end up at its starting point 2 = 0. (As in Section 1.4, we can extract this probability
by integrating the distribution p(z) over the interval —0.5 < 2 < 0.5.) Instead,
the interval within which we can expect to find the walker (with a constant ‘one-
sigma’ or 68% probability) steadily grows, —D+/t < o < D+/t, with characteristic
dependence on the square root of the time the diffusive process lasts.

Except in the trivial cases p = 0 or ¢ = 0, diffusion also occurs when the drift
velocity is non-zero. This is shown in the two figures below, considering a low but

non-zero drift velocity on the left, and a high drift velocity on the right. v, 2P |
dr
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In the figure on the left, each individual probability distribution looks similar to
the corresponding one for vy, = 0, but now their central peaks (and expectation
values (z)) drift steadily to the right. The distributions in the figure on the right
look a bit different, but still diffuse to exhibit shorter and broader peaks as time
goes on.

When p # l2 so that (z) # 0, it is interesting to compare the drift in the
expectation value against the growth in fluctuations around (z) due to diffusion.
We can do this by considering the following relative uncertainty:

a2y | V@ i szr) T Gx
: Wy N \zp! ) b\ T 9
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1
-
<><>‘/\/(2()*() Lt '

You should find that at large times this ratio vanishes proportionally to 1/v/% o
1/4/N. Although the absolute uncertainty grows by diffusion, Az = D+/t, for
var # 0 the linear drift in the expectation value becomes increasingly dominant as
time goes on.
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1.5.3 Applying the central limit theorem \~ I

Based on our work in Section 1.4, we can see how to apply the central limit
theorem to analyze this fixed-step-length random walk in one dimension, for large
numbers of steps N or equivalently large times ¢ = NAt. Each step in the ran-
dom walk can be considered an independent and identically distributed random
variable z;, analogous to each spin of the roulette wheel. The corresponding
probability space involves only two possible outcomes: a step of length £ = 1 to
the right or to the left with probability p or ¢, respectively. From this we can easily
compute the W of the single-step process:

po={(z;) = ZKL- ?L
(

))‘04-(’”(( = ?\P" = é—f«

o= ) fagt= % = (4"~ Y

fpll-p) = g = X

The final position 2 of the walker after N steps is exactly the sum over these
z; given in Eq. 9. Its probability distribution p(z) from the central limit theorem is
therefore obtained directly from these single-step 1 and o2, which we can also

express in terms of the drift velocity and diffusion constant: z 9 ﬁ/
2, 7=t
1 (:L’~N(2p-*1)):|
Pa) = e exp [— o
o (@) ( )SM 0, < Ve
_ N Vet
" VoD% ¥ { 2D } ’ )

which was used to produce the three figures above. We could have jumped
straight to the final line by considering Eq. 10 and noting

’Udrt = N(2p — 1)

2
D*t = 4pqE = No?2. (18)

While this dependence on p and ¢ is specific to the particular fixed-step-length
random walk we're currently considering, the results vg,t = Np and D%t = No?
in Eqg. 18 turn out to be generic. This is remarkable, because it means that the
diffusive process as a whole is determined entirely by the single-step mean and
variance. So long as p and o2 are finite, we end up with Eq. 17 as the large-t
probability distribution for any markovian random walk in a single variable x.

This result is related to the generality of the law of diffusion (Eq. 16), which
we can recognize in the structure of Eq. 17. Since ¢ > 0, the exponential in the
gaussian distribution p(z) peaks at the drifting expectation value z = vyt = (z).
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The factor (2 —wvq,t)? simply quantifies the distance from this peak. As t increases,
so does the factor 2D?¢ dividing this (z — v4.1)?, meaning that a larger distance
from the peak is needed for the overall argument of the exponential to reach a
given value—in other words, the peak becomes broader. This in turn requires a
shorter peak, reflected in the % in the overall coefficient, which is set by requiring
J p(z) dz = 1. In other words, the law of diffusion holds whenever the central limit
theorem is applicable. This requires that the mean and variance of the single-step
process are finite, and in the computer project we will numerically investigate the
anomalous diffusion that occurs when this condition is not satisfied.
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Unit 2: Micro-canonical ensemble

2.1 Statistical ensembles and thermodynamic equilibrium

We begin this unit by formalizing the concept of statistical ensembles, intro-
duced by J. Willard Gibbs in the early 1900s. Building on the probability founda-
tions laid above, we will be interested in ‘experiments’ that simply allow a collec-
tion of degrees of freedom to evolve in time, subject to certain constraints. At a
given time ¢, the arrangement of these degrees of freedom defines the state w,
of the system.

As a concrete example, consider a system of spins — arrows that can point
either ‘up’ or ‘down’ — arranged in a line. Such spin systems will appear several
times in the remainder of this module, since in addition to obeying simple mathe-
matics analogous to flipping coins, spins also serve as good models of physical
systems such as magnetic molecules. What would be a representative state (or
configuration) for a system of N = 8 spins? How many distinct states are there
or this system?

LA M
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At a different time ¢,, the system’s state w, is generally different from w.
However, there are some measurements we can perform that always produce
the same outcome even as the system’s state changes over time. These mea-
surements define conserved gquantities, such as the number of spins considered
in the example above.

Another important conserved quantity is the Wan iso-

lated (or ‘closed’) system,

The conservation of energy is presumably a familiar concept, and you may also
know that it can be rigorously proven through Emmy Noether’s first theorem.®
Because statistical physics was first developed when conservation of energy was
primarily an empirical observation rather than a proven result, it was given a more
grandiose name: the first law of thermodynamics. Another way of stating the
first law is that any change in the internal energy of one particular system
must be matched by an equal and opposite change in the energy of some other
system with which €2 is in contact. This will be important when we consider ther-
modynamic cycles later in the term.

