We can generalize the concept of measurement by introducing a unique
number as a label to characterize each state w in the set Q2. This would provide
a label function L(w) as a random variable. Our condition of uniqueness makes
L(w) isomorphic, so that the label can be used interchangeably with the full state,

w +— L(w).
While the measurements X (w), we consider will generally not produce a unique
number for each w, we will design them precisely to remove irrelevant informa-
tion that doesn’t interest us. Ignoring that irrelevant information leaves us free to
interchange the set of outcomes_A for the set of states ()., (Some textbooks may
never distinguish between A vs ) in the first place, though this can be a source
of confusion.)

Only a couple of definitions remain. The next is to define an event to be
any subset of the set of all outcomes A. For example, events resulting from
rolling a die could include (i) rolling a 6, (i) rolling anything but a 6, (iii) rolling any
even number, and many more. Collecting all events of interest defines the set of
events (or event space) .F.

We are now prepared for the final foundational definition in this section, the 3l Tan,
///

probability P of an event in the set 7. Mathematically, P is a measure function, =
z
P:7=>[01, / Feb.

which must satisfy the following two requirements:

1. The probability of a countable union of mutually exclusive events must equal
the sum of the probabilities of each of these events.

2. The probability of the outcome space (F =_A) must equal 1 (even if A is
uncountable). This simply means that the experiment £ must produce an
outcome. If no outcome were produced, it would not make sense to say that
the experiment had occurred.

Combining the outcome space, event space and probability measure gives us a
probability space (A, F, P).

For example, consider an experiment that can only produce N possible
states, so that

Q= {wi,ws, "+ ,wN}.

If two states are identical, w; = wj, they must produce the same measurement

outcomes X (w;) = X (w;), which implies the contrapositive

X(w) # X(w;) = wiFwj

On the other hand, as described above, it is possible to have X (w;) = X (w;) even
when w; # w;. This means that the size n of the outcome space A may be smaller
than the size of Q, n < N. We can write

A={X1,Xo, -+, X,},
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where each X, is distinct and its index does not necessarily correspond to that
on w;. We can take the individual X, themselves to be the events we're interested
in, choosing the event space

F={X1, X, -, Xn} =A (1)

These events are all mutually exclusive by construction, so if we assign them
probabilities
P(Xo)=py fora=1,---,n,

then the above requirements on probabilities demand that for any cif_@we have
P(Xa or Xp) = po + g

P(A) = P(X;0r X5 0f -+ Of Xp)=» pa=1 &
a=1 -

-

Similarly choosing an event space F = A for the six-sided die considered in
an earlier gap, what are the probabilities p; through ps that result from assuming
the die is fair?

For - fFP Y

Again taking F = A for the case of tossing a coin four times, what are the prob-
abilities p, that result from assuming the coin is fair? If we instead consider the
event space

F = {equal number of H and T, different numbers of i and T'},

what are the probabilities pequai @and pair for the two events in this 77?

!
™ T
HRTT TTHH e
HTHT TH\H > -G/‘ > }‘ PI“" I, re}(uu.' ’ ?
o T T 7 7%
|
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The standard European roulette wheel
shown to the left (source) has 37 pock-
ets labelled “0” through “36”. 18 of
these pockets are coloured red, 18 are
coloured black and 1 (pocket “07) is
coloured green. Note that measuring the
label automatically provides the colour.

What is the outcome space A for a spin of the roulette wheel? With 7 = A, what
are the probabilities p,, for a fair wheel? With

F = {ballin ared pocket, ball in a black pocket, ball in the green pocket},

what are the corresponding probabilities pred, Poiack @Nd Pgreen?
Ac %0/ (/7‘, - 33

Lol L
(9

\4 _ ! P& s
5 - ( —_— 'f 4 4
p = 7 xle V?ﬁ'( -t rk/qc(L 33 e !
TR L
fprtan = 3

The process of assigning probabilities to events is called modelling. In the
gaps above we saw above that symmetries are a powerful way to constrain prob-
abilities. The symmetry between the six sides of a fair die, the two sides of a fair
coin, and the 37 pockets of a fair roulette wheel each sufficed to completely fix
the corresponding probabilities p,.

Modelling can also be guided by empirical data obtained by repeating an
experiment many times. For example, if we don’t know whether a set of dice are
fair, we will be able to infer their probabilities p, (with a certain confidence level)
by rolling them enough times. The need to repeat the experiment many times
comes from the law of large numbers, to which we now turn.

1.2 Law of large humbers
Let’s return to the setup leading to Eq. 1 above, with

f:A:{XlaXZa'“ aXn}

for finite n, and probabilities p, = P(X,) that obey

n
Pa = [Oa 1] Zpa =1.
a=1
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We can generalize this notation by writing instead

> Peo -1,

XeA

—_—

which provides simple expressions for the mean . and variance o2 of the proba-
bility space,

p=X)=> X PX) )
o* = (X —p)*) =) (X — w? P(X). (3)
e XA

—

The angle bracket notation indicates the expected (or expectation) value with
general definition

(F(X) =D f(X) P(X), (4)

XeA

which is a linear operation,
(e f(X) + 9(X)) = c(f(X)) + (9(X)) .

The square root of the variance, Vo2 = o, is the standard deviation. What is o
expressed in terms of (X?) and (X)°?

0’7— = < \X'_/A\}> ~ < X-"’z\K/A +ML§ - <Xz> - 2M<X>~{'_M‘L.
- (@Y A0SR
DL ER< Y

7= PS¢0

We now define a new experiment that consists of repeating the original ex-
periment R times, with each repetition independent of all the others. Using the
same measurement as before for each repetition, we obtain a new outcome space
that we can call B. For R = 4, what are some representative outcomes in the set
B? What is the total size of B?

. {‘X’L . Xv\hg EL
A g ( #Af 7
E 2 % X,X(X|X,I ,)ﬂ:'Y); NV menm T
.><L{><|X.,.LX,, T “VIK
XWX'X,X/ ’\Q
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Each outcome in B contains R different X ¢ A, one for each repetition
r =1,---,R, and each with mean (X®) = 4 and variance ((X) — p)?) = o2
Considering the case R = 4 for simplicity, any element of B can be written as
xPxPxPx™ e B with corresponding probability

> 7 4
s RS - () () 1) 4 (32),

using subscripts to distinguish between the single-experiment (A4) and repeated-
experiment (B) probability spaces.

Averaging over all R repetitions defines the W

R
|
_ -(r)
XR_REjA. (5)

—r=1

Unlike the true mean p, the arithmetic mean X is a random variable—a number
that may be different for each element of B. That said, Xz and u are certainly | Peb.

" 4

related, and so long as the standard deviation exists—that is, so long as o2 is/{,

finite—this relation can be proved rigorously in the limit R — co.?

Here we will not be fully rigorous, and take it as given that

i 3 ¢ 0'2 fOl"I,: ]
(00 =) (0 -y = ooy = { 7 12T

where the Kronecker delta ¢;; = 1 for i = j and vanishes for i # j. This is a
consequence of the assumed independence of the different repetitions. Using
this result and the relation (7, a;)(>°;0;) = >, ; (a:b;), express the following
quantity in terms of o and R:

(50 )-

You should find that your result vanishes in the limit R — oo, so long as o2 is finite.
Since the square makes this expectation value a sum of non-negative terms, it
can vanish only if every one of those terms is individually zero.

2In the computer project we will numerically investigate a situation where o diverges.
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