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and subsequently imposing > . p; = 1. Here X is a parameter called the ‘multi-

——

plier’. In short, this procedure is valid because % = 0 once we impose ) .. p; = 1,
so that any extremum of S corresponds to an extremum of §—:-&:__02

_ Of(2)

Oy,

—

Recalling — o Zf

the modified entropy S?

0= 2 - 9%[ Z kb eX(2n )]

.—’fACO

, what is the probability p, that maximizes

A S 7 T
fy < e[

3\“

You should find that p;, is some constant that depends on . We don’t care about Il FeL
A; so long as we know p is constant, then we must have p, = =; in order to ///7/
satisfy >, p. = 1. As advertised, we recover Eq. 19 from our new definition of / o
thermodynamic equilibrium based on the second law. (1{ £l

e

2.3 Temperature

In the micro-canonical ensemble, the conserved internal energy and particle

number are fundamental, while the temperature (like the entropy) is a derived

quantity. As discussed below Eq. 20, in thermodynamic equilibrium such derived i
quantities are functions of the conserved {E, N}. In this section we will state TC ,/V)
the definition of temperature for the micro-canonical ensemble and apply this to a

spin system. In the next section we will check that our definition reproduces our
expectations from everyday experiences.

In thermodynamic equilibrium, the temperature 7'(E, N) in the micro-
canonical ensemble is defined by Se /@M

3?5: lo?M}A/ (22)

In words, the (inverse) temperature is set by the dependence of the entropy on
the internal energy for a fixed number of degrees of freedom.

el
T ok

Since this definition is not terribly intuitive, we will again gain insight by con-
sidering N spins in a line, in a magnetic field of strength . We saw above
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that £ = —H(n, —n_) for n, and n_ = N — n, spins respectively pointing up
and down. With N fixed, each (conserved) value of E defines a different micro-
canonical system, which we can expect to have a different number of micro-states

M(E), different entropy S(E) and different temperature I'(£). We will compute
the functional forms of each of these three quantities, starting with M (E).

Even though the total energy E remains fixed as time passes, individual
spins can ‘flip’ between pointing up or down. Such spin flips simply have to come
in pairs so that the overall n. both remain the same. As illustration, what are
representative spin configurations that produce the minimal energy Enin = Ey
and the next-to-minimal £,? What are E, and E; in terms of {N, H}, and how
many distinct micro-states are there for each of F, and E,?

M(E,)=] MIE =N =
TN 17T
A mm T 47}

e, =M £ = - (N-He K
_ - - (- H
Your results should generalize to
. N N1
("-\’ ]\/[(E:g> = <n+> = m (23)
- n!

To take the derivative in Eq. 22, we need to express n, in terms of {E,N}.
It will also be convenient to avoid the factorial operation, which is inconvenient to
differentiate. For N >> 1, we can accomplish both these goals by treating the spin
system as a random walk (in the space of its possible energies E) and applying
the central limit theorem:

+ Each spin adds to « _@ 2ny — N a'step’ of fixed ‘length’ 1. Our task
therefore coincides withthe special case we considered in Section 1.5.

+ We don’t impose any preference for positive vs. negative energies, meaning

p = g = % in the terminology of Section 1.5.

« With p = ¢ = 3, every one of the 2V possible configurations of N spins is
equally probable. Therefore the probability P,, that our overall ‘walk’ ends

4 n_) up producing a configuration with n, = 1 (z+ N) is simply the fraction of

those 2% states with this n., in Wthh we can recognize Eq. 23:

L<N > _MEBw) L (B, )= VP
ng

n4 = 21\] ’}’),+ 2N Ny

* To estimate P,, for N > 1, we apply the central limit theorem just as in

Section 1.5.3. In particular, we can re-use our computation that p = 2p—1 =
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" 2 £ x-~ 1#,“ ’ﬂ/
X ’(ﬂJ ~H
0 and g = 4pg = 1, to find

@)= 7o | 3] = v o o

T)~ X — | = ex —

e orN T | 2N N P | oNH?

for the probability distribution from which we want to extract P,, .

+ We saw in Section 1.4 that Peonsi(n4) = p(2ny — N)An, is a good approxi-
mation, and An, = 1. Therefore we find _'

2N- E2

What is the derivative of the log of Eq. 24 with NV fixed?

i — i("El + E-"(/()
OEIOgMN_ G m\, (1 F/,\/
p
e =E L

You should find the temperature
e
NH?

B

o

which in several ways does not seem to match our expectations from everyday
experiences: This 7" diverges as F — 0 for n, =~ n_, and it is negative whenever
ny < n_ to produce £ > 0. You can check that this ' < 0 corresponds to
the number of micro-states decreasing for larger internal energies, %“}; < 0. In
so-called natural systems, larger energies make more micro-states accessible,

producing % > 0 and a positive temperature. When H = 0, we also have E = 0

and T is ill-defined.