3There are complications when considering the dynamical space-time of general relativity, but
that’s beyond the scope of this module.
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For now, let’s return to the example above, and endow the spin system with
an internal energy by placing it in a magnetic field of strength H. That is, if a
spin is parallel to the field, it contributes energy —H to the total energy E of the
system. If a spin is anti-parallel to the field, it instead contributes energy H. For
later convenience, we define a positive magnetic field H > 0 to point upward, and
also define n to be the number of spins pointing upward — parallel to the field
and therefore contributing negative energy. Similarly, the remaining n_ = N — n.,
downward-pointing spins are anti-aligned with the field and contribute positive
energy. What is the total energy F of the system in terms of n, and n_? What is
E for the representative 8-spin state you wrote down above? What fraction of the
states of the spin system have this energy?

Ez -Huao «H(N-n)

If instead we consider N ~ 102 hydrogen (H,) molecules in a container, we
can write a simple expression for the internal energy E by treating each molecule
as a point-like_particle, with no size or structure. In this case each molecule
contributes only its kinetic energy to £,

m ZN 1 =
n=1 n=1

where 1, is the velocity of the nth molecule, p,, = m, is its momentum, and all
molecules have exactly the same mass m.

As forecast at the start of the module, we treat the time evolution of any
given system as a stochastic process in which the system probabilistically adopts
a sequence of states w; € Q:

wl——)gd_z-—)LU3~—>W4—)"'

This approach is a matter of practicality rather than one of principle. In principle,
Newton’s laws would allow us to predict the exact time evolution of (say) 10?3
hydrogen molecules, but only by specifying 10 initial conditions and solving 1023
differential equations. Since we cannot hope to record so much information or
carry out so many computations, we instead apply probability theory in order to
analyze these systems.

This leads us to the following core definition: A statistical ensemble is the
set of all states 2 = {wy, ws, - - - } that a system can possibly adopt through its time
evolution. Each state w; has some probability p; of being adopted by the system,
SO We can recoghize a statistical ensemble as a probability space.
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Because these states w; depend on the ‘microscopic’ degrees of freedom
that compose the overall system, we will refer to them as micro-states from now
on. From the definition of probability in Section 1.1, we have the requirement
>.;pi = 1, which simply means that the system must be in some micro-state
&t any point in time. The fact that time evolution cannot change any conserved
quantities, as discussed above, means that such conserved quantities charac-
terize statistical ensembles. We will define different types of statistical ensemble
that depend on the specific set of conserved quantities.

First we define the micro-canonical ensemble to be a statistical ensemble

characterized by conserved internal energy E and conserved number of degrees
of freedom N — which we will call particle number for short.

According to the discussion above, this means that a system governed by
the micro-canonical ensemble is isolated in the sense that it cannot exchange
energy or particles with any other system.

Now that the micro-canonical ensemble is defined, we can connect it to our
intuition from everyday physical systems. Let’s consider a collection of particles
moving around and bouncing (or ‘scattering’) off each other in a sealed container.
To a first approximation, this should describe the behaviour of air in a room, which
our lived experience indicates is spread quite uniformly throughout the room in a
way that is stable as time passes. We do not expect all the air in a room to be
concentrated in any one corner, nor do we expect strong collective gusts of wind
without some clear external influence.

These qualitative expectations illustrate the idea of thermodynamic equi-
librium, an axiomatic concept in statistical physics.* We can mathematically de-
fine thermodynamic equilibrium through the probabilities p; that appear in the
micro-canonical ensemble.

A micro-canonical system ) with M/ micro-states w; is in thermodynamic
equilibrium if and only if all probabilities p; are equal. If M is finite, the requirement
> pi = 1 implies

1
pi = M

S o S

(19)

The full meaning and significance of this definition are not immediately obvi-
ous, and we will continue exploring them through consideration of derived quan-
tities such as entropy and temperature. First, it's important to emphasize that this
equilibrium is dynamic: There is not a single ‘equilibrium state’ that the system
approaches. Instead, the equilibrium system continues probabilistically adopting
all possible micro-states as it evolves in time.

40ur expectation that physical systems generically evolve towards thermodynamic equilibrium
as time passes is more formally expressed as the ergodic hypothesis.
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2.2 Entropy and its properties

2.2.1 Definition of entropy

We can gain further insight into thermodynamic equilibrium by considering
a famous derived quantity.

The entropy of a statistical ensemble Q with a countable number of micro-

states M is defined to be <

S=- Zpi log p;, (20)
=il
where p; is the probability for micro-state w; to occur. Unless otherwise specified,

“log” indicates the natural logarithm with base e.

When the system under consideration is in thermodynamic equilibrium, we
expect derived quantities such as the entropy to be stable over time, even as

different micro-states are probabilistically adopted. This implies that such de- 9 Feol.
rived quantities are functions of the conserved quantities that are the same for s
all micro-states. Therefore, for the micro-canonical ensemble, the equilibrium en- ///
tropy S(%, N) is a function of the conserved energy and particle number. //

By inserting Eq. 19 into Eq. 20 you can quickly compute a simple expression
for the entropy of a micro-canonical ensemble in thermodynamic equilibrium:

Your result should depend only on the number of micro-states A/, and diverge
as M — oo. While the energy E and particle number N are not explicit in this
expression, {E, N, M} are inter-related and might be expressed in terms of each
other depending on the particular situation under consideration. For example,
what is the equilibrium entropy of the system of N spins considered above, if the
magnetic field is turned off, H = 0? What is the entropy if £ = 0 with H > 0
(which requires n, =n_)?
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