


1.5 Diffusion and the central limit theorem

1.5.1 Random walk on a line

As a more general application and illustration of the central limit theorem,
let's consider the behaviour of a randomly moving object. Such random walks
appear frequently in mathematical modelling of stochastic phenomena (including
Brownian motion), and can be applied to movement through either physical space
or more abstract vector spaces. They are examples of Markov processes, in
which the state of the system (in this case the position of the ‘walker’) at any time
probabilistically depends only on the system’s prior state at the previous point
in time—there is no ‘memory’ of any earlier states. The resulting sequence of
system states is known as a Markov chain, since each state is produced from the
one before, like links in a chain.

To start with a simple case, let’s consider a random walker that moves only
in a single spatial dimension—to the left or to the right on a line—and can only
take 'steps’ of a fixed length, which we can set to £ = 1 without loss of generality.
At each point in time, the walker takes either a step to the right (R) with probability
p or a step to the left (L) with probability ¢ = 1 — p. We will further assume that
each step takes a constant amount of time At, so a walk of N steps will last for
total time

t = NAL. (11)

As an example, for N = 6 a representative walk can be written as LRLRRR,
which leaves the walker.a = 2 steps to the right of its starting point (z = 0). The
opposite walk RLRLLL would leave the walker at z = —2, with negative numbers
indicating positions to the left of the starting point. How many possible walks
are there for N = 6, and what is the probability (in terms of p and ¢) for these
particular walks LRLRRR and RLRLLL to occur? How many possible walks are
there for general N, and what is the probability for any particular walk involving r
steps to the right to occur?
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We will be interested in the walker’s final position « at time ¢ after it has taken
N steps. Just as for the possible gains after N spins of the roulette wheel consid-
ered in Section 1.4, there are a range of possible final positions z, each of which
has some probability P(z) of being realized. The key pieces of information we
want to determine are the expectation value (z) and the variance (z2) — (z)* that
indicates the scale of fluctuations we can expect around (z) as the N-step walk
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is repeated many times from the same starting point. (We reserve the variables y_
and ¢? for the mean and variance (respectively) of the single-step process, which
will appear when we apply the central limit theorem in Section 1.5.3.)

Suppose the N total steps involve r steps to the right. What is the final
position z of the walker in terms of N and r? Check your general answer for the
cases N = 6 and r = 4, 2 considered above.

x =W (H-r) = LN

(W5, v=) 2 X7 TS

el reLe xe 2B s

This relation makes it equivalent to consider either the probability P. of taking r
steps to the right, or the probability P(x) of ending up at final position 2. This
equivalence will not hold for more general random walks in which the ste;ﬂength
is no longer fixed and ¢; can vary from one step to the next.

Because the order in which steps are taken does not affect the final position
x, to determine the probability P(z) we have to count all possible ways of walking [
to 2. For N = 6, what are all the possible walks that produce = = 4, and what is v
the corresponding probability P(4)?
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" Your answer should have a factor of 6 that corresponds to the binomial coefficient
(r\ o gg) = 6. In terms of this binomial coefficient, what is the general probability P.
that an N-step walk will include r steps to the right in any order?
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Given this probability P,, we can apply Egs. 2-3 to find the expectation value
(z) and the variance (z?) — (z ) As a first step, what are (z) and (?) in terms of

the expectation values (r” Z ™ P,?
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Now we need to calculate the necessary (r"). An efficient way to do so is to
define the generating function —

N
=3 &R, (12)
- r=0

This approach introduces a parameter 9 that we subsequently remove by setting
§ = 0. For example, T(0) = > _, P = 1. What do you obtain upon taking
derivatives of the generating function and then setting § = 0?
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For the current case of a fixed-step-length random walk in one dimension,
the probabilities P, produce a simple closed-form expression for the generating
functional:

T((J)—Tz; T"P Zer9< )\ :(egp—I—q)N, (13)

. ) 0
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It's straightforward to take the necessary derivatives of Eq. 13, which simplify
pleasantly since (e’p+4q)|,_, =p+q=1:
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Insert the resulting (r) and (r?) into the relations derived above:
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In the end, you should obtain

S

() = N(2p—1) <3:2> — <x)2 = 4Npq.‘/ (14)

We can check that this (z) produces the expected results in the special cases
p =0, 1/2 and 1, while the variance also behaves appropriately by vanishing for
both p =0and 1.

1.5.2 Law of diffusion

It's possible to gain a more intuitive interpretation of the results in Eq. 14 by
expressing them in terms of the total time ¢ taken by the random walk (Eq. 11).
Inserting N = t/At into Eq. 14,
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we see that the expected final position of the walker depends linearly on time,

with drift velocit
_p-1_ NEp-1) _ (x)
e At t ot (15)

The sign of the drift velocity indicates whether the walker is drifting to the right
(p > 1) or to the left (p < 1). The standard deviation of the final position of the
walker provides a measure of the scale of fluctuations (or ‘uncertainty’) around
the expectation value that we should anticipate:

ba = flat) — (" =2V Fpa =2, 203, < VE

which increases proportionally to v/2. This is a particular realization of a very
general result.

The law of diffusion states that
Az = DV, (16)

ety

where D is the diffusion constant and the uncertainty Az is sometimes called

the diffusion length.

The diffusion constant D = 2,/%L that we computed above is specific to
the current case of a fixed-step-length random walk in one dimension. The be-
haviour it describes is illustrated by the figure below, which plots the ¢-dependent
probability distribution p(z) that we’ll soon derive using the central limit theorem
(Eq. 17). What we can see already, even before completing that derivation, is that
the probability distribution steadily spreads out—or diffuses—as time passes:
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Here we are considering the special case p = ¢ = %, for which the drift velocity
var = 0 and the expectation value is always (z) = 0 for any walk time ¢. However,

as time goes on, there is a steady decrease in the probability that the walker will
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end up at its starting point 2 = 0. (As in Section 1.4, we can extract this probability
by integrating the distribution p(z) over the interval —0.5 < 2 < 0.5.) Instead,
the interval within which we can expect to find the walker (with a constant ‘one-
sigma’ or 68% probability) steadily grows, —Dv/t < « < D+/%, with characteristic
dependence on the square root of the time the diffusive process lasts.

Except in the trivial cases p = 0 or ¢ = 0, diffusion also occurs when the drift
velocity is non-zero. This is shown in the two figures below, considering a low but
non-zero drift velocity on the left, and a high drift velocity on the right.
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In the figure on the left, each individual probability distribution looks similar to
the corresponding one for vq, = 0, but now their central peaks (and expectation
values (z)) drift steadily to the right. The distributions in the figure on the right
look a bit different, but still diffuse to exhibit shorter and broader peaks as time
goes on.

When p # 1 so that (z) # 0, it is interesting to compare the drift in the
expectation value against the growth in fluctuations around (z) due to diffusion.
We can do this by considering the following relative uncertainty:

Az _
(@)

You should find that at large times this ratio vanishes proportionally to 1/v/% o
1/v/N. Although the absolute uncertainty grows by diffusion, Az = D+/%, for
var 7 0 the linear drift in the expectation value becomes increasingly dominant as
time goes on.
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