T~ —

N>1, (25)

Restricting our attention to positive temperatures with # > 0 and n, > n_,
we also see that this temperature cannot vanish. It is minimized by the most-
negative energy you found above, Tr,in = H > 0 for Eynin = —NH. The non-zero
minimum temperature is specific to spin systems, while some of the other oddities
result from the micro-canonical approach more generally. This will motivate turn-
ing to the canonical ensemble in Unit 3, but first we can check that some aspects
of the micro-canonical temperature defined in Eq. 22 do match our everyday ex-
pectations, at least in the ‘natural’ positive-temperature regime.

TR A L
it &

4
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2.4 Heat exchange

From Eq. 25 for the temperature of micro-canonical spin systems, we can
see that ‘natural’ positive temperatures correspond to negative energies, and
therefore increase as the energy increases by becoming less negative (with a
smaller magnitude). Such a direct relation between energy and temperature is
very generic, and we will study it in more detail when considering thermodynamic
cycles in a few weeks. For now, considering unspecified systems that exhibit this
natural behaviour, let's ask what would happen if we take two initially isolated
micro-canonical systems — Q4 and Qp with temperatures Ty and 75 in thermo-
dynamic equilibrium — and bring them into thermal contact.

In micro-canonical terms, the temperatures T4 and T's are derived from the
corresponding energies £4 and Eg, while thermal contact allows the two systems
to exchange energy (but not particles) as non-isolated subsystems of a combined
micro-canonical system Q¢. Once the two subsystems have been in thermal con-
tact long enough for the combined system to have reached thermodynamic equi-
librium, it will have temperature T. We can then re-isolate the two subsystems,
which will now have energies E’, and E} with (in thermodynamic equilibrium)
temperatures 7%, and T’;. This three-step procedure is illustrated below.

0, g
Ea Ep
Ty i
s

energylexchange

74 /
EA EB
/i

A Tp
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From everyday experience, we expect that this energy exchange will result
in a net flow of energy from the hotter system to the colder system, cooling the
former by heating the latter. We will now check that the micro-canonical definition
of temperature in Eq. 22 predicts this expected behaviour. We define

Eg =Es+ AEyg

AFEg
Eg

<1 S e {A, B},

for simplicity considering the case where the change in energy is relatively small.
We also know AEp = —AF, thanks to conservation of energy.

—

Equation 22 tells us that we need to consider the entropies as functions of
Es and Ej in order to connect the temperatures to any flow of energy. Because
we don’t change the number of particles in each system, we only need to consider
the energy dependence of the entropy. We assume S(E) is continuous and in-
finitely differentiable,® which allows us to expand each of the final entropies S(E%)
in a Taylor series,

oS
S(Eg) = S(Es + AEs) = S(Eg) + -

OF AES)

Es

neglecting all O (AE2) terms because we consider relatively small changes in
energy. What is the expression above in terms of the initial temperatures T's?

2)=L g(gs‘)f:S(ﬂ})*‘f =

From the second law of thermodynamics, we know that the total entropy of
these systems can never decrease as time passes:

S(Ba) + S(Es) §) S(Ba+ Es) = S(E}) + S(Bp). (26)
The final equality means that re-isolating the two subsystems doesn’t change the
entropy. This is because I, is not fixed and could take any value from zero to
E4 + Ep at the moment when the subsystems are re-isolated. Computing the
final entropy S(E,) + S(E%) therefore requires summing over all possible values
of E,, producing exactly the sum in Eq. 21 for the overall system. We will see
something similar when we consider the ‘Gibbs paradox’ in Unit 4.

5This assumption breaks down at a first-order phase transition, where we would need to be
more careful. We will learn about phase transitions towards the end of the term.

MATH327 Unit 2 39 Last modified 7 Feb. 2022



What do you find when you insert your linearized Taylor series into Eq. 26?

S(e) «S(Fg) = SEER) < AfA Sleg) ¢ Q—Ci‘m/*s
B N EE L
=0 v (5 g) e

(%)

<

¢,

Applying conservatlon o?energy should produce

(

Recalling from Section 2.2.3 that equality holds only in extremely special cases,
we can identify three possibilities consistent with this result. If 74 > Tj, then

L1 ) is negative and we will generically have AE, < 0, so that energy

Ta Tp

1 1

AE >o‘/
T4 TB> 4

flows out of the hotter system €24 and into the colder one. Our restriction to natural

systems means this flow of energy reduces the higher temperature, and increases
the lower temperature, bringing the temperatures of the two subsystems closer to
each other. Similarly, if T4 < T, we will generically have AE, > 0, meaning that
energy still flows from the hotter system Q5 into the colder one, again reducing the
difference in their temperatures. We can finally conclude that 7y = T is the very
special case where there is no energy flow, AEs = 0, keeping the temperatures
the same. All of this is exactly what we would expect based on our everyday
experience of temperature as an intensive quantity.
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