Unit 3: Canonical ensemble

3.1 The thermal reservoir

3.1.1 Replicas and occupation humbers

While it is relatively easy to prevent particle exchange, for example by seal-
ing gases inside airtight containers, it is not practical to forbid energy exchange
as would be needed to fully isolate statistical systems. Any thermal insulator is
imperfect, and even in the deepest reaches of space the system would still be
bombarded by cosmic microwave radiation. In practice it is more convenient to
work with physical systems that are characterized by their (intensive) tempera-

tures rather than their (extensive) internal energies.

This leads us to define the canonical ensemble to be a statistical ensemble
characterized by its fixed temperature 7" and conserved particle number N, with
the temperature held fixed through contact with a thermal reservoir.

The second part of this definition connects the fixed temperature to the fun-
damental fact of energy conservation (the first law of thermodynamics). This is
done by proposing that our system of interest {2 is in thermal contact with a much
larger external system s — the thermal reservoir, sometimes called a “heat
bath”. The overall combined system (i = Qs ® € is governed by the micro-
canonical ensemble, with conserved total energy Fiy = Fres + E = Eyes, While the
energy E of Q) is allowed to fluctuate. The key qualitative idea is that, in thermo-
dynamic equilibrium, €2 has a negligible effect on the overall system. In particular,
the temperature of that overall system—and therefore the temperature of Q, by
intensivity—is set by the reservoir and remains fixed even as FE fluctuates. This
effectively generalizes the setup we used to analyze heat exchange in the previ-
ous section, where we saw that thermal contact causes a net flow of energy from
hotter systems to colder systems. When these systems are ‘natural’, this cools
the hotter one by heating the colder one.

The mathematical implementation of this argument, as developed by Gibbs,
proceeds by considering a well-motivated ansatz for the form of the thermal reser-
voir Qes. The goal, which will be useful to keep in mind as we go through the
lengthy analysis, is to show that the specific form of Q. is_ultimately irrelevant.
This will allow us to work directly with the system of interest, Q, independent of
the details of the thermal reservoir that fixes its temperature.

Without further ado, we take Q. to consist of many (R > 1) identical repli-
cas of the system ) that we’re interested in. All of these replicas are in thermal
contact with each other, and in thermodynamic equilibrium.® Choosing any one

6The thermal contact between any two replicas can be indirect, mediated by a sequence of in-
termediate replicas. This transitivity of thermodynamic equilibrium is sometimes called the zeroth
law of thermodynamics. It declares that if systems Q4 & Qp are in thermodynamic equilibrium
while systems Qg & Q¢ are in thermodynamic equilibrium, then 24 & Q¢ must also be in ther-
modynamic equilibrium.

MATH327 Unit 3 41 Last modified 13 Feb. 2022

IS Rl



of the replicas to be the system of interest, (2, the other R — 1 > 1 replicas col-
lectively form the thermal reservoir 5. Assuming we want to study reasonable
systems (2, this ansatz ensures that Q. is also reasonable, simply much larger.

An extremely small example of this setup is illustrated by the figures below,
where the system of interest is just N = 2 spins. For now we assume the spins
are distinguishable, so that |1 and 1] are both distinct micro-states. This means
that each individual replica has the A = 4 micro-states w; defined below.

Example:
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To form the overall system (i, we now bring together the R = 9 replicas shown
below. We draw boxes around each replica to remind us that they are allowed
to exchange only energy with each other, while the N = 2 spins are conserved
in each replica. We pick out one of these replicas (coloured red) to serve as the
system Q we will consider. The other 8 are the thermal reservoir Qs that fixes
the temperature of Q.
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A convenient way to analyze the overall system of R replicas, (O, is to
define the occupation number n; to be the number of replicas that adopt the
micro-state w; € 2 in any given micro-state of Q. The index i € {1,2,--- , M}
runs over all M micro-states of Q. In the example above, three of the replicas
have the micro-state w; =], meaning n; = 3. What are the occupation num-
bers {n,,ns,n4} for the other three w; in the figures above? Are all replicas are
accounted for, . n; = R?

VL= 25/ ‘u.?’/zl ’L’S

i‘ML tji()\

Normalizing the occupation number by R gives us a well-defined occupation prob-
ability, p; = n;/R with . p; = 1. This p; is the probability that if we choose a]
replica at random it will be in micro-state w;.

Now let us consider conservation of energy, which continues to apply to
the total energy Ly of the overall system ;. We assume that each replica’s
energy E, is independent of all the other replicas. This is guaranteed for the non-
interacting systems we will focus on until Unit 9, and also holds when interactions
are allowed within each replica but not between different replicas. The thermal
contact between replicas allows E, to fluctuate subject to conservation of Ei,
but there are at most M possible values E; it can have, corresponding to the A/
micro-states w; € . Some distinct micro-states w; # w; may have the same
energy I; = E;, which doesn't affect the analysis. This allows us to rearrange a
sum over replicas into a sum over the micro-states of Q:

R M
B =Y E.=) nE, (27)
r=1 =1

with the occupation number n; counting how many times micro-state w; appears
among the R replicas. We can assume that R and M are both finite, so we don’t
need to worry about rearranging infinite sums.

