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2.2 Entropy and its properties

2.2.1 Definition of entropy

We can gain further insight into thermodynamic equilibrium by considering
a famous derived quantity.

The entropy of a statistical ensemble 2 with a countable number of micro-

states M is defined to be .

= Zpi log p;, (20)
i=1

where p; is the probability for micro-state w; to occur. Unless otherwise specified,
“log” indicates the natural logarithm with base e.

When the system under consideration is in thermodynamic equilibrium, we
expect derived quantities such as the entropy to be stable over time, even as
different micro-states are probabilistically adopted. This implies that such de- iFeL
rived quantities are functions of the conserved quantities that are the same for A
all micro-states. Therefore, for the micro-canonical ensemble, the equilibrium en- //
tropy S(F, N) is a function of the conserved energy and particle number. /

By inserting Eq. 19 into Eq. 20 you can quickly compute a simple expression [l Fe L-
for the entropy of a micro-canonical ensemble in thermodynamic equilibrium:

N
5’ %%\7/\,\'“ 102 f(:M\
ﬁo‘\'leﬂ”t"“é Eq

Your result should depend only on the number of micro-states M, and diverge
as M — oo. While the energy E and particle number N are not explicit in this
expression, { £, N, M} are inter-related and might be expressed in terms of each
other depending on the particular situation under consideration. For example,
what is the equilibrium entropy of the system of IV spins considered above, if the
magnetic field is turned off, H = 0? What is the entropy if E = 0 with H > 0
(which requires n, = n_)? ” '

S’; '62 M ~ .93 Z A/ )0} (H.’/O - E’O)
\ \
H>0 £70 5';(02/1/\ ? a}}: . (\ :I 2 ]oa[(lm\,]“ D\\n‘a\/’»\

— q\lé/%

N’ﬁ M:O’%Si(ot@(/lj() ) H>0 Sgla(ﬁ);wy i(a';(m
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2.2.2 Extensivity

The increase in entropy for an increasing number of micro-states M is a
reflection of entropy being an extensive quantity. Extensive quantities are formally
defined by considering how they behave if two isolated systems are analyzed as a
single system—while still remaining isolated from each other, exchanging neither
energy nor particles. This is clearest to consider through the specific example
shown below of two isolated spin systems, Q; & Q,, respectively characterized by
the corresponding energies E; & F, and particle numbers N; & N,. To simplify the
subsequent analysis, we can assume that both systems are placed in magnetic

fields with the same H, so that Eg = —H <nf) - n(_s)> for S € {1,2}.

ﬂ\ “(2‘7.

| E N, Ey N

Ut [

H

We can take system ), to have M; micro-states with probabilities p; while
system , has M, micro-states with probabilities ¢;. As discussed above, each
Mg is determined by Es and Ng. Then the entropies of the two systems are

S1 = —%pi log pi Sy = _Qk log g

] |

Now we keep these two (sub)systems isolated from each other, but consider
them as a combined system .., as illustrated above. In order to compute the
entropy 5142, We need to figure out the number of micro-states M, 5 the combined
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system could possibly adopt, and then determine the corresponding probability
for each micro-state. Both steps are simplified by the systems being isolated from
each other, so that they are statistically independent. Specifically, with subsys-
tem Q, in any one of its M; micro-states w§1), subsystem ), could independently
inhabit any of its M, micro-states, implying M., = M, M,.

Similarly, statistical independence means that the combined probability of
subsystem 2; adopting micro-state w( ) while subsystem 2, adopts w(2) is the
product of the individual probabilities, Pid- We can check that this is a well-
defined probability, with

My @ My Mo
Z pidr, = § § biqr = [ ] [Z QA] = 1= :/

Miyo i=1 k=1

Inserting the p/\obability piqx into Eq. 20, and recalling log(a - b) = loga + logb,
what is the combined entropy S;, of these two independent subsystems?

St = *%L an to%&m T Tl Pt%‘i AL

\ Q)Lalf \G?q
ofa 1
=546,

You should find that the total entropy is just the sum of the entropies of the two
isolated systems, which is also how the energies and particle numbers behave,

E1+2 = El + EQ N1+2 = El + ]_\LQ

This behaviour identifies the energy, particle number and entropy as exten-
sive quantities, which are defined to be those that add up across independent
subsystems. This can be contrasted with intensive quantities, which are de-
fined to be independent of the extent of the system, and hence the same (on
average) for subsystems as for the combined system. Temperature and density
are everyday examples of intensive quantities, though we will see below that the
micro-canonical approach introduces some subtleties. It is possible for quantities
to be neither extensive nor intensive: My, = M; M, is an example we've already
seen.

Finally, suppose that each subsystem is independently in thermodynamic
equilibrium, with finite A; and M,, implying

1 1
) = S
Pi= LA VA
Sy = log M, Sy = 100" M.
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As a consequence we can show that Q. is also in thermodynamic equilibrium,

since the probabilities
1 1

MiM; ~ Mips

are identical every one of its micro-states. In this situation it's even easier to see
Sl+2 = log (]\/[11\/[2) = 10g My + log My = 51 + .9s.

