightforward and
produces an important result:

M M M
1= p= Z e PP = G{p) = &P (30)
i=1 =1

Equation 30 defines the canonical partition function Z(3), a fundamental
quantity in the canonical ensemble, from which many other derived quantities can
be obtained.

Z(p) still depends on the other as-yet-unknown parameter 3(Eiq). Applying
our second constraint, Eq. 27, relates 3 to Ey: ‘

L M ol
- _ E; e

(=Y = 5> e —rERBEE

i=1 .

=1

This relation is a bit complicated, but will suffice for our goal of expressing the
entropy in terms of Fiy. Inserting Eq. 29 for p; into your earlier result for the
entropy, what do you obtain upon applying Egs. 30 and 31?

- )5&})

[

S(Eot) = _RZPZ logpz = /VR f’ ?( [p? ( g

Rly2 3« 0P Erke
\!l

L

= Rlog 2 + B gy

There is a pleasant simplification when we take the derivative to determine the
temperature. Defining g’ = ,B(Etot) we have

- 3Dn
10 0 10Z(p) ,
T~ Bl (Biot) = £ [ErotB 4 Rlog Z(B)] = B+ Eaf' + waﬁ
Using Eq. 31 we can compute N
10Z(8 - B
—BE; _ e BB _ . tot
Z 0[)’ Z 3P 4 Z ZE ZP’E
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so that we don’t need to figure out the explicit form of /'

1

T B+ EBaf — Btf =p. (32)

What'’s truly remarkable about Egs. 29, 30 and 32 is that they make no
reference to the R replicas or any extensive quantity such as Ei, — all information
about the thermal reservoir has vanished. This is the goal we have been pursuing
since the start of this unit! The large thermal reservoir is still present to fix the
temperature T' characterizing the canonical system Q, but beyond that nothing
about it is relevant (or even knowable) in the canonical approach. Every aspect of
0 can now be specified in terms of its fixed temperature 7' and conserved particle
number N, starting with the parameter 5 = 1/7T.

In particular, the partition function from Eq. 30 is simply

M

HEy= Y W, (33)

i=1

and together with g specifies the Br’qup_iliﬂﬂ&

_ 1 myr

?l o Ze (34)
from Eq. 29. This p; is now the probability—in thermodynamic equilibrium—that
Q) adopts micro-state w; with (non-conserved) internal energy E;. This probability
distribution is called either the Boltzmann distribution or the Gibbs distribu-
tion, while e—F+/7 itself is known as a Boltzmann factor. All micro-states with the
same energy have the same probability in thermodynamic equilibrium, which is
consistent with the micro-canonical behaviour we saw in Unit 2.

3.2 Internal energy, heat capacity, and entropy

In addition to fixing the temperature of the system Q, the thermal reservoir
also allows the internal energy of Q to fluctuate. The system simply exchanges
energy with the reservoir, satisfying the first law of thermodynamics. Although
the internal energy fluctuates, its expectation value (£) is an important derived
guantity in thermodynamic equilibrium. Applying the general definition from Eq. 4
to the probability space of the canonical ensemble,

M

M
(BT =Y Bip= 5 D B
=l

i=1

Here we highlight the dependence of (E) on the temperature, and also freely
interchange g = 1/T.
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The expression above may look familiar from our work in the previous section:

0 LE—:L _{2,«}’&',_}’2,? b
w7 T 5IBE 2 7 Al Je
==& Lif; ’“@
C

In this case it is easier to take the derivative with respect to 5 as opposed to

o oT 0 10 5 O
86 opor P - oT i)
In Section 2.3, we saw that ‘hatural’ micro-canonical systems exhibit higher
(derived) temperatures for larger (conserved) internal energies. Here, in the
canonical approach, the average internal energy (E) is the derived quantity while

the temperature is fixed. From our everyday experience, we expect a similar direct
relation between temperature and energy, which the following result confirms.

The heat capacity is defined to be

.4
= L

B

(E), (36)

and is always non-negative, ¢, > 0.

The subscript indicates that the volume of the system is kept fixed; we'll
consider the role of the volume more carefully starting in Unit 4. In a homework
assignment you will confirm ¢, > 0 by deriving a fluctuation—dissipation (or
fluctuation-response) relation. That relation will be a special case of a more
general theorem, and will connect the fluctuations of the internal energy around

its expectation value, >, (£&; — (& ®_ to the energy’s response to a change in

temperature, % (E). Equality will hold only in extremely special cases, meaning

that the heat capacity is generically positive, in agreement with our intuition that
higher temperatures produce larger internal energies.
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We finally need to compute the entropy of Q2 with no reference to the thermal
reservoir, apart from its role fixing the temperature in thermodynamic equilibrium.
Since the general definition of the entropy in Eg. 20 continues to hold for the
canonical ensemble, we just need to insert the probabilities p; from Eq. 34:

M

| ~pE;
S(T)=~szlogg£= "% P by (“g e )
= x g (Vg8 pLik
<V
I LE>

b2t

710221’)‘3<E>4 7 T

You should find that the entropy depends on log Z.