3.1.2 Partition function

Following Gibbs, we have already taken the thermal reservoir (s to consist
of R — 1 replicas of the system of interest, Q. The next step is to further simplify
the mathematics by assuming that the overall R-replica system  is fully speci-
fied by a fixed set of M occupation numbers {n;}. This is equivalent to assuming
that the occupation probabilities {p;} are constant in time, as a reflection of ther-
modynamic equilibrium. From Eq. 27, we see that this ensures conservation of
the total energy Eiy, and we can apply the micro-canonical tools we developed
in the previous unit. Recall our ultimate goal of showing that such details of the
thermal reservoir are irrelevant to the system (.
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Based on the conservation of Eyy, we want to determine the (intensive)
temperature of O, Which fixes the temperature of the system of interest, Q.
According to our previous work, to do this we first need to compute the overall
number of micro-states M, as a function of Eiy, from which we can derive the
micro-canonical entropy and temperature since the system is in thermodynamic
equilibrium. From the fixed occupation numbers n;, we already know how many
times each micro-state w; appears among the R replicas. To Wt we
just need to count how many possible ways there are of distributing the {n;}
micro-states among the R replicas.

If we consider first the micro-state w,, the number of possible ways of dis-
tributing n; copies of this micro-states among the R replicas is just the binomial
coefficient -

o) :%

Moving on to w,, We need to keep in mind that n, replicas have already been as-
signed micro-state wy, so there are only R —n, replicas left to choose from. What
is the resulting number of possible ways of distributing these n, micro-states?

) _ (=) =1y,
.(E;ﬂ)/ % (R”}m>,

Repeating this process for all micro-states {wq,ws, -+ ,wn}, and recalling that
(R—Y,n;)! = 0! =1, you should obtain a product that ‘telescopes’ to
R!
Mior = : (28)
n1! ’I’L2! cee ’TL]\/[!

From this we can see that the order in which we assign micro-states to replicas is
irrelevant, since integer multiplication is commutative.

Thanks to thermodynamic equilibrium, the entropy of the micro-canonical
overall system Q is

where the dependence on Ei, enters through the occupation numbers via Eq. 27.
With R > 1 andn; > 1foralli=1,---, M, we can approximate each of these
logarithms using the first two terms in Stirling’s formula,

13

N~ 1
log(N!) = Nlog N — N + O(log N) ~ Nlog N — N for 7 1. log W~ 57

In order for every occupation number to be large, n; > 1, the number of replicas
must be much larger than the number of micro-states of (2. As we have discussed
before, the number of micro-states M is typically a very large number, so with
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R > M we are formally considering truly enormous thermal reservoirs! This
enormity helps ensure that the detailed form of the reservoir will be irrelevant.

Applying the approximation above, what do you find for S(Eiy) in terms of R
and n;? What is the entropy in terms of the occupation probabilities p; = n;/R?
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In your result, the dependence on Ei, now enters through the occupation S
probabilities p;. In order to determine the temperature, we have to express S(Fiq) J/_. - /B-
directly in terms of Eiy. We do this by applying our knowledge that thermody- ! VE v
namic equilibrium implies maximal entropy.

Following the same steps as in Section 2.2.3, we maximize the entropy, now

with two Lagrange multipliers to account for two constraints on the occupation
probabilities:

M

Zpi =1
i=1

M M
>_milli= R piF; = B
i=1 i=1

Writing everything in terms of occupation probabilities, we therefore need to max-
imize the modified entropy

M

() oo )

i=1

M
S = —RZ]% logp; +
=1
e

Here we've chosen the sign of j for later convenience. What is the occupation
probability p;, that maximizes S?
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By defining a new parameter Z in terms of «, you should find

1
%"

As before, we need to fix the parameters {Z, B} by demanding that the two con-
straints above are satisfied. The first of these constraints is straightforward and
produces an important result:

Pr = e P, (29)

M M
1= Z =% Z e P e Z(B) =) e PB (30)
i=1

Equation 30 defines the canonical partition function Z(3), a fundamental
quantity in the canonical ensemble, from which many other derived quantities can
be obtained.

Z(B) still depends on the other as-yet-unknown parameter 3(Eio). Applying
our second constraint, Eq. 27, relates 5 to Eiy:

M M M :
> i1 B e f0b
Eo/=RS p.E; B, PP = RESL A (31)
> nbi= 7552 ST

This relation is a bit complicated, but will suffice for our goal of expressing the
entropy in terms of Eiy. Inserting Eq. 29 for p; into your earlier result for the
entropy, what do you obtain upon applying Egs. 30 and 317

M
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= Rlog 2 + B Ly I Feb.

There is a pleasant simplification when we take the derivative to determine the

temperature. Defining g’ = ﬁﬁ(]ﬂm), we have

19 0 102(8) .,

T aEtotS(Emt) OFot [ErotB + Rlog Z(B)] = B+ EBiatfS' + REW[;’ ‘

Using Eqg. 31 we can compute
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