—

Pigr =

2.2.3 Second law of thermodynamics

Let’s continue considering the two spin (sub)systems discussed above, with
one significant change: We suppose the two subsystems are now able to ex-
change energy (but not particles) with each other. We'll say they are in thermal
contact with each other, rather than being fully isolated. We'll also wait long
enough after establishing thermal contact for the combined system to reach equi-
librium. This is illustrated by the figure below:

Q.

s
E,N, E, N, H

SRAERARRAREY:

The total energy E = E; + E, remains conserved, so the overall system ( is
still governed by the micro-canonical ensemble. However, the individual energies
E; and E, can now change as time passes, meaning that each subsystem is no
longer micro-canonical.

The overall (2 is not the same as the combined 2,.,, considered above. We
need to reconsider the total number of micro-states M that Q could adopt, which
is much more difficult than before because we can no longer apply statistical
independence. Our key remaining tool is the conservation of the total energy E.

Considering a micro-state in which the N; spins contribute energy e, to the
total, we know that the NV, spins must contribute the remaining £ — e;. Our work
above implies there are M,, = M M) micro-states providing this particular
distribution of energies, where Me(ll) is the number of micro-states of the formerly
isolated subsystem 2, with energy e;, and Mﬁel similarly corresponds to ), with
energy Y — e;. We also know that it's possible to have ¢; = E;, since that’s
the initial energy of ; before it was brought into thermal contact with €,. When
e1 = I, we have Mg, = M;M,, covering all the micro-states of the combined
.. When the two subsystems were isolated. In addition, we also have to count
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any other micro-states for which e; # Ej:

M=>"MPMP, =MM+ > MPOM, > MM, (1)
er T g

Equality holds when e; = F; is the only possibility, which is an extremely special
case (in which the two subsystems remain individually micro-canonical, with fixed
Ey, and E,). This is all we can say in full generality, without specifying more
details of a particular example, but it allows us to obtain a famous result for the
total entropy S of Q in thermodynamic equilibrium:

_:S;: log M _2_log (]\/[1]\/[2) = Sl+2-

This is a form of the second law of thermodynamics,

S 2 S142 = 51+ S,.

In words, whenever initially isolated (sub)systems in thermodynamic equilibrium
are brought into thermal contact with each other and allowed to exchange energy,
the total entropy of the overall system can never decrease. Indeed, it generically
increases except in extremely special cases.

Though we won’t go through a more general derivation here, it turns out that
the total entropy never decreases (and generically increases) as time passes,
under any circumstances. This has many far-reaching consequences, the first
of which is a more general definition of thermodynamic equilibrium that (unlike
Eqg. 19) will also apply when we consider statistical ensembles other than the
micro-canonical ensemble. For simplicity we assume that any system under con-
sideration has a finite number of micro-states, which means that its entropy is
bounded from above. To motivate the definition below, note that the overall sys-
tem € may have undergone an equilibration process to reach its thermodynamic
equilibrium after its two (independently equilibrated) subsystems were brought
into thermal contact—and in this process the entropy was non-decreasing.

A system is defined to be in thermodynami ilibrium if its entropy is
maximal.

We can derive Eq. 19 from this definition. All we need to do is maximize
the entropy S = — > . p;logp; subject to the three micro-canonical constraints
of conserved energy, conserved particle number, and well-defined probabilities
>:pi = 1. It turns out that only the final constraint needs to be incorporated into
fhe maximization, through the method of Lagrange multipliers. As a reminder,
this method involves maximizing the modified entropy

M M M
S(A) =§+@ (Zm - 1) = - pilogpi+ A (Zp - 1) )
i=1 i=1 i=1

e i

MATH327 Unit 2 34 Last modified 7 Feb. 2022




and subsequently imposing ). p; = 1. Here A is a parameter called the ‘multi-

plier’. In short, this procedure is valid because %; = 0 once we impose ) . p; = 1,

so that any extremum of S corresponds to an extremum of S = S(\ = 0).
_\—‘

of (x)

Tk

——

Recalling a%k Z ) = , What is the probability p, that maximizes

the modified entropy S?

S P

= *}oy . — EE_ + N = -fgz P ~1+)=0

P % f/
f < ex N1 = T 7
You should find that p; is some constant that depends on A\. We don't care about Il FeL
A; so long as we know p; is constant, then we must have p, = - in order to //;2//
satisfy 3, px = 1. As advertised, we recover Eq. 19 from our new definition of
thermodynamic equilibrium based on the second law. //

2.3 Temperature

In the micro-canonical ensemble, the conserved internal energy and particle
number are fundamental, while the temperature (like the entropy) is a derived
quantity. As discussed below Eq. 20, in thermodynamic equilibrium such derived
quantities are functions of the conserved {E, N}. In this section we will state
the definition of temperature for the micro-canonical ensemble and apply this to a
spin system. In the next section we will check that our definition reproduces our
expectations from everyday experiences.

In thermodynamic equilibrium, the temperature T'(F, N) in the micro-
canonical ensemble is defined by

e
7= 55| (22)

In words, the (inverse) temperature is set by the dependence of the entropy on
the internal energy for a fixed number of degrees of freedom.

Since this definition is not terribly intuitive, we will again gain insight by con-
sidering N spins in a line, in a magnetic field of strength H. We saw above
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