3.3 Helmholtz free energy

This dependence of the entropy on log Z is in accordance with our earlier
claim that the partition function is a fundamental quantity in the canonical ensem-
ble. Recalling from Eq. 33 that Z is a sum over all micro-states, we can view this
result as the canonical counterpart to the micro-canonical entropy being the log-
arithm of the number of micro-states. (Thermodynamic equilibrium is required in
both cases.) This motivates the following definition of a quantity with the dimen-
sions of energy that is related to log Z, which provides simpler and more elegant
expressions for the derived quantities we considered above.

The Helmholtz free energy of a system in the canonical ensemble is

log Z(B)

ﬁ )}
where 7 is the partition function of the system. In terms of this free energy,
Egs. 33 and 34 are

F(T) = ~Tlog Z(T) F(B) = - (37)

(F-E3)/T

——

7 =T pi=¢
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The Helmholtz free energy is named after Hermann von Helmholtz and re-
veals its usefulness when we take its derivative. The derivative mvolves - log Z,
which is worth collecting in advance based on Eq. 35:

0 <@>=ilob _ ;/L ) \i(}’) %E'E

or\ T oT z
vl(E)
) 3 _ 2 ;2
a_TF(T) = 5%(’()0«; Z) = !’2 97/ 7

F — _Q_E}_ = ’5(T>
- 7T

From these results we can read off the more elegant expressions promised above:

0
5() = —55F (1) (38)
(BT =157 (5) = 55 BFOI = TS@ + P@). (@)

3.4 The physics of information

As a first application of the canonical ensemble, we will explore physically
observable effects that depend on the pure information content of a statistical sys-
tem. You may be aware of the importance of information through the famous black
hole information paradox, but that topic is well beyond the scope of this module
since it involves quantum mechanics and general relativity in addition to statistical
physics. Here we will consider simple spin systems as introduced in Section 2.1,
contrasting the behaviour of their average internal energy (E) and entropy S de-
pending on whether or not the spins can (in principle) be distinguished from each
other. It's important to appreciate that the “information” discussed here is an in-
trinsic property of the system—what is knowable about it in principle. It does not
matter whether or not any observer actually knows this information; so long as it
can possibly be known it will have an effect.

3.4.1 Distinguishable spins in a solid

We begin with the setup from Section 2.1: A system of N spins arranged in
a line, placed in an external magnetic field of strength H, and in thermodynamic
equilibrium. We further specify that the spins are embedded in a solid material
that fixes their positions and prevents them from moving. This allows them to be
distinguished from one another: An observer can target an appropriate position
in the solid to measure the corresponding spin. The spins distinguished in this
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way will be aligned either anti-parallel or parallel to the magnetic field. The canon-
ical system therefore has udlstmct micro-states w; with energies E; and
probabilities p; = Le~P/T, each defined by the orientations of all N spins.

To streamline our notation, we can represent the orientation of the nth spin
as s, € {1, —1}, where s, = 1 indicates alignment parallel to the field and s,, = —1
indicates allgnment anti- parallel to the field. Since the spins don’t interact with
each other, the internal energy of the system in micro-state w; specified by the N
spins {s,} is therefore

= N
Bi=-HY s, (40)

n=1
To compute the canonical partition function 75, where the subscript reminds us

of the spins’ distinguishability, we have to sum over all 2"V possible spin configura-
tions {s,}. In this process we can save some space by defining the dimensionless

variable x = 8 = =

N
Zo= Y T B3 Y exp [@ZQJJ

51::t1 sN::tl s1==+1 sy==%1 =1
- T e (e (3 )

gi=:k] SN= sy==t1 sy==%1

N =
_ <Z ¢ (" + )" = [2cosh (BH)]", (41)
s=41 -

distributing the summations since all the spins are independent of each other.

The corresponding Helmholtz free energy
log Z(B) N log[2cosh (BH)]

5 Fb.

/ /

Fp(B) = — 3 = — 3 (42}/:

is all we need to compute the average internal energy:

0

(Bo =55

[BFp(B)] =

From this we immediately obtain the entropy

Sp =B ((E), — Fp) = —NSH tanh (8H) + N log [2 cosh (BH)] . (43)
These results for (£, and Sp are plotted below as functions of §; = 7. Since
both these quantities are extensive, we normalize them by showing % and SWD
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